-
폐암 전이를 막고 치료 가능한 세포로 되돌리는 원천기술 개발
고령화에 따라 암의 발생이 늘어나면서 암은 인류의 건강수명을 위협하는 가장 치명적인 질환이 됐다. 특히 조기 발견을 놓쳐 여러 장기로 전이될 때 암의 치명률은 높아진다. 이러한 문제를 해결하기 위해 암세포의 전이 능력을 제거하거나 낮추려는 시도가 이어졌으나 오히려 중간상태의 불안정한 암세포 상태가 되면서 더욱 악성을 보이게 되어 암 치료의 난제로 남아 있었다.
우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 시스템생물학 연구를 통해 폐암 세포의 성질을 변환시켜 암세포의 전이를 막고 약물에 대한 저항성을 제거할 수 있는 기술을 개발하는 데 성공했다고 30일 밝혔다.
조광현 교수 연구팀은 폐암 세포의 전이능력이 없는 상피(epithelial, 세포 방향성이 있어 유동성 없이 표면조직을 이루는 상태)세포에서 전이가 가능한 중간엽(mesenchymal, 방향성없이 개별적인 이동성을 가진 상태)세포로 변화되는 천이 과정(epithelial-to-mesenchymal transition, 이하 EMT)에서 나타나는 다양한 암세포 상태들을 나타낼 수 있는 세포의 분자 네트워크 수학모델을 만들었다. 컴퓨터 시뮬레이션 분석과 분자 세포실험을 통해 악성종양으로 증식하여 인접한 조직이나 세포로 침입하거나 약물에 내성을 가진 중간엽세포 상태에서 전이가 되지 않은 상피세포 상태로 다시 바뀔수 있도록 세포의 성질을 변환시켜주는 핵심 조절인자들을 발굴했다.
특히 이 과정에서 그동안 난제로 남아 있었던 중간과정의 불안정한 암세포 상태(EMT 하이브리드 세포 상태)를 피하는 동시에 항암 화학요법(chemotherapy) 치료가 잘 되는 상피세포 상태로 온전히 역전하는 데 성공했다.
우리 대학 김남희 박사과정, 황채영 박사, 김태영 연구원, 김현진 박사과정이 참여한 이번 연구 결과는 미국암학회(AACR)에서 출간하는 국제저널 `캔서 리서치(Cancer Research)' 1월 30일 字 온라인판 논문으로 출판됐다. (논문명: A cell fate reprogramming strategy reverses epithelial-to-mesenchymal transition of lung cancer cells while avoiding hybrid states)
암세포의 EMT 과정에서 불완전한 천이(변화과정)로 인해 발생하는 EMT 하이브리드 상태의 세포들은 상피세포와 중간엽세포의 특성을 모두 갖고 있으며, 높은 줄기세포능*을 획득해 약물저항성 및 전이 잠재성이 큰 것으로 알려져 있다. 불안정한 암세포 상태(EMT)는 매우 복잡하여 높은 전이 능력과 약물저항성을 가지는 EMT 하이브리드 세포 상태를 회피하면서 암세포를 전이 능력과 약물저항성이 제거된 상피세포 상태로 온전히 역전시키는 것은 매우 어려운 일이었다.
*줄기세포능: 줄기세포가 지속적 자가복제를 할 수 있도록 하는 세포내 신호전달체계
조광현 교수 연구팀은 복잡한 EMT를 지배하는 유전자 조절 네트워크의 수학모델을 정립한 후, 대규모 컴퓨터 시뮬레이션 분석 및 복잡계 네트워크 제어기술을 적용해 중간엽세포 상태인 폐암 세포를 EMT 하이브리드 세포 상태를 회피하면서 전이 능력이 상실된 상피세포 상태로 역전시킬 수 있는 세 개의 핵심 분자 타깃인 ‘p53 (암 억제 단백질)’, ‘SMAD4 (EMT를 조절하는 대표적 신호전달을 매개하는 중심물질로 SMAD 그룹에 포함된 단백질)’와 ‘ERK1/2 (세포의 성장 및 분화에 관여하는 조절인자)’를 발굴하고 이를 분자 세포실험을 통해 검증했다. 이러한 발견은 실제 인체 내 암 조직의 환경에서처럼 자극이 주어진 상황에서 중간엽세포 상태가 상피세포 상태로 역전될 수 있음을 증명해 그 의미가 크다.
암세포의 비정상적인 EMT는 암세포의 이동과 침윤, 화학요법 치료에 대한 반응성 변화, 강화된 줄기세포능, 암의 전이 등 다양한 악성 형질로 이어지게 된다. 특히 암세포의 전이 능력 획득은 암 환자의 예후를 결정짓는 매우 중요한 요소다. 이번에 개발된 폐암 세포의 EMT 역전 기술은 암세포를 리프로그래밍해 높은 가소성과 전이 능력을 제거하고 항암 화학치료의 반응성을 높이도록 하는 새로운 항암 치료 전략이다.
조광현 교수는 "높은 전이 능력과 약물저항성을 획득한 폐암 세포를 전이 능력이 제거되고 항암 화학요법치료에 민감한 상피세포 상태로 온전히 역전시키는 데 성공함으로써 암 환자의 예후를 증진할 수 있는 새로운 치료전략을 제시했다ˮ라고 말했다.
조광현 교수 연구팀은 암세포를 정상세포로 되돌리는 가역 치료원리를 최초로 제시한 뒤 2020년 1월에 대장암세포를 정상 대장 세포로 되돌리는 연구 결과를 발표했고, 2022년 1월에는 가장 악성인 유방암세포를 호르몬 치료가 가능한 유방암세포로 리프로그래밍하는 연구에 성공한 바 있다. 이번 연구 결과는 전이 능력을 획득한 폐암 세포 상태를 전이 능력이 제거되고 약물 반응성이 증진된 세포 상태로 되돌리는 가역화 기술 개발의 세 번째 성과다.
한편 이번 연구는 과학기술정보통신부와 한국연구재단의 중견연구자지원사업 등의 지원으로 수행됐다.
2023.01.30
조회수 7287
-
그래핀 기반 2차원 반도체 소자 시뮬레이션의 양자 도약 달성
반도체 연구 개발에서 소자의 미세화에 따라 원자 수준에서 전류의 흐름을 이해하고 제어하는 것이 핵심적 요소가 되고 있는 상황에서, 우리 연구진이 기존에는 불가능했던 원자만큼 얇은 2차원 반도체 소자의 엄밀한 양자 역학적 컴퓨터 시뮬레이션을 성공적으로 구현하고 이를 기반으로 원자 결함에 의해 발생하는 특이한 소자 특성을 세계 최초로 보고했다.
우리 대학 전기및전자공학부 김용훈 교수 연구팀이 자체적으로 개발한 양자 수송 이론을 통해 세계 최초로 그래핀 전극 간 전자의 터널링 현상(전자가 포텐셜 장벽을 투과하는 현상)으로 작동하는 *2차원 터널링 트랜지스터의 **제1 원리 시뮬레이션을 수행하는 데 성공했다고 4일 밝혔다.
* 2차원 터널링 트랜지스터: 그래핀을 전극으로 하여 전극 간 전자의 터널링(tunneling) 현상을 통해 소자가 작동하는 반도체 소자이다. 소자의 동작 특성을 결정하는 그래핀 전극간 전자의 터널링 현상은 소스-드레인(source-drain) 전극 및 게이트(gate) 전압에 의해 결정된다.
**제1 원리 시뮬레이션: 제1원리 계산은 물질 내 전자들의 거동을 해석할 때 실험적 데이터나 경험적 모델을 도입하지 않고 지배방정식인 슈뢰딩거 방정식을 원자 정보를 포함시켜 직접 푸는 양자역학적 물질 시뮬레이션 방법으로 대표적인 방법론은 밀도 범함수론(density functional theory, DFT)이 있음
전기및전자공학부 김태형 박사과정과 이주호 박사가 공동 제1 저자로 참여한 이번 연구는 소재 계산 분야의 권위 있는 학술지 `네이쳐 파트너 저널 컴퓨테이셔널 머터리얼즈(Npj Computational Materials)' (IF 13.20) 3월 25일 字 온라인판에 게재됐다. (논문명: Gate-versus defect-induced voltage drop and negative differential resistance in vertical graphene heterostructures)
제1 원리 시뮬레이션이란 슈퍼컴퓨터에서 원자 수준의 양자역학 계산을 수행해 실험적 데이터나 경험적 모델의 도움 없이 물질의 특성을 도출하는 방법으로 제1 원리 계산을 통한 평형 상태의 소재 연구는 1998년 월터 콘(Walter Khon) 교수가 노벨상을 받은 `밀도 범함수론(density functional theory: DFT)'을 기반으로 다방면으로 수행돼왔다.
반면 전압 인가에 따른 비평형 상태에서 작동하는 나노 소자의 제1 원리 계산은 DFT 이론을 적용하기 어렵고 그 대안으로 제시된 이론들에도 한계가 있어 현재 그래핀 기반 2차원 반도체 소자의 엄밀한 양자역학적 시뮬레이션은 불가능한 상황이었다.
연구팀은 먼저 이러한 어려움을 극복하기 위해 자체적으로 수립한 새로운 양자 수송 계산 체계인 다공간 DFT 이론을 발전시켜 그래핀 기반 2차원 터널링 트랜지스터의 제1 원리 시뮬레이션을 가능하게 했다.
다음으로 이를 그래핀 전극-육각형 질화붕소 채널-그래핀 전극 소자 구조에 적용해 질화붕소 층에 존재하는 원자 결함이 다양한 비선형 소자 특성들을 도출시킬 수 있음을 보여 원자 결함의 종류와 위치에 대한 정보가 신뢰성 있는 2차원 소자의 구현에 매우 중요함 요소을 입증했다.
한편 이러한 비선형 소자 특성은 연구진이 기존에 세계 최초로 제안했던 양자 혼성화(quantum hybridization) 소자 원리(device principle)에 따라 발현됨을 보여 2차원 소자의 양자적 특성을 활용하는 한 방향을 제시했다.
김 교수는 "나날이 치열해지는 반도체 연구/개발 분야에서 세계적으로 경쟁력 있는 나노 소자 전산 설계 원천기술을 확보했다ˮ고 연구의 의미를 소개하며 "양자 효과가 극대화될 수밖에 없는 차세대 반도체 연구/개발에서 양자역학적 제1 원리 컴퓨터 시뮬레이션의 역할이 더욱 중요해질 것”이라고 강조했다.
한편 이번 연구는 삼성전자 미래기술 육성센터의 지원을 받아 수행됐다.
2022.04.04
조회수 9807
-
뼈의 단단함을 모사해 광학적 특성을 매우 증대시킨 신물질 개발
우리 연구진이 동물 뼈가 그의 구성성분인 단백질보다 수천 배 단단할 수 있는 생체역학적 원리를 모사해 광학적 비선형성이 기존 물질 대비 수천에서 수십억 배나 큰 신물질을 개발했다.
비선형성이란 입력값과 출력값이 비례관계에 있지 않은 성질인데 광학에서 큰 비선형성을 확보할 경우, 빛의 속도로 동작하는 인공 신경망이나 초고속 통신용 광 스위치 등의 광소자를 구현할 수 있다.
우리 대학 신소재공학과 신종화 교수 연구팀은 벽돌을 엇갈려 담을 쌓는 것과 같이 나노 금속판을 3차원 공간에서 엇갈리게 배열하면 물질의 광학적 비선형성이 매우 크게 증대될 수 있음을 확인했다. 신종화 교수 연구팀이 이번 연구를 통해 발견한 비선형성 증대원리는 광학뿐만 아니라 역학, 전자기학, 유체역학, 열역학 등 다양한 물리 분야에도 적용이 가능하다.
KAIST 신소재공학과 장태용 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `커뮤니케이션즈 피직스(Communications Physics)' 5월 8일 字 온라인판에 게재됐다. (논문명 : Mimicking bio-mechanical principles in photonic metamaterials for giant broadband nonlinearity).
영화 스타워즈의 광선 검처럼 잘 제어된 빛을 만드는 것이나 빛만으로 구동되는 광컴퓨터를 만드는 것은 비선형성을 이용할 때 가능한데, 아직 실현되지 않고 있는 이유는 강한 비선형성을 가진 소재가 없기 때문이다. 자연 물질의 작은 비선형성으로도 초고속 광소자, 3차원 광식각 공정, 초 고분해능 현미경 등의 기술들이 구현될 수 있지만, 이들은 크고 비싼 고출력 레이저를 사용하거나, 큰 장비 혹은 소자가 필요하다는 공통적인 한계를 지니고 있다.
이를 극복하기 위해 기존에는 미세한 인공 구조체를 설계해서 그 틈에 빛을 모으는 방법이 많이 시도돼왔다. 비선형성은 빛의 세기에 비례하기 때문에 이 같은 방법을 이용하면 같은 부피의 자연 물질 대비 작은 빛의 세기로 비슷한 수준의 비선형 효과를 얻을 수 있다. 그러나 최대로 얻을 수 있는 비선형 효과의 크기는 결국 달라지지 않기 때문에 응용하는데 한계가 있다.
신 교수 연구팀은 물질의 근본적인 전기적 특성인 유전분극(물체가 전기를 띠는 현상)을 매우 크게 조절하는 방법을 고안했다. 나노 금속판이 3차원에서 엇갈려 배열돼있으면 국소분극이 공간을 촘촘하게 채우면서, 마치 시냇물이 모여서 강이 되듯, 전체적으로 매우 큰 분극을 만들게 된다는 점에 착안했다. 빛의 세기가 아닌 분극의 크기를 조절해 큰 비선형성 및 비선형 효과를 얻는 방법은 이번 신 교수 연구팀이 이번 연구에서 처음 제시한 개념인데 비선형 광학이 60년 동안 달성하고자 했던 고효율의 작은 비선형 광소자 개발에 한 발 더 다가선 것으로 평가되고 있다.
연구팀은 이번에 고안한 메타물질(자연계에 존재하지 않는 특성을 구현하기 위해 매우 작은 크기로 만든 인공 원자의 주기적인 배열로 이루어진 물질)이 시간적으로 짧은 광신호에 대해서도 큰 비선형 효과를 얻을 수 있음을 통해 기존보다 효율적이면서도 더 빠른 광소자 구현이 가능함을 확인했다. 이 연구에서 활용된 소자는 비슷한 신호 시간을 가지는 기존 소자보다는 에너지 효율이 약 8배나 뛰어나고 비슷한 에너지 효율을 가지는 기존 소자보다도 신호 시간은 약 10배 정도 짧다. 즉, 신호의 시간과 소요되는 에너지의 곱으로 표현되는 성능 기준으로 보면, 이 소자는 현재까지 개발된 광소자 중 가장 우수한 성능을 보였다.
연구팀은 또 고안한 메타물질이 광학 이외의 물리 현상에도 적용될 수 있음을 입증했다. 연구팀은 단백질의 단단함 대비 뼈의 단단함을 설명하는 모델이 이번 연구에서 고안한 광학적 비선형성 증대원리와 수학적으로 매우 유사함을 증명했다. 따라서 유체역학에서의 물질전달률, 열역학에서의 열전도율 등의 증대에도 신 교수 연구팀의 연구방법이 적용될 수 있을 것으로 기대된다.
신종화 교수는 "올해는 지난 1960년 레이저가 발명된 지 60년이 되는 해로, 레이저의 발명이 `센 빛'을 최초로 만든 것이라면 이번 연구성과는 `센 물질', 즉 광대역에서 매우 큰 유전분극 증대율을 보이는 물질을 최초로 발견하고 증명한 연구라는 점에서 의미가 크다ˮ며 "기계학습을 위한 초고속 인공 신경망 등 다양한 광 응용 소자의 구현을 위해 후속 연구를 진행 하고 있다ˮ고 말했다.
한편 이번 연구는 삼성미래기술육성재단의 지원을 받아 수행됐다.
2020.06.09
조회수 14894
-
70년 만에 준-페르미 준위 분리 현상 제1 원리적으로 규명
국내 연구진이 70년 난제로 꼽히던 준-페르미 준위 분리 현상의 원자 수준 규명에 성공했다.
우리 대학 전기및전자공학부 김용훈 교수 연구팀이 반도체 소자 동작의 기원인 준-페르미 준위(quasi-Fermi level) 분리 현상을 제1 원리적으로 기술하는 데 최초로 성공했다고 27일 밝혔다.
제1 원리적인 방법이란 실험적 데이터나 경험적 모델을 사용하지 않고 슈뢰딩거 방정식을 직접 푸는 양자역학적 물질 시뮬레이션 방법이다.
김용훈 교수 연구팀의 연구 결과는 특히 비평형 상태의 나노 소자 내에서 발생하는 복잡한 전압 강하의 기원을 새로운 이론 체계와 슈퍼컴퓨터를 통해 규명함으로써, 다양한 첨단 반도체 소자의 분석 및 차세대 나노 소자 개발을 위한 이론적 틀을 제공할 것으로 기대되고 있다.
이주호 박사과정 학생이 제1 저자로 참여한 이번 연구 성과는 국제학술지 미국‘국립과학원회보(Proceedings of the National Academy of Sciences)’ 4월 23일 字 온라인판에 게재됐다. (논문명: Quasi-Fermi level splitting in nanoscale junctions from ab initio)
반도체 관련 교과서에도 소개되고 있는 준-페르미 준위 개념은 반도체 소자 내 전압인가 상황을 기술하는 표준적인 이론 도구로서 그동안 트랜지스터, 태양전지, 발광다이오드(LED) 등 다양한 반도체 소자들의 구동 원리를 이해하거나 성능을 결정하는데 경험적으로 사용돼왔다.
하지만 준-페르미 준위 분포 현상은 1956년 노벨 물리학상 수상자 윌리엄 쇼클리(William B. Shockley)가 제시한 지 70년이 지난 현재에도 전압 인가 상황의 반도체 소자 채널 내에서 측정을 하거나 계산을 해야 하는 어려움 때문에 원자 수준에서는 이해되지 못한 상황이 계속돼왔다.
연구팀은 차세대 반도체 소자의 후보군으로 주목을 받는 단일분자 소자에서, 나노미터 길이에서 발생하는 복잡한 전압 강하 현상을 최초로 규명해냈다. 특히 전도성이 강한 특정 나노 전자소자에 대해 비 선형적 전압 강하 현상이 일어나는 원인이 준-페르미 준위 분리 현상임을 밝혔다.
이러한 연구 성과는 김 교수 연구팀이 다년간에 걸쳐 새로운 반도체 소자 제1 원리 계산 이론을 확립하고 이를 소프트웨어적으로 구현했기에 가능했다. 이는 외산 소프트웨어에만 의존하던 반도체 설계 분야에서 세계적으로 경쟁력 있는 차세대 나노소자 전산 설계 원천기술을 확보했다는 점에서 큰 의미를 부여할 수 있다.
한편 이번 연구는 과학기술정보통신부 중견연구자지원사업, 나노소재원천기술개발사업, 기초연구실지원사업, 글로벌프론티어사업의 지원을 받아 수행됐다.
2020.04.27
조회수 15272
-
육종민 교수, 나트륨 이차전지의 음극 소재 원리 규명
〈 왼쪽부터 육종민 교수, 박재열 박사과정, 박지수 박사과정 〉
우리 대학 신소재공학과 육종민 교수 연구팀이 황화구리를 기반으로 한 나트륨 이차전지 전극 재료의 나트륨 저장 원리를 밝혔다.
나트륨 이차전지는 1일 1회 충, 방전 시 5년 이상 사용할 수 있는 우수한 성능을 가진 전지로, 이번 연구를 통해 수명이 긴 전극 재료 개발에 기여할 것으로 예상된다.
연구팀의 이번 연구는 높은 저장 용량을 가지는 소재의 충. 방전 반복에 따른 열화 방지 관련 핵심원리를 규명했다는 점에서 의의가 있다. 황화구리는 지구상에 풍부한 구리와 황으로 이뤄져 있어 다른 나트륨 저장 소재 대비 경쟁력이 높아 나트륨 전지의 상용화를 크게 앞당길 것으로 기대된다.
박재열 박사과정이 1 저자로 참여한 이번 연구는 국제 학술지 ‘어드밴스드 사이언스(Advanced Sciences)’ 6월호 표지논문(Inside back cover)에 선정됐다. (논문명 : Pulverization-tolerance and capacity recovery of copper sulfide for high performance sodium storage)
리튬 이온 전지는 휴대전화, 전기차 등 일상과 밀접한 다양한 곳에 사용된다. 리튬 이온 전지의 원자재인 리튬, 코발트, 니켈 등은 매장지역이 한정돼 있어 가격 흐름이 매우 불안정하다. 2018년에는 수요가 급등해 공급량이 부족해져 리튬과 코발트 가격이 한때 3배 이상 급등하기도 했다.
이런 문제를 해결하기 위해 리튬 이온 전지의 대안으로 나트륨 이온 전지가 주목받고 있다. 리튬이 지구 지표면에 0.005%만 존재하는 반면 나트륨은 그 500배 이상인 2.6% 존재해 원자재 공급 문제를 해결할 수 있다. 따라서 리튬 이온 전지 대비 저렴한 가격으로 같은 용량의 에너지를 저장할 수 있을 것으로 전망된다.
하지만 리튬 이온 전지의 음극 재료인 흑연은 나트륨의 저장에 적합하지 않다. 그 이유는 흑연 층 사이에 리튬 이온들이 삽입(intercalation)되며 저장되는데 나트륨 이온을 저장하기에는 흑연의 층간 거리가 너무 좁기 때문이다.
비슷한 이유로 다른 삽입반응을 거치는 나트륨 저장물질들도 저장 용량이 낮다. 낮은 저장 용량 문제를 해결하기 위해서는 높은 저장 용량을 얻을 수 있는 전환(conversion)반응이나 합금(alloying) 반응을 거치는 물질을 사용해야만 한다. 그러나 이 두 가지 반응을 이용하면 부피팽창이 너무 커지고 급격한 결정구조의 변화에 따라 입자가 분쇄돼 성능이 빠르게 저하된다.
육 교수 연구팀은 일반적인 통념과 달리 황화구리는 전환반응을 거침에도 불구하고 오히려 저장 용량이 회복되며 안정적인 충, 방전이 가능하다는 사실을 발견했고 그 원리를 투과전자현미경을 이용해 관찰했다. 그 결과 전환반응에서 유사 정합 경계면 (두 상 혹은 두 결정립 사이의 결정 격자의 합이 잘 맞는 경계면) 을 형성해 입자의 분쇄를 막아준다는 사실을 밝혀냈다.
일반적인 전환반응의 경우 전환반응 전후의 결정구조가 완전히 다르고 부피팽창도 크기 때문에 입자가 분쇄돼 성능 열화를 유발한다. 그러나 황화구리는 나트륨 저장에 따라 유동적인 결정구조 변화를 해 유사 정합 경계면을 형성하고, 이는 입자의 분쇄를 막아주는 결정적인 역할을 한다고 연구팀은 설명했다.
그 결과 황화구리는 입자의 크기나 형상에 상관없이 높은 나트륨 저장 성능을 보이는 것을 확인했다. 수십, 수백 마이크로미터 크기의 별다른 최적화를 거치지 않은 황화구리 입자가 기존 흑연의 이론 용량 대비 약 17% 높은 ~436mAh/g의 저장 용량을 갖고, 2천 회 이상의 충, 방전에도 93% 이상의 저장 용량을 유지함을 확인했다.
육 교수는“이번 연구가 미세먼지 해결을 위한 고성능 배터리 개발에 이바지할 수 있을 것이다”라고 말했다.
이번 연구는 한국연구재단의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 어드밴스드 사이언스 표지
그림2. 황화구리 내 나트륨이 저장되면서 나타나는 유사 정합 경계 (Semi-coherent interface) 들
2019.07.01
조회수 11906
-
조광현 교수, 뇌파 생성, 변조 담당하는 신경회로 원리 규명
〈 조광현 교수 연구팀 〉
우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 뇌파의 생성 및 변조를 담당하는 핵심 신경회로를 규명하는 데 성공했다.
이를 통해 뇌의 동작원리를 밝힐 뿐 아니라 향후 여러 뇌질환 환자에게서 발생하는 비정상적 뇌파활동을 신경세포 네트워크 수준에서 규명하는 데 활용 가능할 것으로 기대된다. 이번 연구는 4차 산업혁명의 핵심기술로 주목받는 IT와 BT의 융합연구인 시스템생물학 연구로 규명했다는 의미를 갖는다.
이병욱 박사과정, 신동관 박사, 스티븐 그로스 박사가 함께 참여한 이번 연구는 국제 학술지 ‘셀 리포트(Cell Reports)’ 11월 6일자 온라인 판에 게재됐다.
뇌의 다양한 기능은 신경세포(뉴런) 사이의 복잡한 상호작용을 통해 이뤄진다. 특히 뉴런들의 동시다발적인 발화에 의해 형성되는 뇌파는 뇌의 활동 상태를 측정하는 가장 중요한 지표이며, 특정 기능을 수행하기 위해 영역 간 선택적 통신의 매개체 역할을 하는 것으로 알려져 있다.
또한 뇌파의 비정상적인 생성 및 변조 현상은 다양한 뇌질환과 밀접한 관계를 갖는 것으로 밝혀지고 있다. 이에 따라 전 세계 신경생물학 연구자들은 뇌파의 생성 및 변조 원리를 파악하기 위해 노력해 왔다.
그러나 뇌파의 생성 및 변조는 수많은 뉴런 사이의 복잡한 상호작용을 통해 발생하는 예측할 수 없는 창발적 특성(emergent property)을 갖기 때문에 기존의 신경 생물학 실험을 통해 그 원리를 규명하기에는 한계가 있었다.
조 교수 연구팀은 시스템생물학 기반의 연구방법을 통해 뇌파의 생성 및 변조 원리를 분석했다. 연구팀은 여러 뇌 영역 중 특히 감각 피질(sensory cortex)에 주목했다. 감각 피질은 외부 감각 정보를 처리하고 통합, 조절하는 핵심 영역으로 여러 주파수 대역의 뇌파와 변조를 관측할 수 있다.
연구팀은 최근 커넥토믹스 (connectomics) 연구를 통해 밝혀진 쥐의 감각피질 내 뉴런의 종류 및 뉴런 간 연결성 정보를 이용해 감각피질을 구성하는 뉴런들과 이들을 연결하는 시냅스를 수학 모델을 통해 표현하고 이로부터 신경회로를 구축해 뇌파의 생성 및 변조 과정을 분석했다.
연구팀은 대규모 컴퓨터 시뮬레이션 분석을 통해 흥분성 뉴런과 억제성 뉴런으로 구성된 양성피드백과 음성피드백의 중첩된 구조(interlinked positive and negative feedback)가 뇌파의 생성 및 주파수 변조 현상의 핵심회로임을 최초로 규명했다.
특히 연구팀은 기존의 전기생리학 실험을 통해 측정된 뉴런 간 시냅스의 특정 연결강도가 신경회로의 뇌파 생성 및 변조 기능을 극대화시킬 수 있는 최적의 조합임을 밝혀냈다.
이번에 개발한 수학모형을 활용하면 전통적 생물학 실험을 통해 파악이 어려웠던 뉴런들 간의 다양한 상호작용을 이해하고 신경회로의 복잡한 설계원리를 파악할 수 있을 것으로 기대된다.
또한 여러 뇌질환 환자의 뇌에서 관측되는 비정상적인 뇌파 활동을 신경네트워크 차원에서 분석하고 규명할 수 있을 것으로 예상된다.
시스템생물학 접근을 통한 신경회로의 구조 및 기능 분석은 인공지능의 발전에도 기여할 것으로 기대된다. 두뇌 신경회로의 작동원리에 대한 이해를 높인다면 컴퓨터 과학자들이 이를 이용해 새로운 인공지능 기술을 개발할 수 있다. 자폐증이나 집중력 조절장애 등과 관련된 신경회로 규명, 두뇌 치료 기술 개발 등의 원천 의료기술 개발에도 혁신으로 이어질 수 있다.
조 교수는 “지금껏 뇌파의 생성 및 변조를 담당하는 핵심 신경회로가 밝혀진 바가 없었다”며 “이번 연구에서는 최근 커넥토믹스 (connectomcis) 연구를 통해 점차 밝혀지고 있는 뉴런간의 복잡한 연결성에 숨겨진 설계원리를 시스템생물학 연구를 통해 찾아냄으로써 뇌의 동작원리를 파악할 수 있는 새로운 가능성을 제시했다”고 말했다.
이번 연구는 과학기술정보통신부와 한국연구재단의 중견연구자지원사업과 바이오의료기술개발사업, 그리고 삼성전자 미래기술육성센터의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 뉴런 간 연결 강도에 내제된 기능적 설계원리 파악
그림2. 뇌파의 생성 및 변조를 담당하는 핵심 신경회로
2018.11.14
조회수 16455
-
최원호 교수, 플라즈마 내 전자의 가열 원리 규명
〈 최원호 교수, 박상후 연구교수〉
우리 대학 원자력및양자공학과 최원호 교수 연구팀이 약하게 이온화된 플라즈마(weakly ionized plasma)에서 전자가 가열되는 구조와 제어 원리를 규명하는데 성공했다.
플라즈마 내의 모든 반응이 전자로부터 시작된다는 점으로 볼 때 전자의 가열 원리를 규명함으로써 플라즈마를 더욱 자유롭고 다양하게 활용할 수 있을 것으로 예상된다.
이는 대기압 플라즈마 내에 존재하는 자유 전자에 대한 기초 연구 자료로 기존 플라즈마의 활용 및 응용 가능성을 높이는 등 플라즈마 물리학 및 응용기술 발전에 크게 기여할 것으로 기대된다.
박상후 연구교수가 1저자로 참여한 이번 연구는 국제 학술지 ‘사이언티픽 리포트(Scientific Reports)’5월 14일자와 7월 5일자 온라인 판에 연달아 게재됐다. (논문명 : Electron information in single- and dual-frequency capacitive discharges at atmospheric pressure, 단일 및 이중 주파수 대기압 플라즈마의 전자 정보 / Electron heating in rf capacitive discharges at atmospheric-to-subatmospheric pressures, 대기압과 대기압보다 낮은 압력에서 라디오 주파수 플라즈마 내의 전자 가열)
물질의 세 가지 상태인 고체, 액체, 기체와 더불어 ‘물질의 네 번째 상태’라 불리는 플라즈마는 표준 온도 및 압력(25 ℃, 1 기압)의 상태에서는 자연적으로 존재하지 않으나 인위적으로 기체에 에너지를 가하면 플라즈마 상태가 된다.
학계 및 산업계는 활용 목적과 조건에 맞춰 다양한 형태의 플라즈마 발생원을 개발해 사용하고 있다. 특히 대기압 플라즈마는 응용 가능 분야가 다양하고 활용도가 높아 학술적, 산업적 활용성 측면에서 많은 관심을 받고 있다.
일반적으로 플라즈마 내의 다양한 화학적, 물리적 반응은 전자로부터 시작되기 때문에 전자의 밀도와 온도의 시공간적 변화는 아주 중요한 정보이다. 플라즈마 및 가속기 물리학 분야에서 자유 전자의 가열 여부는 과학자들의 관심을 지속적으로 받은 연구 주제이다.
그러나 대기압 조건에서는 자유 전자와 중성기체의 충돌이 빈번하기 때문에 이온화된 플라즈마 내 자유 전자의 밀도와 온도를 측정하는 데에는 한계가 있어 자유 전자의 가열 구조 및 원리를 실험적으로 규명할 수 없었다.
또한 전자 가열의 제어 방법 및 주요 요인에 대한 정보가 부족해 플라즈마의 반응성과 활용성 개선이 제한적이었다.
연구팀은 문제 해결을 위해 전자-중성입자 제동복사(electron-neutral bremsstrahlung)란 기술을 이용해 플라즈마 내 자유 전자의 밀도, 온도를 정확히 진단하고 이를 2차원으로 영상화하는 기술을 개발했다.
연구팀은 개발한 진단 기술을 이용해 대기압 플라즈마에서 수 나노초(10억분의 1초) 단위로 자유 전자의 온도(에너지)를 측정해 전자가 에너지를 얻는 가열 과정의 시공간적 분포 및 근본 원리를 밝히는 데 성공했다.
0.25~1기압 압력구간에서의 전자 온도의 시공간적 분포의 변화를 실험적으로 최초로 확인해 대기압 및 대기압보다 낮은 압력에서 전자가 에너지를 얻는 가열의 기본 원리를 규명했다.
최 교수는 “이 연구 결과는 자유 전자와 중성입자의 충돌이 매우 빈번한 조건에서 발생하는 플라즈마에서의 전자 가열 원리를 학문적으로 이해하는 데 유용할 것이다”며 “이를 통해 경제적, 산업적 활용 가능한 대기압 플라즈마 발생원을 개발하고 다양하게 활용하는데 큰 역할을 하길 기대한다”고 말했다.
이번 연구는 국가핵융합연구소의 미래선도플라즈마-농식품융합기술개발사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 측정된 파장의 제동복사 및 전자 온도의 시공간적 변화
그림2. 단일 및 이중 주파수로 구동하는 플라즈마에서 측정된 제동복사 및 전자 온도의 시공간적 변화
2018.07.26
조회수 13661
-
고규영 교수, 녹내장 발생에 관여하는 신호전달체계 규명
우리 대학 의과학대학원 고규영 교수가 녹내장(Glaucoma)이 발생하고 진행되는 근본적 원인을 규명하고 새로운 치료방법을 제시했다.
김재령 박사과정이 1저자로 참여한 이번 연구는 미국 임상연구학회에서 발간하는 임상연구학회지(The Journal of Clinical Investigation) 9월 19일자 온라인 판에 게재됐다. 또한 10월 발간되는 인쇄본의 표지 및 커버스토리로 실린다.
녹내장은 안압이 상승해 시신경이 눌리거나 혈액 공급에 문제가 생겨 시신경이 망가지고 실명에 이르는 병이다. 증상이 나타날 땐 이미 시신경이 크게 손상된 상태라 완치가 어렵다. 전 세계 40세 이상 성인 인구의 3.5%가 녹내장을 앓고 있으며 국내에서도 환자가 빠르게 증가하는 추세다. 특히 전체 환자의 약 75% 이상을 차지하는 원발개방각녹내장의 경우 원인을 분자적 수준에서 밝히기 어려워 근본적인 치료법 마련에 한계가 있었다.
원발개방각녹내장 발병 기전의 이해를 넓힌 이번 연구로 그간 더뎠던 치료법 개발에 속도가 날 것으로 기대된다.
연구진은 안압이 안정적으로 유지되는 작동원리와 신호전달체계를 규명했다. 안압 조절에 중요한 기관인 쉴렘관의 항상성 유지를 Angiopoietin-TIE2 수용체 신호전달체계(이하 ANG-TIE2 신호전달체계)가 수행함을 밝혔다.
녹내장은 방수배출장치가 고장 나면서 발생한다. 눈 내부에서 생성된 방수는 섬유주를 지나 쉴렘관을 거쳐 혈관으로 배출된다. 안압은 방수가 생성되는 만큼 배출되어야 일정하게 유지되는데 방수배출장치에 문제가 생기면 안압이 상승한다. 원발개방각녹내장의 경우, 방수유출경로의 저항이 커지면서 방수가 제대로 빠져나가지 않아 발생하는 것으로 알려져 있으나 어떤 이유 때문에 저항이 커지는지는 알 수 없었다.
김재령 연구원과 박대영 연구원(박사후연구원/안과 전문의)은 혈관 성숙과 안정화에 필수적인 ANG 단백질과 TIE2 수용체가 각각 쉴렘관 주변부와 내피세포에 두드러지게 발현되는 것을 발견했다. 연구진은 ANG-TIE2 신호전달체계가 생후 초기 쉴렘관의 발달뿐만 아니라 성체가 된 이후에도 항상성 유지에 필수적일 것으로 예상했다.
실험 결과, 연구진은 쉴렘관 형성과 유지, 안압 조절에 있어 ANG-TIE2 신호전달체계가 핵심적인 역할을 수행함을 확인했다. ANG-TIE2 신호전달체계는 쉴렘관을 형성하고 내강을 유지해 방수 유출을 가능케 한다.
쉴렘관이 형성되는 동안에는 Prox1 전사인자 발현을 촉진하고 성체가 된 이후에는 적절한 양의 방수, 거대액포, Prox1 전사인자 발현을 유지하여 쉴렘관의 항상성을 지킨다.
연구진은 녹내장이 유발된 상황에서 ANG-TIE2 신호전달체계의 활성화가 어떤 효과가 있는지 추가 실험을 진행했다. TIE2 수용체를 활성화하는 실험적 항체(ABTAA)가 쉴렘관의 내피세포에 작용하여 방수 유출을 증가시키고 안압을 낮출 수 있는지가 관건이었다. 쉴렘관이 망가져 안압 상승으로 녹내장이 유발된 실험군의 눈 속에 항체를 투여한 결과, 쉴렘관이 회복되면서 안압이 내려가는 것을 확인했다. 결국 ANG-TIE2 신호전달체계가 쉴렘관의 항상성을 유지함으로써 안압을 조절해 녹내장이 발병하지 않도록 하는 것이다.
이번 연구는 녹내장을 근본적으로 해결할 수 있는 치료법 개발에 큰 도움이 될 것으로 보인다. 특히 녹내장을 재현한 질병 모델에 TIE2 활성 항체를 주사해 안압 하강 효과를 얻은 만큼 추후 임상 연구로의 확장이 기대된다. 연구진은 방수배출장치의 또 다른 요소인 섬유주와 ANG-TIE2 신호전달체계의 관계를 밝히는 실험과 실제 환자에게 TIE2 활성 항체를 사용할 수 있을지 전임상 실험을 계획 중이다.
연구를 이끈 고규영 교수는 “이번 논문에는 이십여 개에 달하는 연구 이미지 세트가 실렸다. 일반적인 경우의 두 배에 달한다”며 “쉴렘관 항상성 유지의 기전을 자세히 밝히는 방대한 양의 연구를 수행했음을 보여준다”라고 말했다.
□ 그림 설명
그림1. 녹내장의 증상과 원인
그림2. ANG-TIE2 신호전달체계의 역할
그림3. ANG-TIE2 신호전달체계 억제 시 쉴렘관 항상성 저해 현상
2017.09.20
조회수 14985
-
이건재, 최성율 교수, 고체 상분리 현상에 의한 그래핀 생성원리 발견
우리 대학 신소재공학과 이건재 교수와 전기및전자공학부 최성율 교수 연구팀이 초단시간의 레이저를 조사해 단결정 탄화규소(SiC)의 고체 상분리 현상을 발견하고 이를 활용한 그래핀 생성원리를 밝혔다.
기존에 활용되고 있는 화학기상증착(Chemical Vapor Deposition, CVD) 기반의 그래핀 합성법이 상당시간의 고온 공정을 필요로 하는 것과 달리 새로운 레이저 열처리법은 상온환경에서 단시간의 공정으로 그래핀을 합성할 수 있어 향후 그래핀 활용의 폭을 넓힐 수 있을 전망이다.
연구진은 단결정 탄화규소 소재 표면에 나노초(10억분의 1초) 단위의 극히 짧은 시간 동안 레이저를 쪼여 표면을 순간적으로 녹였다가 다시 응고시켰다. 그러자 탄화규소 표면이 두께 2.5나노미터의 탄소(C) 초박막층과 그 아래 두께 5나노미터의 규소(Si, 실리콘)층으로 분리되는 상분리 현상이 나타났다. 여기에 레이저를 다시 쪼이자 안쪽 실리콘층은 증발하고, 탄소층은 그래핀이 됨을 확인했다.
특히 탄화규소와 같은 이종원소 화합물과 레이저의 상호작용에 대한 연구는 아주 짧은 시간에 일어나는 복잡한 상전이 현상으로 지금까지 그 규명이 쉽지 않았다. 그러나 연구진은 레이저에 의해 순간적으로 유도된 탄소 및 실리콘의 초박막층을 고해상도 전자현미경으로 촬영하고, 실리콘과 같은 반도체 물질이 고체와 액체 상태일 때 나타나는 광학 반사율이 다르다는 점에 착안해 탄화규소의 고체 상분리 현상을 성공적으로 규명해낼 수 있었다.
연구에 활용된 레이저 열처리기술은 AMOLED(능동형 유기발광다이오드) 등 상용 디스플레이 생산공정에 널리 활용되고 있는 방법으로, CVD 공정과 달리 레이저로 소재 표면만 순간적으로 가열하기 때문에 열에 약한 플라스틱 기판 등에도 활용이 가능하여, 향후 플렉시블 전자 분야로 응용의 폭을 넓힐 수 있을 것으로 기대된다.
이 교수는 "이번 연구 결과를 통해 레이저 기술이 그래핀과 같은 2차원 나노소재에 보다 폭넓게 응용될 수 있을 것이다”고 말했다.
최 교수는 "앞으로 다양한 고체 화합물과 레이저의 상호작용을 규명해 이들의 상분리 현상을 활용하면 새로운 나노소재 개발을 기대할 수 있을 것이다”고 말했다.
이번 연구결과는 자연과학 및 응용과학 분야 학술지 '네이처 커뮤니케이션즈(Nature Communications)' 최신호에 게재됐다.
□ 그림 설명
그림1. 단결정 탄화규소의 용융을 통한 상분리 현상의 원리를 밝혀내는 분자동역학 시뮬레이션의 모식도
그림2. 레이저에 의해 순간적으로 유도된 단결정 탄화규소의 용융 및 응고 현상을 증명하는 실시간 시간 분해능 반사율 (In-situ time-resolved reflectance) 측정 스펙트럼
그림3. 레이저가 조사된 탄화규소 표면의 전체적인 전자현미경 사진(a) 및 이로 의한 탄소와 실리콘으로의 상분리 현상을 촬영한 고해상도 전자현미경 사진(b)
2016.12.05
조회수 18778
-
김희탁 교수, 스펀지 구조 응용해 결착력 강화된 수소연료전지 개발
〈 김 희 탁 교수 〉
우리 대학 생명화학공학과 김희탁 교수와 한국화학연구원(원장 이규호) 홍영택 박사 공동 연구팀이 스펀지의 구조를 이용해 계면 결착력을 획기적으로 강화시킨 수소연료전지를 개발했다.
이번 연구 성과는 재료과학분야 국제학술지인 ‘어드밴스트 머티리얼즈(Advanced Materials)’ 11월 10일자 온라인 판에 게재됐다.
수소연료전지는 공기 중 산소와 연료탱크 내 수소로 구동되는 발전장치로서 차세대 친환경 운송수단인 수소연료전지차의 핵심 기술이다.
그러나 수소연료전지는 내연기관에 대비해 가격이 비싸 보급이 어렵고, 고가의 불소계 멤브레인을 이용하기 때문에 가격을 낮추기에도 한계가 있었다.
가격을 낮추기 위해 저가의 탄화수소계 멤브레인이 제안됐지만 탄화수소계 멤브레인은 전극과의 계면 결착력이 낮아 전극과 멤브레인 간 계면이 탈리(분자, 이온 등에서 원자가 떨어지는 현상)돼 수명이 급감하는 문제가 있다.
연구팀은 문제 해결을 위해 탄화수소계 멤브레인 표면에는 스펀지 계면 구조를 도입하고, 전극 표면에는 고분자 층을 삽입해 물리적인 맞물림 계면을 구현했다. 이는 스펀지 계면구조와 전극 표면 고분자 층이 서로 3차원적으로 얽혀 고정돼 강한 계면 결착력이 발생하는 원리이다.
연구팀은 전극과 멤브레인 사이의 계면 결착력을 기존에 비해 37배 증가시켰고 탄화수소계 연료전지의 수명은 약 20배 연장하는 데 성공했다.
특히 스펀지 계면구조는 공정성이 높은 스프레이 코팅이나 딥 코팅 법을 이용해 제조가 가능해 산업적으로도 큰 의미를 가질 것으로 기대된다.
연구팀은 한국기초과학지원연구원의 김환욱 박사와 협력해 구조의 시각적 분석을 진행했고 이대길 교수 연구팀과는 수치 해석을 통해 계면결착 원리를 규명했다.
김희탁 교수는 “물리적 맞물림 구조를 통해 연료전지의 계면 탈리 문제를 해결할 수 있음을 증명했다”고 말했다.
홍영택 박사는 “이번 연구가 기존의 우수한 탄화수소계 멤브레인들을 연료전지에 쉽게 적용할 수 있는 계기가 돼 연료전지 가격을 낮추는 데 크게 기여할 것이다”고 말했다.
이번 연구는 한국화학연구원 주요사업과 한국연구재단 기후변화대응기술사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 스펀지 계면구조의 개념도
그림2. 스펀지 계면구조가 적용된 탄화수소계 연료전지의 막-전극 접합체 장기구동 후 SEM 이미지
그림3. 스펀지 계면구조 제조 공정 및 공정 단계에 따른 탄화수소계 멤브레인
2016.11.21
조회수 16913
-
신종화,김도경,이용희 교수, 수학적 공간채움 원리 적용한 신소재 개발
우리 대학 신소재공학과 신종화, 김도경 교수와 물리학과 이용희 교수 공동 연구팀이 수학의 공간채움 원리를 이용해 기존 기술보다 2천 배 이상 높은 유전상수를 갖는 전자기파 신소재를 개발했다.
이번 연구 결과는 네이처 자매지인 ‘네이처 커뮤니케이션즈(Nature Communications)’ 8월 30일자 온라인 판에 게재됐다.
유전상수는 소재의 전기적 성질 중 가장 기본이 되는 성질로, 물질 내부의 전하 사이에 전기장이 작용할 때 전하 사이의 매질이 전기장에 미치는 영향을 나타내는 단위이다.
진공 상태의 유전상수는 1이고, 자연에 존재하는 물질과 개발된 메타물질을 포함해 가장 큰 광대역 유전상수는 최대 1천600 수준이다.
유전상수가 수천 이하에 머물렀던 이유는 유전상수 향상에 사용됐던 근본 원리에 한계가 있었기 때문이다. 유전상수를 키우기 위해서는 같은 전기장이 가해졌을 때 더 큰 유전분극이 나타나게 만들어야 한다.
이를 위해 기존에는 피뢰침 끝에 강한 전기장이 모이는 개념의 ‘전기장 국소화 원리’가 사용됐다. 피뢰침이 뾰족할수록 끝에 더 강한 전기장이 모여 유전분극이 강해지지만 그 대신 유전분극이 강해지는 공간적 범위가 좁아지게 된다.
결국 이 원리는 강한 유전분극일수록 미치는 영향의 범위는 좁아지는 근원적 한계를 갖는다. 실제로 기존 유전상수를 증대시킨 메타물질에서는 전기장이 강하게 모이는 부분이 매우 좁은 영역에 국한된다.
연구팀은 문제 해결을 위해 수학적 공간채움 구조를 전자기 소재에 대입했다. 공간채움 구조란 선으로 한 차원 높은 면을 채우는 구조를 뜻한다. 유한한 크기를 갖는 면의 모든 점을 통과하는 연결된 선을 그릴 수 있으며 이 때 선의 길이는 무한대이다.
이를 응용해 기존의 피뢰침처럼 좁은 영역에서만 발생하는 강한 유전분극이 메타물질 공간 내부 전체에 밀집돼 나타나게 만들었다. 또한 공간채움 선의 방향을 조절해 밀집된 유전분극이 서로 상쇄되지 않고 합쳐지도록 조절했다.
연구팀은 이는 마치 여러 개의 시냇물이 만나 큰 강물이 되는 효과와 같다고 설명했다. 즉, 좁은 공간에 증대된 유전분극들이 공간채움 구조를 통해 거대하게 발현되는 효과를 고안했고 실제로 구현함으로써 삼백만 이상의 큰 유전상수를 얻을 수 있었다.
유전상수가 320만이면 이 물질을 활용한 축전기의 전기용량은 진공에 대비해 320만 배 커지고, 전자기파를 흡수하는 비율이나 방출하는 속도 또한 320만 배 커진다.
또한 굴절률이 약 1천 800배(유전상수의 제곱근)가 되기 때문에 이 소재 안에서 빛의 속도는 1천 800배 느리게, 파장은 1천 800배 짧아진다. 이를 통해 렌즈 등의 소자는 1천 800배 가량 작게 만들 수 있고 기존의 이미징 장치보다 1천 800배 세밀하게 물체를 관찰할 수 있다.
특히 아주 얇은 막으로도 원하는 방향으로 전자기파를 반사시키거나 대부분 흡수시킬 수 있기 때문에, 전투기나 함정에 씌워서 레이더에 탐지되지 않도록 하는 스텔스 표면 등 국방 응용이 기대되며, 5G 휴대전화용 안테나 등 무선통신 분야 적용도 가능할 것으로 예상된다.
또한, 가시광선에서도 만약 그 원리가 적용된다면 바이러스를 직접 볼 수 있는 수준의 매우 높은 분해능을 가진 현미경 등 더욱 다양한 응용이 기대된다.
신 교수는 “간단한 수학적, 물리적 원리가 혁신적 성능을 갖는 신소재 개발로 이어질 수 있음을 밝혔다”며 “이는 기초 원리의 중요성을 확인한 값진 경험이었고, 앞으로도 이러한 원리를 기반으로 신소재 개발을 지속하겠다”고 말했다.
신소재공학과 장태용 박사과정 학생이 1저자로 참여한 이번 연구는 삼성미래기술육성재단의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 본 연구에서 개발된 메타물질의 모식도와 실제 사진
그림2. 수학분야의 공간채움구조
2016.09.06
조회수 15624
-
그래핀의 기계적 특성 세계 최초로 규명
- KAIST 박정영·김용현 교수 연구팀, 그래핀의 마찰력 제어기술 개발과 나노수준 마찰력이론 정립 -
- 나노분야 권위지 나노 레터스 6월 21일자 온라인판 게재 -
우리 대학 연구진이 차세대 ‘꿈의 신소재’로 불리는 그래핀의 기계적 특성을 밝히고 제어하는 데 성공했다.
우리 학교 EEWS대학원 박정영 교수가 나노과학기술대학원 김용현 교수와 공동으로 하나의 원자층으로 이루어진 그래핀을 불소화해 마찰력과 접착력을 제어하는 데 성공했다고 2일 밝혔다.
원자단위에서 그래핀에 대한 마찰력의 원리를 규명하고 제어하는 데 성공한 것은 이번 연구가 세계에서 처음인데 앞으로 나노 크기의 로봇 구동부 등 아주 미세한 부분의 윤활에 응용될 수 있을 것으로 기대된다.
그래핀은 구리보다 100배 이상 전기가 잘 통하면서도 구부려도 전기전도성이 유지돼 실리콘 반도체를 대체할 차세대 전자소자는 물론 휘어지는 디스플레이, 입는 컴퓨터 등 다양한 분야에 활용될 수 있어 ‘꿈의 신소재’로 불린다.
또 강철보다 200배 이상 강한 물성을 갖고 있어 기계 분야에도 응용가능성이 매우 높은 반면 마찰력과 접착력 등과 같은 기계적 성질에 대해서는 몇 가지 미해결 과제로 남아있었는데 이번 연구를 통해 상당부분 해소될 수 있을 것으로 전망된다.
박 교수 연구팀은 그래핀을 플루오르화크세논(XeF₂) 가스에 넣고 열을 가해 하나의 원자층에 불소 결함을 갖고 있는 불소화된 개질 그래핀을 얻어냈다.
개질된 그래핀은 초고진공 원자력현미경에 넣고 마이크로 탐침을 사용, 시료의 표면을 스캔해 마찰력과 접착력 등의 역학적 특성을 측정했다.
연구팀은 실험 결과를 바탕으로 불소화된 그래핀은 기존보다 6배의 마찰력과 0.7배의 접착력을 나타내는 것을 밝혀냈다.
이와 함께 전기적인 측정을 통해 불소화를 확인하고 마찰력과 접착력의 원리를 분석해내 그래핀의 마찰력 변화에 대한 이론을 정립했다.
박정영 교수는 “꿈의 소재로 알려진 그래핀은 나노 스케일 기기의 구동부 윤활에 쓰일 수가 있어 이번 연구는 그래핀 기반의 작은 역학구동소자의 코팅 등의 응용을 가질 수 있다”고 말했다.
한편, 이번 연구 성과는 나노과학분야 권위 있는 학술지 ‘나노레터스(Nano Letters)" 6월 21일자 온라인판에 게재됐으며 교육과학기술부와 한국연구재단이 추진하는 WCU(세계수준의 연구중심대학)육성사업과 중견 연구자지원사업의 지원을 받았다.
2012.07.02
조회수 16554