본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%97%90%EB%84%88%EC%A7%80
최신순
조회순
1700% 뛰어난 신축성, 고성능 웨어러블 열전소자 개발
열 에너지를 전기로 전환시키는 열전 소자는 버려지는 폐열을 활용할 수 있어 지속 가능하고 친환경적인 에너지 플랫폼으로 주목받고 있다. 한국 연구진이 우수한 신축성과 최고 수준 성능을 보이는 열전소자를 개발하여 웨어러블 소자를 위한 체온을 이용한 차세대 에너지 공급원으로의 가능성을 한층 더 앞당겼다. 우리 대학 생명화학공학과 문홍철 교수팀이 POSTECH 화학공학과 박태호 교수팀과 공동연구를 통해 열역학적 평형 조절을 통한 기존 N형 열전갈바닉 소자*성능 한계 극복 기술을 구현했다고 14일 밝혔다. *열전갈바닉 소자: 생성되는 전자 흐름의 방향에 따라 N형과 P형으로 구분 가능 네거티브(negative)를 의미하는 N형은 전자가 저온에서 고온 쪽으로, 포지티브(positive)를 의미하는 P형은 고온에서 저온 쪽으로 전자가 이동 열전 소자의 성능을 최대한 끌어올리기 위해 P형과 N형 소자의 통합이 필수적이다. 최근 우수한 성능을 지닌 P형 열전 소자에 대한 연구는 많이 진행되었지만 N형 열전 소자는 상대적으로 연구가 부족했다. 그마저도 N형 열전 소자는 P형에 비해 성능이 떨어져 통합형 소자 구현 시 성능 밸런스가 맞지 않아 성능 극대화에 걸림돌이 되었다. 이번 연구에서 연구팀은 스스로 산도(pH) 조절이 가능한 젤 소재를 개발하여 이온을 주요 전하운반체로 사용한 이온성 열전 소자 중 한 종류인 열전갈바닉 소자를 구현하였다. 연구팀이 개발한 젤 소재를 활용하여 하이드로퀴논* 레독스 반응**의 열역학적 평형을 효과적으로 제어할 수 있었고, 이를 통하여 고성능의 N형 열전 소자 특성을 구현하였다. *하이드로퀴논: 열 에너지를 전기 에너지로 전환하는데 사용된 전기화학 반응물 **레독스 반응: 산화-환원 반응 또한 개발된 젤 소재는 가역적 가교 결합을 기반으로 약 1700%의 우수한 신축성과 함께, 상온에서도 20분 이내에 99% 이상의 높은 자가회복 성능을 구현할 수 있게 설계되었다. 본 연구에서 개발된 N형 이온성 열전 소자는 4.29 mV K-1의 높은 열전력 (thermopower)을 달성하였으며, 1.05% 의 매우 높은 카르노 상대 효율* (Carnot relative efficiency) 또한 나타내었다. 이러한 우수한 성능을 바탕으로 손목에 부착된 소자는 몸에서 지속적으로 유지되는 체온과 주변 환경의 온도 차이를 이용하여 효과적인 에너지 생산에 성공하였다. *카르노 상대 효율: 이상적인 카르노 기관의 효율 대비 열전갈바닉 소자의 실제 열전환 효율 문홍철 교수는 “이번 연구 성과는 기존 N형 이온성 열전 시스템이 갖고 있던 한계를 극복할 수 있는 기술 개발에 해당한다”며 “이는 체온을 활용한 전원 시스템 실용화를 앞당기고, 웨어러블 소자 구동을 위한 핵심 요소 기술이 될 것이라 기대”한다고 밝혔다. 이번 연구는 에너지 분야 국제 학술지인 ‘Energy & Environmental Science’ 2024년 11월7일 표지논문(Outside Front Cover)으로 발표되었다. ※ 논문명: Realizing a high-performance n-type thermogalvanic cell by tailoring thermodynamic equilibrium 한편 이번 연구는 한국연구재단의 나노 및 소재기술개발사업 (나노커넥트) 및 중견연구자지원사업 지원을 받아 수행됐다.
2024.11.14
조회수 726
세계 최초 원자 편집으로 신약 발굴 패러다임 바꿔
선도적 신약 개발에서는 약효의 핵심 원자를 손쉽고 빠르게 편집하는 신기술은 의약품 후보 발굴 과정을 혁신하는 원천 기술이자, 꿈의 기술로 여겨져 왔다. 우리 대학 연구진이 약효를 극대화하는 단일 원자 편집 기술 개발에 세계 최초 성공했다. 우리 대학 화학과 박윤수 교수 연구팀이 오각 고리 화합물인 퓨란의 산소 원자를 손쉽게 질소 원자로 편집·교정하여, 제약 분야에서 널리 활용되는 피롤 골격으로 직접 전환하는 원천 기술 개발에 성공했다고 8일 밝혔다. 해당 연구성과는 그 중요성을 인정받아 과학 분야 최고권위 학술지인 ‘사이언스(Science)’誌 에 지난 10월 3일 게재됐다. (논문명: Photocatalytic Furan-to-Pyrrole Conversion) 많은 의약품은 복잡한 화학 구조를 갖지만, 정작 이들의 효능은 단 하나의 핵심 원자에 의해 결정되기도 한다. 대표적으로, 산소, 질소와 같은 원자는 바이러스에 대한 약리 효과를 극대화 하는데 중추적인 역할을 한다. 이처럼 약물 분자 골격에 특정 원자를 도입했을 때 나타나는 효능을 ‘단일 원자 효과(Single Atom Effect)'라 한다. 선도적 신약 개발에서는 수많은 원자 종류 중 약효를 극대화하는 원자를 발굴하는 것이 핵심으로 여겨진다. 하지만, 단일 원자 효과를 평가하기 위해서는 다단계·고비용의 합성 과정이 필연적으로 요구되어 왔다. 산소 혹은 질소 등을 포함한 고리 골격은 고유의 안정성(방향족성)으로 인해 단일 원자만 선택적으로 편집하기 어렵기 때문이다. 박 교수 연구팀은 빛에너지를 활용하는 광촉매를 도입하여 해당 기술을 구현했다. 분자 가위 역할을 하는 광촉매 개발을 통해 오각 고리를 자유자재로 자르고 붙임으로써 상온·상압 조건에서 동작하는 단일 원자 교정 반응을 세계 최초로 성공시켰다. 들뜬 상태의 분자 가위가 단전자 산화 반응을 통해 퓨란의 산소를 제거하고, 질소 원자를 연이어 추가하는 새로운 반응 메커니즘을 발견했다고 연구팀 관계자는 전했다. 이번 연구의 제1 저자인 KAIST 화학과 김동현, 유재현 석박사통합과정 학생은 “빛에너지를 활용해 가혹한 조건을 대체하여 해당 기술이 높은 활용성을 가질 수 있었다”며, “복잡한 구조로 이루어진 천연물이나 의약품들을 기질로 활용해도 선택적으로 목표 편집이 수행된다”고 이번 연구의 범용성을 설명했다. 이번 연구를 이끈 박윤수 교수는 “오각 고리형 유기 물질의 골격을 선택적으로 편집할 수 있게 됨에 따라, 제약 분야의 중요한 숙제였던 의약품 후보 물질의 라이브러리 구축에 새로운 장을 열 것”이라 언급하며, “해당 기반 기술이 신약 개발 과정을 혁신하는데 쓰이기를 바란다”고 덧붙였다. 해당 내용은 ‘사이언스(Science)’誌 내의 퍼스텍티브(Perspective) 섹션에 추가로 선정되어 연구의 의의가 소개되기도 하였다. 이는 해당 연구에 참여하지 않은 저명한 과학자가 파급력 있는 연구를 선별하여 해설을 제공하는 코너다. 한편 이번 연구는 한국연구재단의 우수신진연구, KAIST 교내연구사업 도약연구 및 초세대협업연구실, 포스코청암재단의 포스코 사이언스펠로십의 재원을 바탕으로 수행됐다.
2024.10.10
조회수 2578
전기 공급만으로 공기 중 CO₂를 제거하다
대기 중 이산화탄소 농도가 증가됨에 따라 지구 평균 기온도 약 1.2도 상승했으며 이는 극단적인 기상 현상, 해수면 상승, 생태계 파괴 등 심각한 환경 문제를 초래하고 있다. 우리 연구진이 공기 중 0.04%가량 존재하는 이산화탄소를 95% 이상 순도로 포집해 추후 이산화탄소 기반 연료 및 화학제품 생산 등 사용할 수 있는 기술을 개발해 화제다. 우리 대학 생명화학공학과 고동연 교수 연구팀이 순수 전기만으로 작동해 공기 중 이산화탄소를 효율적으로 제거할 수 있는 혁신적인 탄소 포집기를 개발하고 상용화하는 데 성공했다고 29일 밝혔다. 이 기술은 이번 연구를 주도한 김규남 박사과정 연구원의 학생 창업기업(소브(Sorv), 대표 김규남)을 통해 기술 상업화를 추진 중이다. 고동연 교수 연구팀은 전기 가열원이 이산화탄소 흡착제와 한꺼번에 대량 생산될 수 있는 기술을 자체적으로 개발하고, 이를 통해 벤치 규모의 직접 공기 포집(Direct Air Capture, 이하 DAC) 시스템 구현에 성공했다. 외부 열에너지의 공급 없이 전기만으로 구동할 수 있는 본 기술은 태양광, 풍력 등 다양한 재생에너지원을 직접 이용할 수 있고, 시스템의 부피가 매우 작아 기존 탄소 포집기가 적용될 수 있는 영역의 한계를 뛰어넘을 수 있다. 공기 중 극미량 존재하는 이산화탄소를 포집하는 기술을 기술 수준 하단에서 상단까지, 즉 실험실 단계에서 상업적 규모로 확대하는 것은 매우 어려운 일이다. 첫째, 대기 중 이산화탄소 농도가 낮아 이를 효과적으로 포집하기 위해서는 매우 효율적인 흡착제가 필요하다. 둘째, 포집된 이산화탄소를 경제적이고 에너지 효율적으로 분리하는 시스템이 필요하다. 셋째, 이 모든 과정을 대규모로 구현하기 위해서는 안정하고 일관성 있는 공정이 보장돼야 한다. 연구팀은 이러한 도전에 맞서 전기 가열원이 통합된 흡착제 및 시스템을 개발해 이산화탄소 포집기의 성능을 극대화했다. 이 흡착제는 대량 생산이 가능하며, 넓은 비표면적을 제공해 이산화탄소를 더 효율적으로 흡착할 수 있다. 또한, 빠른 흡착 및 탈착 속도를 자랑하며, 구조적으로 강해 반복적인 사용에도 변형이 적다. 연구팀이 개발한 탄소 포집기는 고성능의 흡착 소재에 이산화탄소를 흡착한 후 전기로 작동하는 가열원을 통해 발생하는 열을 이용해 순수한 이산화탄소 얻어내는 방식으로, 에너지 효율이 높고 정밀한 온도 제어가 가능하다. 이 시스템의 큰 장점 중 하나는 재생에너지로만 가동이 가능할 정도로 에너지 효율적이라는 점이다. 이는 전기에 접근성이 있는 모든 지리적 환경에 배치가 가능해, 다양한 장소에서 이산화탄소를 포집할 수 있게 한다. 현재 실험실 스케일에서는 하루 약 1~3kg의 이산화탄소를 처리할 수 있을 것으로 예상된다. 이 기술은 향후 하루 포집량 1톤 규모 이상으로 스케일업 및 대규모 배치도 가능하며 대기 중 이산화탄소를 포집하는 용도 뿐만 아니라 화력발전소, 시멘트 공장, 철강 공장 등 대규모 이산화탄소 배출원을 대상으로도 중요한 역할을 할 것으로 기대된다. 김규남 박사과정 연구원은 "이번 연구는 대기 오염 문제 해결에 한 발 더 다가설 수 있는 중요한 성과이며, 앞으로도 지속적인 연구를 통해 기술을 발전시키고 실제 환경에서의 적용 가능성을 높이겠다”라고 말했다. 연구팀은 본 기술의 혁신성을 인정받아 2022년에는 랩 스타트업(Lab Startup) KAIST 최우수상 수상, 2023년에는 미국 R&D 100 어워즈(Awards)의 파이널리스트(Finalist)로 선정됐으며, 2024년 1월에는 라스베이거스에서 개최된 국제전자제품박람회(CES 2024)에 e-DAC 데모 유닛을 전시하고 부스 발표를 하며 기술의 우수성을 널리 알린 바 있다. 이번 연구는 사우디 아람코-KAIST 이산화탄소 연구센터의 지원으로 이루어졌으며, 양 기관의 지속적인 협력을 통해 더욱 혁신적인 기술 개발이 기대된다.
2024.07.29
조회수 2277
값싸고 40% 향상된 리튬이온전지 만든다
전기자동차, 스마트폰 등에 사용되는 리튬이온전지 원가 중 가장 높은 비율을 차지하는 가장 비싼 재료는 니켈, 코발트와 같은 고가 희귀금속이 다량 포함된 양극재다. 국제공동연구진이 리튬이온전지의 에너지 밀도와 가격 경쟁력을 모두 높이는 새로운 전략을 제시했다. 우리 대학 신소재공학과 서동화 교수 연구팀이 UNIST, 캐나다 맥길대(McGill University)와 공동연구를 통해 리튬이온전지 양극의 핵심 광물인 값비싼 니켈, 코발트 없이도 에너지밀도가 40% 향상된 고성능 차세대 리튬이온전지 양극을 개발했다고 1일 밝혔다. 국제공동연구팀은 망간 기반의 양이온-무질서 암염(Disordered rock-salt, 이하 DRX) 양극재에 주목했다. DRX 양극재는 값싸고 매장량이 풍부한 망간, 철 등을 사용할 수 있으면서 양극재 무게 기준 기존 상용화된 삼원계양극재(약 770Wh/kg)보다 높은 에너지밀도(약 1,000Wh/kg)를 가질 수 있기 때문이다. 무엇보다, 값비싼 니켈과 코발트 없이도 소재를 설계할 수 있다는 장점이 있어 차세대 리튬이온전지 양극재로 주목받고 있다. 그러나 망간 기반 DRX 양극재의 경우 양극재 비율이 90% 이상인 전극으로 전지를 만들면 전지 성능이 매우 낮고 급격하게 열화되는 문제가 있었다. 따라서 DRX 양극재 연구자들은 양극재 비율을 70%로 낮춰 전극을 만들어야 했는데, 이 경우 전극 수준에서 삼원계(약 740Wh/kg)보다 오히려 낮은 에너지밀도(약 700Wh/kg)를 가지게 되는 문제가 있었다. 공동연구팀은 전극 내 망간 기반 DRX 양극재 비율이 높을수록 전자 전달 네트워크가 잘 형성되지 않고, 충·방전 간 부피 변화율이 높을수록 충·방전 동안 네트워크 붕괴가 잘 일어나 전지의 저항이 크게 증가한다는 것을 밝혔다. 고성능 차세대 양극재를 사용하더라도 저항이 크게 걸려 전지가 제 성능을 낼 수 없었던 것이다. 공동연구팀의 연구에 따르면, 망간 기반 DRX 전극 제조 시 다중벽 탄소나노튜브*를 사용하여 DRX 양극재의 낮은 전자전도도를 보완하고 충·방전 간 부피 변화를 견딜 수 있게 되어 전극 내 양극재의 비율을 96%까지 끌어올리더라도 전자 전달 네트워크와 전지 성능이 열화되지 않았다. 이를 통해 니켈, 코발트 없이 전극 무게 기준 약 1,050Wh/kg의 높은 에너지밀도를 보이는 차세대 리튬이온전지 양극을 개발했다. 이는 리튬이온전지 양극 중 세계 최고 수준이며, 상용 삼원계 양극 대비 에너지밀도가 40% 향상된 수준이다. *다중벽 탄소나노튜브: 여러 개의 농축된 원통형 그래핀 층으로 구성된 나노 스케일의 튜브 또한, DRX 양극재 내 망간 함량이 높을수록 전자전도도는 높지만, 동시에 부피 변화율도 높다는 상관관계를 발견했다. 이러한 이해를 기반으로 망간 함량을 낮춰 부피 변화를 억제하고, 다중벽 탄소 나노튜브를 사용해 낮은 전자전도도를 극복한다는 차세대 리튬이온전지 양극 설계 전략을 연구팀은 제시했다. 서동화 교수는 “상용화를 위해 풀어야 할 문제들이 아직 남아있지만 대 중국 의존도가 높은 니켈, 코발트 광물이 필요 없는 차세대 양극 개발 시 자원 무기화에 대비할 수 있고 리튬 인산철 양극 주도의 저가 이차전지 시장에서 우리 기업의 글로벌 경쟁력이 강화될 것으로 기대된다”라고 말했다. 이번 연구에는 이진혁 맥길대 교수가 공동교신저자로, 이은렬 UC버클리 박사후연구원(연구 당시 UNIST 에너지화학공학과 박사과정), 이대형 KAIST 신소재공학과 박사과정이 공동 제1 저자로 참여했다. 또, KAIST 신소재공학과 박상욱 박사과정, 김호준 석사과정이 공저자로 참여했다. 연구 수행은 한국연구재단의 과학기술분야 기초연구사업, 나노 및 소재 기술개발사업, 원천기술 개발사업 및 산업통상자원부의 에너지인력 양성사업의 지원을 받아 이뤄졌고, 한국과학기술정보연구원의 슈퍼컴퓨터를 지원받아 수행됐다. 연구 결과는 에너지 분야 국제학술지 ‘에너지 및 환경과학(Energy & Environmental Science)’ 지난 3월 27일자로 온라인 공개되었고, 6월호 표지 논문으로 출판될 예정이다. (논문명 : Nearly all-active-material cathodes free of nickel and cobalt for Li-ion batteries).
2024.05.02
조회수 3695
수 초 만에도 급속충전 가능 소듐전지 개발
소듐(Na)은 리튬(Li) 대비 지구상에 500배 이상으로 존재하기 때문에 이를 활용한 소듐 이온 배터리는 최근 큰 주목을 받고 있다. 그러나 리튬 이온 배터리에 비해 낮은 출력, 제한된 저장 특성, 긴 충전 시간 등의 근본적인 한계점이 있어 이를 극복하는 차세대 에너지 저장 소재 개발이 필요하다. 우리 대학 신소재공학과 강정구 교수 연구팀이 우수한 성능의 급속 충전이 가능한 고에너지·고출력 하이브리드 소듐 이온 전지를 개발했다고 11일 밝혔다. 최근 활발하게 연구가 진행되고 있는 하이브리드 에너지 저장 시스템은 배터리용 음극과 축전기용 양극을 결합해 높은 저장 용량과 빠른 충·방전 속도를 모두 지닐 수 있는 장점을 가지고 있다. 이는 기존 소듐 이온 배터리의 한계를 극복해 리튬이온 배터리를 대체할 수 있는 차세대 에너지 저장 장치로 주목받고 있다. 하지만 고에너지 및 고출력 밀도의 하이브리드 전지를 구현하기 위해서 배터리용 음극의 상대적으로 느린 에너지 저장 속도를 향상해야 하는 동시에 음극에 비해 상대적으로 낮은 용량을 갖는 축전기용 양극재의 에너지 저장 용량을 끌어 올려야 한다. 이에 강 교수 연구팀은 두 가지 서로 다른 금속-유기 골격체를 활용해 하이브리드 전지에 최적화된 전극 소재의 합성법을 제시했다. 우선 금속-유기 골격체에서 기인한 다공성 탄소 소재에 미세한 활물질을 함유해 속도 특성이 향상된 음극 소재를 개발했다. 고용량 양극 소재를 합성했고, 이를 조합해 양극 간의 에너지 저장 속도 특성의 차이를 최소화하면서도 용량 균형을 최적화한 소듐 이온 에너지 저장 시스템을 개발했다. 연구팀은 개발된 음극과 양극을 완전셀로 구성해 고성능 하이브리드 소듐이온 에너지 저장 소자를 구현했다. 하이브리드 소듐 이온 에너지 저장 소자는 기존 상용화된 리튬이온 배터리를 뛰어넘는 에너지 밀도와 축전기의 출력 밀도 특성을 모두 가짐을 확인했으며, 차세대 에너지 저장 장치로 수 초에서 수 분 만에 급속 충전이 가능해 전기 자동차, 스마트 전자기기, 항공 장치 등에 적용할 수 있을 것으로 예상된다. 강 교수는 "전극 기준으로 높은 에너지 밀도(247 Wh/kg)를 가지며, 고출력 밀도(34,748 W/kg)에 의한 급속 충전이 가능한 하이브리드 소듐 이온 에너지 저장 소자는 현 에너지 저장시스템의 한계를 극복할 수 있는 새로운 돌파구가 될 것이다ˮ라며 "전기 자동차를 포함한 모든 전자기기의 활용 범위를 확대해 적용될 수 있을 것이다ˮ고 말했다. 신소재공학과 최종휘 박사과정과 김동원 박사과정이 공동 제1 저자로 참여한 이번 연구 결과는 에너지 저장 소재 분야의 국제 학술지 `에너지 스토리지 머터리얼스(Energy Storage Materials)'에 3월 29일 字 게재됐다. (논문명: Low-crystallinity conductive multivalence iron sulfide-embedded S-doped anode and high-surface area O-doped cathode of 3D porous N-rich graphitic carbon frameworks for high-performance sodium-ion hybrid energy storages) 한편 이번 연구는 과학기술정보통신부와 한국연구재단의 나노 및 소재기술개발사업 미래기술연구실의 지원을 받아 수행됐다.
2024.04.11
조회수 4858
세계 최고 수준 리튬 금속배터리 용매 개발
휴대용 전자기기 및 전기차 등에 적용해 1회 충전에 많은 에너지를 저장하고 오래 사용할 수 있는 고 에너지밀도 이차전지 개발의 중요도가 커지고 있다. 한국 연구진이 리튬 이차전지의 에너지 밀도를 높이고 고전압 구동시 안정성을 높여줄 용매를 개발하여 화제다. 우리 대학 생명화학공학과 최남순 교수팀이 UNIST 화학과 홍성유 교수팀, 서울대 화학생물공학부 이규태 교수팀, 고려대 화공생명공학과 곽상규 교수팀, 경상국립대 나노·신소재공학부 고분자공학전공 이태경 교수와 공동연구를 통해 4.4V의 높은 충전 전압에서 리튬 금속전지의 효율과 에너지를 유지하는 세계 최고 수준의 전해액 조성 기술을 개발했다고 19일 밝혔다. 공동연구팀은 기존에 보고되지 않은 용매를 새롭게 디자인하고 합성해 전해액 주 용매로 사용했으며 전극-전해액 계면을 안정화하는 첨가제 기술과의 조합을 통해 리튬 금속전지의 고전압 수명 성능 및 고속 충전 특성을 획기적으로 높이는 데 성공했다. 리튬 금속전지를 오랜 시간 사용하기 위해서는 전해액의 이온 전달 성능뿐만 아니라 전극 표면을 보호하는 것이 필수적이다. 전자를 주는 성질이 강한 리튬금속 음극과 전자를 빼앗으려는 고전압 양극에 접촉하고 있는 전해액이 분해되지 않도록 전극과 전해액 사이에 보호층을 형성시켜야 한다. 최남순 교수 연구팀은 구동할 수 있는 상한 전압의 한계가 있는 용매들과는 달리 높은 충전 전압에서 안정적으로 사용할 수 있는 새로운 용매를 합성하는 데 성공했으며 이를 첨가제 기술과 접목해 현저하게 향상된 *가역 효율(상온 200회 99.9%)을 달성했다. 또한, 완전 충전-완전 방전 조건에서 첫 사이클 방전용량 대비 200사이클의 방전용량으로 용량 유지율을 측정하는데 개발된 전해액 기술은 리튬 대비 4.4V 높은 충전 전압 조건에서 다른 전해액보다 약 5% 정도 높은 75.0%의 높은 방전용량 유지율을 보였다. ☞ 가역 효율: 매 사이클마다 전지의 방전용량을 충전용량으로 나누어 백분율로 나타낸 값으로 배터리의 가역성을 의미함. 가역 효율이 높을수록 매 사이클마다 배터리 용량 손실이 적음을 의미함. 아무리 높은 용량을 구현하는 배터리라도 가역성이 높지 않다면 실용화가 어려움. 연구팀이 이번 연구에서 세계 최초로 합성 및 보고한 *환형 설폰아마이드 계열 용매인 TFSPP(1-(trifluoromethyl)sulfonyl)piperidine)는 기존에 사용되는 용매보다 우수한 고전압 안정성을 가져 전지 내부 가스 발생을 억제할 수 있음을 확인했다. ☞ 환형 설폰아마이드 용매: 질소원자 1개원 탄소원자 5개로 구성된 6원자 고리구조와 리튬염 구조를 모방한 작용기를 연결하여 제조되었으며 기존 에테르계 유기용매와 비교하여 3배 이상 높은 열안정성을 가짐. 또한, 상온에서 액체상태이며 리튬염을 녹일수 있는 용매임. 불에 잘 타는 일반적인 유기용매와는 달리 불에 타는 성질이 낮은 리튬염의 음이온 구조가 포함되어 있어 전해액의 발화 가능성을 낮출 것으로 기대됨. 또한, 연구팀은 두 가지 이온성 첨가제를 도입하여 리튬 금속 음극에 형성된 보호층이 부피 변화를 견디도록 설계했다. 이에 더해, 연구팀은 전자 방출 경향성이 높은 첨가제를 적용해 양극 표면에 보호층을 형성해 양극의 구조 안정성을 향상시켰다. 개발된 새로운 구조의 고전압 용매는 전극을 보호하는 첨가제와 함께 시너지 효과를 이끌어 고전압 리튬 금속전지 성능을 극대화했다는 점에서 그 의미가 크다. 이번 논문의 공동 제1 저자인 우리 대학 생명화학공학과 김세훈 박사과정은 “용매와 첨가제의 조합 기술을 통해 실용화가 가능한 리튬 금속전지용 용매 조성 프레임을 개발했으며 전지의 사용기간을 연장하는, 보다 안정적인 전극-전해액 계면층을 형성하는 새로운 전해액 조성 기술을 개발했다”라고 말했다. 최남순 교수는 “새로운 구조로 디자인된 TFSPP 용매는 기존 용매에 비해 열적 및 고전압 안정성이 매우 우수하고 전지 구동 중 전해액 분해를 최소화해 전지 내압 상승요인인 가스 발생을 억제하는 전해액 용매”임을 강조하며 “TFSPP를 주 용매로 사용해 전지의 고온 안정성을 개선했으며 본 연구팀 고유기술인 다중층 전극-전해액 보호층 형성을 통해 안정화함으로써 고전압 리튬 금속전지 실용화를 위한 전해액 설계에 있어서 새로운 이정표를 제시했다”라고 연구의 의미를 덧붙였다. 우리 대학 생명화학공학과 최남순 교수, 김세훈, 송채은, 이동현 연구원과 UNIST 화학과 홍성유 교수, 전지환 연구원, 서울대 화학생물공학부 이규태 교수, 박교빈, 송가원 연구원, 고려대 화공생명공학과 곽상규 교수, 권성현 연구원, 유승호 교수, 현재환 연구원, 그리고 경상국립대 나노·신소재공학부 고분자공학전공 이태경 교수가 진행한 이번 연구는 국제 학술지 ‘어드밴스드 머티리얼즈 (Advanced Materials)’에 3월 6일 字로 온라인 공개됐다. (논문명 : Electrolyte Design for High-Voltage Lithium-Metal Batteries with Synthetic Sulfonamide-Based Solvent and Electrochemically Active Additives) 한편 이번 연구는 한국연구재단의 단계도약형 탄소중립 기술개발사업과 한국산업기술평가관리원의 산업기술 혁신사업의 지원을 받아 수행됐다.
2024.03.19
조회수 5195
4.55V 고전압 리튬이온전지 전해액 기술 개발
전기차 시대의 가속화에 따라 1회 충전에 긴 주행거리를 가능하게 하는 고용량, 고에너지밀도 이차전지 개발과 더불어 빠르게 충전을 할 수 있는 고속 충전 기술 개발의 중요도가 커지고 있다. 우리 대학 생명화학공학과 최남순 교수 연구팀이 고전압 조건에서 리튬이온전지의 높은 효율과 에너지를 유지하고 고속 충전이 가능한 전해액 설계 기술을 개발했다고 6일 밝혔다. 개발된 전해액은 점도가 낮으면서 고전압에 안정적인 용매를 사용하였으며 안정적인 전극-전해질 계면 반응을 확보할 수 있는 첨가제 기술을 통해 리튬이온전지의 수명 특성을 획기적으로 향상시켰다. 최남순 교수 연구팀은 상용 리튬이온전지에 사용되고 있는 카보네이트 계열의 용매 대신 점도가 낮고 고전압 조건에서 안정적으로 작용할 수 있는 용매 조성 기술과 전극계면 보호 기술을 적용해 기존 연구 결과보다 현저하게 향상된 *가역 효율 (99.9% 이상)을 달성했다. ☞ 가역 효율 : 매 사이클마다 전지의 방전용량을 충전용량으로 나누어 백분율로 나타낸 값으로 배터리의 가역성을 의미함. 가역 효율이 높을수록 매 사이클마다 배터리 용량 손실이 적음을 의미함. 아무리 높은 용량을 구현하는 배터리라도 가역성이 높지 않다면 실용화가 어려움. 또한, 첫 사이클 방전 기준 용량 대비 200 사이클에서의 방전 기준 용량까지를 용량 유지율 측정하였는데 개발된 전해액 기술은 고온 (45도)에서 4.5 V의 충전 전압 조건에서 89.9%의 높은 용량 유지율을 보였으며 4.53 V의 충전 전압 조건에서도 77.0%의 높은 용량 유지율을 보였다. 개발 전해액 조성의 경우 기존 상용 최고 수준 기술 대비 약 10~15% 이상의 높은 용량 유지율을 보여줬다. 뿐만 아니라, 4.55 V의 혁신적인 충전 전압 조건에서도 200회 사이클 후 61.7%의 높은 용량 유지율을 보여주는 등 우수한 수명 특성을 보여줬다. 이번 연구에서 개발된 전해액 설계 기술은 리튬 코발트 산화물 양극을 사용해 4.5 V 이상의 고전압 그리고 1.5C (45분 충전)의 빠른 충전 조건에서 극대화된 성능을 얻었다는 점에서 그 의미가 크다. 여기에 더해 60도 고온 저장에서도 저장 성능이 향상됨도 확인했다. 특히 고에너지밀도 리튬이온전지용 전해액 기준 프레임을 제시한 바, 이는 리튬이차전지 전해액 설계에서 새로운 기준이 될 것이라고 연구진은 설명했다. 이번 논문의 공동 제1 저자인 우리 대학 생명화학공학과 김세훈 박사과정은 “높은 산화안정성 및 저점도 특성을 가지는 용매 적용에 따른 고전압 안정성 및 고속 충전 특성 향상과 전해액 첨가제에 의한 안정적인 전극-전해질 계면 형성의 시너지 효과에 의해 기존에 보고된 리튬이온전지용 전해액 기술 개발의 한계를 뛰어넘는 기술을 개발하게 됐다ˮ라고 말했다. 또한, “상용 리튬이온전지에서 사용하는 수준의 높은 로딩의 리튬 코발트 산화물 양극을 사용하여 전지의 수명 특성을 극대화했기 때문에 산업에의 빠른 적용 및 향후 고에너지밀도 전지 시스템 설계에 있어 이정표로 작용할 수 있을 것이다”라고 전했다. 최남순 교수는 "개발된 전해액 기술은 상용 용매로 사용되고 있는 카보네이트 유기용매의 부족한 고전압 내구성을 에스테르 용매로 획기적으로 극복하였으며 이를 통해 배터리 충전과정에서 가스 발생을 최소화하는 고전압 전해액 시스템을 구축했다ˮ라고 말했다. 또한, "이러한 고전압 용매 조성과 전해액 첨가제 조합 기술은 리튬이온전지의 한계 에너지밀도를 끌어올리기 위한 전해액의 고전압화를 위한 돌파기술이라는 점에서 그 의미가 크다고 하겠다ˮ라고 연구의 의미를 강조했다. 이번 연구에서 생명화학공학과 최남순 교수와 김세훈, 이정아 연구원은 리튬이온전지의 고전압 구동을 위한 새로운 전해액 조성 기술을 개발하고 이에 대한 효과를 검증하였으며 작동 메커니즘을 규명하였다. 경상국립대학교 나노신소재융합공학과 (나노·신소재공학부 고분자공학 전공) 이태경 교수와 이동규, 손준수 연구원은 전해액 용매 및 첨가제의 작동 메커니즘을 계산화학을 통해 구체화하는 연구를 진행하였다. 이번 연구는 저명한 국제 학술지 `에이시에스 에너지 레터즈 (ACS Energy Letters)'에 1월 12일자로 발간되었으며 커버 논문으로 선정되었다 (논문명 : Designing Electrolytes for Stable Operation of High-Voltage LiCoO2 in Lithium-Ion Batteries). 이번 연구 수행은 삼성 에스디아이 (Samsung SDI)의 지원을 받아 수행됐다.
2024.02.06
조회수 5258
KAIST-현대자동차, 0.6초 이내 초고속 수소 누출 감지
최근 친환경 수소 자동차 보급이 증가함에 따라 안전과 직결된 필수 요소인 수소 센서의 중요성이 더욱 높아지고 있다. 특히 빠른 수소 누출 감지를 위한 핵심 성능 지표인 센서 감지 속도의 경우 1초 이내로 감지하는 기술이 도전적인 과제로 남아있다. 이에 세계 최초 미국 에너지청(U.S. Department of Energy) 기준 성능을 충족하는 수소 센서가 개발되어 화제다. 우리 대학 조민승 박사(전기및전자공학부 윤준보 교수팀)가 현대자동차 기초소재연구센터 전자기에너지소재 연구팀, 부산대학교 서민호 교수와의 협업을 통해 모든 성능 지표가 세계적인 공인 기준을 충족하면서 감지 속도 0.6초 이내의 기존보다 빠른 수소 센서를 세계 최초로 개발했다고 10일 밝혔다. 기존 상용화된 수소 센서보다 빠르고 안정적인 수소 감지 기술 확보를 위해 우리 대학은 현대자동차와 함께 2021년부터 차세대 수소 센서 개발에 착수했고, 2년여의 개발 끝에 성공하였다. 기존의 수소 센서 연구들은 수소 센서에 많이 활용되는 팔라듐(palladium, Pd) 소재에 촉매 처리를 하거나 합금을 만드는 등 주로 감지 소재에만 집중하여 연구됐다. 이러한 연구들은 특정 성능 지표에선 매우 뛰어난 성능을 보이지만 모든 성능 지표를 충족하지는 못했으며, 일괄 공정이 어려워 상용화에 한계가 있었다. 이를 극복하기 위해 해당 연구진은 순수한 팔라듐 물질 기반으로 독자적인 마이크로/나노 구조 설계 및 공정 기술을 접목해 모든 성능 지표를 만족하는 센서를 개발했다. 또한 향후 양산을 고려해 합성 소재가 아닌 물질적 제약이 적은 순수 금속 소재들을 활용했으며, 반도체 일괄 공정 기반으로 대량 생산이 가능한 차세대 수소 센서를 개발했다. 개발한 소자는 히터-절연층-감지물질이 수직으로 적층 되어 있는 구조의 기존 가스 센서가 가지는 불균일한 온도 분포를 극복하기 위해 히터와 감지물질이 동일 평면상에 나란히 집적되어 있는 차별적인 공면(Coplanar) 구조가 적용됐다. 감지 물질인 팔라듐 나노 소재는 완전히 공중 부유 된 구조로 하단부까지 공기 중에 노출되어 있으며, 가스와의 반응 면적을 극대화해 빠른 반응 속도를 확보했다. 또한 팔라듐 감지 물질은 전 영역이 균일한 온도로 동작하며, 이를 통해 온도에 민감한 감지 성능들을 정확히 조절해 빠른 동작 속도, 폭넓은 감지 농도, 온도/습도 둔감성을 연구팀은 확보했다. 연구팀은 제작된 소자를 블루투스 모듈과 패키징 하여 무선으로 1초 이내로 수소 누출을 감지하는 통합 모듈을 제작한 후 성능을 검증했으며, 이는 기존 고성능 광학식 수소 센서와 달리 휴대성이 높아 수소 에너지가 보급되는 다양한 곳에 적용될 수 있을 것으로 기대된다. 연구를 주도한 조민승 박사는 “이번 연구 결과는 기존 수소 센서 성능 한계를 뛰어넘어 고속 동작할 뿐만 아니라 실사용에 필요한 신뢰성, 안정성까지 확보했기에 중요한 가치를 가지며, 자동차, 수소 충전소, 가정 등 다양한 곳에 활용될 수 있을 것”이라고 말했다. 또한 “이번 수소 센서 기술의 상용화를 통해 안전한 친환경 수소 에너지 세상을 앞당기는 데 기여하고 싶다” 라며 앞으로의 계획을 밝혔다. 연구팀은 개발된 소자를 현재 현대자동차와 함께 소자를 웨이퍼 스케일로 제작한 후 차량용 모듈에 탑재해 감지 및 내구 성능을 추가로 검증하는 중이다. 조민승 박사가 제1 저자로 수행한 이번 연구는 미국, 한국 등에 3건의 특허가 출원돼 있으며, 저명 국제 학술지 `ACS 나노(Nano)'에 출판됐다. (논문명: Ultrafast (∼0.6 s), Robust, and Highly Linear Hydrogen Detection up to 10% Using Fully Suspended Pure Pd Nanowire). (Impact Factor: 18.087). (https://pubs.acs.org/doi/10.1021/acsnano.3c06806?fig=fig1&ref=pdf) 한편 이번 연구는 한국연구재단의 나노및소재기술개발사업 지원과 현대자동차 기초소재연구센터의 지원 및 공동 개발을 통해 수행됐다.
2024.01.10
조회수 4527
세계 최고 전기차 이차전지 수명 획기적 연장
전기차 시대의 가속화에 따라 1회 충전에 긴 주행거리를 가능하게 하거나 전 세계 평균 기온에 속하는 넓은 온도 범위(-20~60도)에서 충전과 방전을 할 수 있는 고용량, 고에너지밀도 이차전지 개발의 중요도가 커지고 있다. 우리 대학 생명화학공학과 최남순 교수 연구팀이 넓은 온도 범위에서 리튬금속 전지의 높은 효율과 에너지를 유지하는 세계 최고 수준의 전해액 기술을 개발했다고 4일 밝혔다. 개발된 전해액은 기존에 보고되지 않은 새로운 *솔베이션 구조를 형성했으며 안정적인 전극-전해질 계면 반응을 확보할 수 있는 첨가제 기술을 통해 리튬금속 전지의 수명 특성을 획기적으로 향상시켰다. ☞ 솔베이션 구조 : 일반적으로 염(이온성 화합물) 농도가 낮은 전해액에서는 양이온이 전하를 띠지 않은 용매에 의해 둘러싸여 동심원의 껍질(Shell)을 형성하는데 이를 솔베이션 구조라고 함. 이러한 솔베이션 구조 개선 기술은 염 농도를 증가시키지 않고 배터리의 작동 온도 범위를 넓히는 매우 중요한 인자임. 최남순 교수 연구팀은 기존에 보고된 전해액 내 리튬 이온의 이동이 제한적이고 구동할 수 있는 온도 범위의 한계가 있는 전해액들과는 달리 넓은 온도 범위(-20~60도)에서 안정적으로 작용할 수 있는 용매 조성 기술과 전극계면 보호기술을 적용해 기존 연구 결과보다 현저하게 향상된 *가역 효율 (영하 20도 300회 99.9%, 상온 200회 99.9%, 고온 45도 100회 99.8%)을 달성했다. ☞ 가역 효율 : 매 사이클마다 전지의 방전용량을 충전용량으로 나누어 백분율로 나타낸 값으로 배터리의 가역성을 의미함. 가역 효율이 높을수록 매 사이클마다 배터리 용량 손실이 적음을 의미함. 아무리 높은 용량을 구현하는 배터리라도 가역성이 높지 않다면 실용화가 어려움. 또한, 완전 충전-완전 방전조건에서 첫 사이클 방전 기준 용량 80%가 나오는 횟수까지를 배터리 수명으로 보고 있는데 개발된 전해액 기술은 상온(25도)에서 200회 충·방전 후에 첫 번째 사이클의 방전용량 대비 85.4%의 높은 방전용량 유지율을 보였다. 또한, 고온(45도)에서 100회 충·방전 후 91.5% 발현, 저온(영하 20도) 구동에서도 300회 충·방전 후 72.1% 발현하는 등 완전 충전-완전 방전조건에서 기존 상용 기술 대비 약 20% 높은 용량 유지율을 보여줬다. 이번 연구에서 개발된 새로운 솔베이션 구조를 가지는 전해액(partially and weakly solvating electrolyte; PWSE) 기술은 리튬 코발트 산화물 양극을 사용해 영하 20도에서 60도의 넓은 온도 범위에서 극대화된 성능을 얻었다는 점에서 그 의미가 크다. 여기에 더해 60도와 80도 고온 저장에서도 저장 성능이 유지됨도 확인했다. 특히 리튬금속 전지용 전해액 기준 프레임을 제시한바, 이는 리튬이차전지 전해액 시장에서 게임 체인저가 될 것이라고 연구진은 설명했다. 이번 논문의 공동 제1 저자인 우리 대학 생명화학공학과 김세훈 박사과정은 "새로운 솔베이션 구조에 의한 리튬 이온의 이동도 향상과 구동 온도 범위의 확장 그리고 전해액 첨가제에 의한 안정적인 전극-전해질 계면 형성의 시너지 효과에 의해 기존에 보고된 리튬금속 전지용 전해액 기술 개발의 한계를 뛰어넘는 기술을 개발하게 됐다ˮ라고 말했다. 최남순 교수는 "개발된 전해액 기술은 기존에 보고된 전해액들과는 달리 리튬이온을 끌어당기는 힘이 다른 두 개의 용매를 사용하여 리튬이온이 잘 이동하게 하고 전극 표면에서도 원하지 않는 부반응을 감소시키는 새로운 솔베이션 구조를 형성해 리튬금속 전지 구동 온도 범위를 넓힌 획기적인 시도ˮ라며 "이러한 솔베이션 구조 개선 기술과 전해액 첨가제에 의한 안정적인 전극-전해질 계면 형성의 시너지 효과는 고에너지 밀도 리튬금속 전지에서의 난제들을 효과적으로 해결하고 전해액 설계에 있어서 새로운 방향을 제시했다ˮ라고 연구의 의미를 강조했다. 생명화학공학과 최남순 교수와 김세훈, 이정아, 김보근, 변정환 연구원과 경상국립대학교 나노신소재융합공학과 이태경 교수, UNIST 에너지화학공학과 강석주 교수, 백경은 연구원, 이현욱 교수, 김주영 연구원 진행한 이번 연구는 국제 학술지 `에너지 & 인바이론멘탈 사이언스 (Energy & Environmental Science)'에 9월 13일 字로 온라인 공개됐다 (논문명 : Wide-temperature-range operation of lithium-metal batteries using partially and weakly solvating liquid electrolytes). 한편 이번 연구 수행은 솔베이 스페셜티 폴리머즈 코리아 (Solvay Specialty Polymers Korea)의 지원과 ㈜후성으로부터 첨가제 합성 지원을 받아 수행됐다.
2023.10.04
조회수 4937
빛을 이용해 간단하게 유용한 화합물 만든다
환경 오염을 유발하는 부산물이나, 높은 에너지가 필요한 고온 공정 없이 빛을 이용해 친환경적으로 의약품의 주요 원료를 만들 수 있는 새로운 합성 공정이 개발됐다. 우리 대학 화학과 홍승우 교수(IBS 분자활성 촉매반응 연구단 부연구단장) 연구팀은 광(光)촉매를 이용해 질소 고리화합물을 합성하는 새로운 화학반응을 제시하고, 의약품의 주요 골격인 ‘락탐’과 ‘피리딘’을 하나의 분자에 도입하는 데 성공했다. ‘질소 고리화합물’은 약용 화합물의 주요 구성요소다. 고리(원) 형태로 결합한 탄소 원자 사이에 질소 원자가 끼어 있는 구조로, 여기에 작용기를 결합해 약품을 합성한다. 미국 식품의약국(FDA)이 승인한 약물의 60% 이상이 질소 고리화합물 구조를 포함하고 있다. 신약 후보 물질 발굴만큼이나 질소 고리화합물을 쉽게 합성할 수 있는 전략 개발이 중요한 이유다. 연구팀은 안정적인 유기 분자를 불안정한 삼중항 상태(triplet state)로 만들어 유용 물질을 합성하는 전략을 새롭게 제시했다. 우선 연구팀은 피리딘에 아미드 그룹을 부착한 피리디늄 염이 삼중항 에너지를 가질 수 있음을 계산화학적으로 예측했다. 삼중항은 분자에서 스핀이 한 방향으로 존재하는 상태로, 매우 불안정하여 자연에서는 잘 발견되지 않는다. 삼중항 상태를 상온에서 구현한다면, 기존에 없었던 새로운 화학반응에 적용할 수 있다. 이후 실제 실험을 통해 피리디늄 염을 삼중항 상태로 만들었다. 피리디늄 염이 빛 에너지를 받아 삼중항 상태가 될 수 있도록 광촉매를 활용했다. 제1저자인 이우석 연구원은 “계산화학적 예측과 실험적 확인을 통해 ‘삼중항 에너지 전달’이라는 새로운 화학반응을 보고했다”며 “환경 오염을 유발하는 시약을 첨가해야 던 기존 합성법과 달리 가시광선을 활용하기 때문에 친환경적이다”라고 설명했다. 더 나아가 연구진은 하나의 분자에 피리딘과 락탐을 동시에 선택적으로 생성할 수 있음을 처음으로 보여줬다. 기존에는 피리딘과 락탐을 동시에 도입하기 위해서는 별도의 재료와 여러 단계의 화학반응을 거쳐야 했지만, 이제는 한 번의 반응으로 두 작용기가 선택적으로 결합된 화합물을 합성할 수 있다. 주요한 생리활성을 지닌 골격을 한 분자에 결합시킬 수 있어 더 경제적인 합성이 가능할 뿐만 아니라 약효도 증가시킬 수 있다. 또한, 연구진은 삼중항 에너지 전달 메커니즘을 피리딘뿐만 아니라 여러 고리 구조 합성 반응에 적용할 수 있다는 것도 확인했다. 연구를 이끈 홍승우 부연구단장은 “삼중항 에너지 전달을 이용하면 의약품 합성에 필요한 단계를 줄일 수 있다”며 “과정이 간단할 뿐만 아니라 친환경적인 방법으로 향후 신약 및 각종 화학제품 개발 등 산업계 전반에 큰 도움을 줄 것으로 기대된다”고 말했다.
2023.07.11
조회수 4439
생체 에너지 발전소 부산물로 병원균 감염 제어
코로나 팬데믹 이후 바이러스 등 병원성 물질에 대응하는 면역력 조절의 중요성이 높아지고 있다. 사람을 포함한 동물은 외부 감염원에 대항하는 병원체 저항성이 발달해 있다. 미토콘드리아는 우리 몸 세포가 사용하는 에너지를 생성하는 발전소 역할에 더해 병원체에 저항하는 중요한 역할을 한다. 하지만 미토콘드리아가 에너지를 생성할 때 만들어지는 다양한 대사 부산물이 병원체 저항성에 어떤 역할을 하는지는 잘 알려져 있지 않다. 우리 대학 생명과학과 이승재 교수 연구팀(RNA 매개 건강장수 연구센터)이 세포 속 발전소인 미토콘드리아의 부산물을 활용해 병원체 저항성을 제어하는 방법을 찾았다고 10일 밝혔다. 이승재 교수 연구팀은 사람과 많은 유전자를 공유하여 생물학 연구에 많이 활용되는 작은 동물인 예쁜꼬마선충과 인간 세포를 활용한 연구를 수행했다. 그 결과, 세포 안에서 필요한 에너지를 만들어내는 세포 소기관인 미토콘드리아 안에서 에너지 및 대사 부산물을 형성하는 ‘TCA 회로’를 구성하는 효소인 아코니타제-2를 억제하자 개체 내 옥살아세트산 농도가 감소해 병원균 저항성이 강화된다는 사실을 밝혔다. 미토콘드리아의 TCA 회로는 포도당, 지방산, 아미노산 등 세포의 주요 에너지원을 분해하여 에너지를 만들고, 그 과정에서 각종 부산물을 생성한다. 연구진은 생성된 부산물 중 하나인 아코니타제-2의 억제로 줄어든 옥살아세트산이 미토콘드리아가 손상되었을 때 생기는 스트레스 반응인 미토콘드리아 미접힘 단백질 반응 (Mitochondrial unfolded protein response, UPRmt)을 활성화해 병원균 저항성을 강화함을 발견했다. 이러한 현상은 인간의 세포에서도 마찬가지여서 아코니타제-2 및 옥살아세트산의 저하에 의한 병원균 저항성 향상 효과가 예쁜꼬마선충부터 포유류까지 보존되어 있음을 입증했다. 아코니타제-2는 미토콘드리아 기능에 필수적인 효소로, 이를 억제하는 것은 미토콘드리아 손상과 암을 포함한 심각한 질환을 유발하기도 한다. 그러나 이번 연구에서 연구진들은 아코니타제-2의 기능을 적절히 감소시키면 예쁜꼬마선충의 장수를 유도하고 병원균에 대한 저항성을 증진하는 등 긍정적인 효과가 있음을 보고했다. 이는 미토콘드리아 아코니타제가 병원균 저항성을 조절하는 치료제의 새로운 표적이 될 수 있다는 가능성을 제시한다. 이번 연구는 또한 미토콘드리아가 세포 내 발전소로서 에너지를 형성할 뿐 아니라 그 과정에서 생기는 부산물인 옥살아세트산이 병원균 저항성을 조절함을 밝혀 완전히 새로운 방법으로 세포 면역을 조절할 수 있음을 제시하였기에 의의가 크다. 우리 대학 생명과학과 김은아 박사, 이유진 박사, 박혜은 박사와 함석진 박사가 공동 제1 저자로 참여한 이번 연구는 세계적 석학인 아담 안테비 박사 (Adam Antebi, 독일 막스플랑크 연구소) 연구팀과의 공동연구로 진행됐으며, 국제 학술지 ‘네이처 커뮤니케이션즈 (Nature Communications)’에 지난 6월 22일 출판됐다. 한편 이번 연구는 한국연구재단 리더연구과제에서 지원을 받았다. (논문명: Mitochondrial aconitase suppresses immunity by modulating oxaloacetate and the mitochondrial unfolded protein response)
2023.07.11
조회수 4625
그린수소 저가 생산 실마리 풀어
탄소중립의 필요성이 대두됨에 따라 수소를 에너지 캐리어로 활용하는 수소 에너지 사회로의 변화가 선택이 아닌 필수가 되어가고 있다. 이를 위해 수소를 생산하는 다양한 기술들이 제시되고 있으며, 수소 생산시 이산화탄소 배출이 전혀 없는 수소를 ‘그린수소 기술’이라고 한다. 그 중, 물을 전기분해하여 수소와 산소를 생성하는 수전해 기술이 변동성이 높은 재생에너지 기반 전력 시스템에 우수한 안정성을 가져, 앞으로 급증할 그린 수소의 수요를 책임질 차세대 시스템으로 주목받고 있다. 우리 대학 생명화학공학과 김희탁 교수 연구팀이 얇은 고분자 막을 분리막으로 사용하는 고분자전해질 수전해 시스템에서 양극 귀금속 촉매 함량을 낮췄을 때 발생하는 성능 악화 현상을 규명해 그린 수소 생산기술 저가화에 대한 실마리를 찾았다고 22일 밝혔다. 생명화학공학과 두기수 박사가 제1 저자로 참여한 이번 연구 결과는 국제학술지 `ACS 에너지 레터스(ACS Energy Letters)' 5월 12일 자 온라인판 표지논문으로 게재됐다. (논문명: Contact Problems of IrOx Anodes in Polymer Electrolyte Membrane Water Electrolysis) 양이온 전도성 고분자전해질 수전해는 물을 전기분해하여 수소 기체를 발생시키는 친환경 수소생산 장치로 기존의 알칼리성 수전해 대비 높은 성능과 높은 수소생산 순도를 강점으로 지닌다. 이 수전해 시스템은 산성 환경에서 작동하며 효율적인 물의 분해를 위해 귀금속 기반의 촉매를 사용한다. 하지만 백금, 이리듐 등의 귀금속 소재들은 수급 부족과 높은 가격 문제를 수반한다. 특히, 이리듐 기반 촉매는 양극 반응에 가장 적합하지만 매장량이 적어 현재보다 십 분의 일 수준의 촉매가 요구되는 고분자전해질 수전해 장치를 개발할 필요가 있다. 하지만 이리듐 촉매 함량을 줄일 때 발생하는 급격한 성능 저하 현상이 고분자전해질 수전해 저가화의 발목을 잡고 있다. 이러한 문제해결을 위한 대부분의 연구는 이리듐을 대체하는 새로운 촉매의 발굴에 주력하고 있다. 수전해 시스템에 사용하는 전극은 이리듐 촉매와 바인더로 구성된 촉매층과 티타늄 확산층 결합된 구조를 가지고 있다. 김희탁 교수 연구팀은 고분자전해질 수전해의 양극 내 이리듐 촉매 함량을 낮췄을 때 발생하는 성능 저하 문제가 촉매층과 확산층 계면에서 바인더의 함량이 증가하기 때문이라는 새로운 시각을 제시하고 이를 규명했다. 이리듐 촉매와 티타늄 확산층이 접촉하면, 티타늄 표면에 존재하는 자연 산화막의 전자띠가 굽는 띠굽음(band bending) 현상이 일어난다. 연구팀의 결과에 따르면 낮은 이리듐 함량의 전극에서는 이 띠굽음 현상이 바인더에 의해 증폭된다. 전자띠가 굽을수록 전자전달이 더욱 어려워지므로 성능 저하가 발생하게 되는 것이다. 연구팀은 띠굽음 현상이 완화된 계면을 설계하는 경우, 이리듐 함량을 1/10 수준으로 저감시켜도 동일한 수전해 성능을 얻을 수 있음을 확인하였다. 이는 전극계면의 조성을 변화시킴으로써 비싼 귀금속 촉매 사용량을 획기적으로 저감 가능하다는 것을 증명했다. 김희탁 교수는 "이번 연구결과는 그동안 베일에 싸여있던 이리듐 저감형 수전해 전극의 성능 문제를 짚어 그 이유를 규명하고 해결 전략을 제공했다는 점에서 중요한 의미가 있다ˮ라고 말하면서, "이를 바탕으로 효율과 가격을 동시에 잡을 수 있는 그린 수소 생산 시스템의 개발에 응용되기를 기대한다ˮ고 말했다. 한편 이번 연구는 산업통상지원부 에너지기술개발사업의 지원을 받아 수행됐다.
2023.05.22
조회수 4238
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
>
다음 페이지
>>
마지막 페이지 7