본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%98%81%EC%83%81%EB%B3%B5%EC%9B%90
최신순
조회순
똑똑한 영상 복원 인공지능 기술 개발
딥러닝 기술은 영상 복원 속도가 기존 알고리즘 대비 수백 배 이상 빠를 뿐만 아니라 복원 정확도 역시 높다. 하지만, 주어진 학습 데이터에만 의존하는 딥러닝 기술은 영상 취득 환경상에 변화가 생기면 성능이 급격히 저하되는 치명적인 약점이 있다. 이는 알파고와 이세돌 九단과의 대국 시 `신의 한 수'에 의해 알파고의 성능이 급격하게 저하되었던 사례를 떠올리면 쉽게 이해할 수 있다. 즉, 인공지능이 학습하지 못했던 변수(학습 데이터상에 존재하지 않는 수)가 발생할 때 신뢰도가 급격히 낮아지는 인공지능 기술의 근본적인 문제이기도 하다. 우리 대학 바이오및뇌공학과 장무석 교수 연구팀과 김재철AI 대학원 예종철 교수 연구팀이 공동 연구를 통해 인공 지능의 신뢰도 문제를 해결할 수 있는 물리적 학습 기반의 영상 복원 딥러닝 기술을 개발했다고 6일 밝혔다. 연구팀은 영상 취득 환경에서 발생할 수 있는 변수 대부분이 물리적 법칙을 통해 수학적으로 기술 가능하다는 점에 착안해 물리적 법칙과 심층 신경망이 통합된 학습 기법을 제시했다. 모든 영상 기술은 물리적인 영상 기기를 통해 영상 정보를 취득한다. 연구팀은 이 정보 취득 과정에 대한 물리적인 통찰력을 인공지능에 학습시키는 방법을 개발했다. 예를 들면, `네가 도출한 복원 결과가 물리적으로 합당할까?' 혹은 `이 영상 기기는 물리적으로 이런 변수가 생길 수 있을 것 같은데?'라는 식의 질문을 통해 물리적 통찰력을 인공지능에 이식하는 방법을 제시한 것이다. 연구팀은 변화하는 영상 취득 환경에서도 신뢰도 높은 홀로그래피 영상* 을 복원하는데 성공했다. 홀로그래피 영상 기술은 의료 영상, 군용 감시, 자율 주행용 영상 등 다양한 정밀 영상 기술에 다양하게 활용될 수 있는데, 이번 연구는 의료 진단 분야의 활용성을 집중적으로 검증하였다. *홀로그래피 영상: 물체의 그림자 패턴(회절 패턴)으로부터 물체의 형태를 복원하는 영상 기법, 일반적인 영상 기술과 달리 위상 변화에 의한 물체의 미세 구조를 감지할 수 있는 영상 기술 연구팀은 먼저 3차원 공간상에서 매우 빠르게 움직이는 적혈구의 회절 영상(확산된 그림자형상)으로부터 적혈구의 형태를 실시간으로 복원하는데 성공했다. 이러한 동적인 영상 환경에서 예상치 못한 변수로는 여러 개의 적혈구 덩어리가 복잡하게 겹쳐진다거나 적혈구가 예상하지 못했던 위치로 흘러가는 경우를 생각해 볼 수 있다. 여기서, 연구팀은 인공 지능이 생성한 영상이 합당한 결과인지 빛 전파 이론을 통해 검산하는 방식으로 물리적으로 유효한 복원 신뢰도를 구현하는데 성공하였다. 연구팀은 암 진단의 표준기술로 자리잡고 있는 생검 조직(생체에서 조직 일부를 메스나 바늘로 채취하는 것)의 영상 복원에도 성공했다. 주목할 점은 특정한 카메라 위치에서 측정된 회절 영상만을 학습했음에도 인공지능의 인지능력이 부가되어 다양한 카메라 위치에서도 물체를 인식하는데 성공했다는 점이다. 이번에 구현된 기술은 세포 염색 과정이나 수 천 만원에 달하는 현미경이 필요하지 않아 생검 조직 검사의 속도와 비용을 크게 개선할 수 있을 것으로 기대된다. 물리적 통찰력을 인공 지능에 이식하는 영상 복원 기술은 의료 진단 분야 뿐만 아니라 광범위한 영상 기술에 활용될 것으로 기대된다. 최근 영상 기술 산업계 (모바일 기기 카메라, 의료 진단용 MRI, CT, 광 기반 반도체 공정 불량 검출 등) 에선 인공지능 솔루션 탑재가 활발히 이루어지고 있다. 영상 취득에 사용되는 센서, 물체의 밝기, 물체까지의 거리와 같은 영상 취득 환경은 사용자마다 다를 수밖에 없어 적응 능력을 갖춘 인공 지능 솔루션에 대한 수요가 큰 상황이다. 현재 대부분의 인공 지능 기술은 적응 능력 부재로 신뢰도가 낮은 문제 때문에 실제 현장에서 활용성이 제한적인 상황이다. 바이오및뇌공학과 이찬석 연구원은 "데이터와 물리 법칙을 동시에 학습하는 적응형 인공지능 기술은 홀로그래피 영상뿐만 아니라 초고해상도 영상, 3차원 영상, 비시선 영상(장애물 뒷면을 보는 영상) 등 다양한 계산 영상 기술에 적용될 수 있을 것으로 기대된다ˮ고 밝혔다. 연구진은 "이번 연구를 통해 인공지능 학습에 있어서 학습 데이터에 대한 강한 의존성(신뢰도 문제)을 물리적 법칙을 결합해 해소했을 뿐만 아니라, 이미지 복원에 있어 매게 변수화된 전방 모델을 기반으로 했기 때문에 신뢰도와 적응성이 크게 향상됐다ˮ며, 이어 "이번 연구에서는 데이터의 다양한 특성 중에서 수학적 혹은 물리적으로 정확히 다룰 수 있는 측면에 집중했고, 향후 무작위적인 잡음이나 데이터의 형태에 대해서도 제약받지 않는 범용 복원 알고리즘을 개발하는 데 주력할 것이다ˮ라고 밝혔다. 바이오및뇌공학과 이찬석 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 머신 인텔리전스(Nature Machine Intelligence)'에 지난 1월 17일 字 출판됐다. (논문명: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data) 한편 이번 연구는 삼성미래기술육성사업과 선도연구센터사업의 지원을 받아 수행됐다.
2023.02.06
조회수 5597
박현욱 교수, 머신러닝 통해 MRI 영상촬영시간 단축기술 개발
우리 대학 전기및전자공학부 박현욱 교수 연구팀이 머신러닝 기반의 영상복원법을 이용해 자기공명영상장치(이하 MRI)의 영상 획득시간을 6배 이상 단축시킬 수 있는 기술을 개발했다. 이번 연구를 통해 MRI의 영상획득시간을 대폭 줄임으로써 환자의 편의성을 높일 뿐 아니라 의료비용 절감 효과를 기대할 수 있을 것으로 보인다. 권기남 박사과정이 1저자로 참여한 이번 연구는 국제 학술지 ‘메디컬 피직스(Medical Physics)’ 12월 13일자에 게재됐고 그 우수성을 인정받아 표지 논문에 선정됐다. MRI는 방사능 없이 연조직의 다양한 대조도를 촬영할 수 있는 영상기기이다. 다양한 해부학적 구조 뿐 아니라 기능적, 생리학적 정보 또한 영상화 할 수 있기 때문에 의료 진단을 위해 매우 높은 빈도로 사용되고 있다. 하지만 MRI는 다른 의료영상기기에 비해 영상획득시간이 오래 걸린다는 단점이 있다. 따라서 환자들은 MRI를 찍기 위해 긴 시간을 대기해야 하고 촬영 과정에서도 자세를 움직이지 않아야 하는 등의 불편함을 감수해야 한다. 특히 길게 소요되는 영상획득시간은 MRI의 비싼 촬영 비용과 직접적인 연관이 있다. 박 교수 연구팀은 MRI의 영상획득시간을 줄이기 위해 데이터를 적게 수집하고 대신 부족한 데이터를 기계학습(Machine Learning)을 이용해 복원하는 방법을 개발했다. 기존의 MRI는 주파수 영역에서 여러 위상 인코딩을 하면서 순차적으로 한 줄씩 얻기 때문에 영상획득시간이 오래 걸린다. 획득 시간을 단축시키기 위해 저주파 영역에서만 데이터를 얻으면 저해상도 영상을 얻게 되고 듬성듬성 데이터를 얻으면 영상에서 인공물이 생기는 에일리어싱 아티팩트 현상이 발생한다. 이러한 에일리어싱 아티팩트를 해결하기 위해 다른 민감도를 갖는 여러 수신 코일을 활용한 병렬 영상법과 신호의 희소성을 이용한 압축 센싱 기법이 주로 활용됐다. 그러나 병렬 영상법은 수신 코일들의 설계에 영향을 받기 때문에 시간을 많이 단축할 수 없고 영상 복원에도 시간이 많이 걸린다. 연구팀은 MRI의 가속화에 의해 발생하는 에일리어싱 아티팩트 현상을 없애기 위해 라인 전체를 고려한 인공 신경망(Deep Neural Networks)을 개발했다. 연구팀은 위 기술과 함께 기존 병렬 영상법에서 이용했던 복수 수신 코일의 정보를 활용했고, 이 방식을 통해 직접적으로 영향을 주는 부분만을 연결해 네트워크의 효율성을 높였다. 기존 방법들의 경우 서브 샘플링 패턴에 많은 영향을 받았지만 박 교수 연구팀의 기술은 다양한 서브샘플링 패턴에 적용 가능하며 기존 방법대비 복원 영상의 우수함을 보였고 실시간 복원 또한 가능하다. 박 교수는 “MRI는 환자 진단에 필요한 필수 장비가 됐지만 영상 획득 시간이 오래 걸려 비용이 비싸고 불편함이 많았다”며 “기계학습을 활용한 방법이 MRI의 영상 획득 시간을 크게 단축할 것으로 기대한다”고 말했다. 이번 연구는 과학기술정보통신부의 인공지능 국가전략프로젝트와 뇌과학원천기술개발사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 국제 학술지 ‘메디컬 피직스 (Medical Physics)’12월호 표지 그림2. 제안하는 네트워크의 모식도 그림3. MRI의 일반적인 영상 획득 및 가속 영상 획득 모식도
2017.12.29
조회수 17632
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1