본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%9C%B5%ED%95%A9%EC%8B%9C%EC%8A%A4%ED%85%9C
최신순
조회순
이건재 교수, 유창동 교수, 유연 압전 화자인식 음성센서 개발
〈 이 건 재 교수 〉 우리 대학 신소재공학과 이건재 교수와 전기및전자공학부 유창동 교수 공동 연구팀이 인공지능 기반의 화자(話者) 인식용 유연 압전 음성센서를 개발했다. 이번 연구를 통해 개인별 음성 서비스를 스마트 홈 가전이나 인공지능 비서, 생체 인증 분야 등 차세대 기술에 활용 가능할 것으로 기대된다. 이번 연구 결과는 국제 학술지 ‘나노 에너지(Nano Energy)’ 9월호에 ‘민감도’와 ‘화자인식’ 논문 두 편으로 동시 게재됐고 현재 관련 기술은 실용화 단계에 있다. (민감도 논문 : Basilar Membrane-Inspired Self-Powered Acoustic Sensor Enabled by Highly Sensitive Multi Tunable Frequency Band, 화자인식 논문 : Machine Learning-based Self-powered Acoustic Sensor for Speaker Recognition) 음성 센서는 인간과 기계 사이의 자유로운 소통을 가능하게 만드는 가장 직관적인 수단으로 4차 산업혁명의 핵심 기술로 주목받고 있다. 음성센서 시장은 2021년 대략 160억 달러 규모로 커질 것으로 예상된다. 그러나 현재 산업계에서는 음성 신호 수신 시 정전용량을 측정하는 콘덴서 형식을 사용하기 때문에 민감도가 낮고 인식 거리가 짧아 화자 인식률에 한계가 있다. 이번 연구에서 이 교수 연구팀은 인간의 달팽이관을 모사해 주파수에 따라 다른 영역이 진동하는 사다리꼴의 얇은 막을 제작했다. 음성신호에 따른 공진형 진동을 유연 압전 물질을 통해 감지하는 자가발전 고민감 음성 센서를 개발했다. 연구팀의 음성 센서는 기존 기술 대비 2배 이상 높은 민감도를 가져 미세한 음성 신호를 원거리에서도 감지할 수 있다. 또한 다채널로 신호를 받아들여 하나의 언어에 대해 복수 개의 데이터를 얻을 수 있다. 이 기술을 기반으로 누가 이야기하는지 찾아내는 화자인식 시스템에 적용해 97.5%의 화자인식 성공률을 무향실에서 달성했고 기존 기술 대비 오류를 75% 이상 줄였다. 화자인식 서비스는 음성 분야에 세상을 바꿀 next big thing으로 기대를 받고 있다. 기존 기술은 소프트웨어 업그레이드를 통한 접근으로 인식률에 한계가 있었지만 연구팀의 기술은 하드웨어 센서를 개발함으로써 능력을 크게 향상시켰다. 추후 첨단 소프트웨어를 접목한다면 다양한 환경에서도 화자 및 음성 인식률을 높일 수 있을 것으로 예상된다. 이건재 교수는 “이번에 개발한 머신 러닝 기반 고민감 유연 압전 음성센서는 화자를 정확하게 구별할 수 있기 때문에 개인별 음성 서비스를 스마트 가전이나 인공지능 비서에 접목할 수 있을 것이며 생체 인증 및 핀테크와 같은 보안 분야에서도 큰 역할을 할 수 있을 것이다”고 말했다. 이번 연구는 스마트 IT 융합시스템 연구단의 지원을 받아 수행됐다. <관련 영상> https://www.youtube.com/watch?v=QGEVJxCFVpc&feature=youtu.be □ 그림 설명 그림1. 인간의 달팽이관을 모사한 유연 압전 음성 센서 구조 그림2. 인공지능을 통한 화자 인식 개략도
2018.10.04
조회수 11857
이건재 교수, 유연 수직형 마이크로 LED 개발
〈 이 건 재 교수 〉 우리 대학 신소재공학과 이건재 교수팀과 생명과학과 김대수 교수팀이 유연한 수직형 마이크로 LED 기술을 개발했으며, 이를 동물의 뇌에 삽입하여 빛으로 행동을 제어하는 데 성공하였다고 밝혔다. 마이크로 LED는 기존 LED 칩 크기를 크게 축소시켜 적, 녹, 청색의 발광소재로 사용하는 기술로서, 저전력과 빠른 응답속도, 뛰어난 유연성을 가져 차세대 디스플레이로 각광받고 있다. 현재 산업계에서는 200마이크로미터(μm) 이상의 크기를 갖는 두꺼운 미니 LED 칩을 소형화해 개별 전사하는 방식을 채택하고 있어 대량 생산이 어렵고 생산단가가 높으며, 소요 시간이 오래 걸리는 등의 한계를 갖고 있다. 이번 연구에서 이 교수 연구팀은 수직 LED용 양산 장비를 자체적으로 설계하여 5마이크로미터의 두께, 80마이크로미터 이하의 크기를 갖는 2500여 개의 박막 LED를 이방성 도전 필름을 활용하여 한 번에 플라스틱 기판으로 전사함과 동시에 상호 연결된 유연한 수직형 마이크로 LED를 구현하였다. 이러한 수직형 마이크로 LED는 기존 수평형 마이크로 LED와 비교해 3배 이상 향상된 광 효율을 갖으며, 박막 LED의 발열로 인한 수명, 낮은 해상도 및 신뢰성 문제를 해결할 수 있다. 이 교수는 2009년부터 마이크로 LED 연구를 진행해 왔으며, 20여 개의 국내외 원천 특허를 등록하였을 뿐만 아니라, 지난 4년 간 교신저자로서 총 임팩트 팩터 600에 달하는 40여 편의 논문을 발표하였다. 한편, 뇌과학 분야에서는 빛을 이용한 인간 뇌의 신경회로를 밝히는 광유전학이 주목받고 있다. 이번에 개발한 기술은 뇌의 모든 신경세포를 자극하는 전기자극과 달리 흥분 및 억제 신경세포만을 선택적으로 자극할 수 있기 때문에 정밀한 뇌 분석, 고해상도의 뇌 지도 제작 및 신경세포 제어가 가능하다. 이번 연구에서는 30 밀리와트/제곱밀리미터(mW/mm2) 이상의 강한 빛을 내는 유연 마이크로 LED를 쥐의 뇌에 삽입하여 대뇌 표면으로부터 깊은 곳에 위치한 운동 신경세포를 활성화시켜 쥐의 행동을 제어하였을 뿐만 아니라, 발열이 적어 뇌조직의 손상 없는 생체 삽입형 유연 전자 시스템을 구현하였다. 이건재 교수는 “이번에 개발된 수직 마이크로 LED 및 전사 패키징 기술은 저전력을 필요로 하는 스마트워치, 모바일 디스플레이, 웨어러블 조명 등에 바로 활용될 수 있을 것이며, 인간이 아직 풀지 못한 뇌과학 및 광치료, 바이오센서 분야에서도 큰 기여를 할 수 있을 것이다”라고 이번 연구의 의의를 밝혔다. 이번 연구는 스마트 IT융합시스템 연구단의 지원을 받아 수행되었으며, 세계적 과학 학술지인 ‘나노 에너지(Nano Energy)’에 2월 1일자로 게재되었다. □ 관련 영상 □ 그림 설명 그림1. 이번 기술을 이용해 제작한 마이크로 LED 그림2. 유연한 수직형 마이크로 LED의 구조 그림3. 유연한 수직형 마이크로 LED를 활용한 광유전학적 쥐의 행동 제어 실험 개략도 그림4. 이방성 도전 필름을 활용한 전사 및 패키징 기술 개략도
2018.01.29
조회수 17228
최양규 교수, 실리콘 반도체보다 5배 빠르고 저렴한 탄소나노튜브 반도체 개발
우리 대학 전기및전자공학부 최양규 교수 연구팀이 국민대학교 최성진 교수와의 공동 연구를 통해 탄소나노튜브를 위로 쌓는 3차원 핀(Fin) 게이트 구조를 이용해 대면적의 탄소나노튜브 반도체를 개발했다. 이동일 연구원이 제 1저자로 참여한 이번 연구는 나노 분야 학술지 ‘에이씨에스 나노(ACS Nano)’ 12월 27일자에 게재됐다. (논문명: Three-Dimensional Fin-Structured Semiconducting Carbon Nanotube Network Transistor) 탄소나노튜브로 제작된 반도체는 실리콘 반도체보다 빠르게 동작하고 저전력이기 때문에 성능이 훨씬 뛰어나다. 그러나 대부분의 전자기기는 실리콘 재질로 만들어진 반도체를 이용한다. 높은 순도와 높은 밀도를 갖는 탄소나노튜브 반도체의 정제가 어렵기 때문이다. 탄소나노튜브의 밀도가 높지 않아 성능에 한계가 있었고 순도가 낮아 넓은 면적의 웨이퍼(판)에 일정한 수율을 갖는 제품을 제작할 수 없었다. 이러한 특성들은 대량 생산을 어렵게 해 상용화를 막는 걸림돌이었다. 연구팀은 문제 해결을 위해 3차원 핀 게이트를 이용해 탄소나노튜브를 위로 증착하는 방식을 사용했다. 이를 통해 50나노미터 이하의 폭에서도 높은 전류 밀도를 갖는 반도체를 개발했다. 3차원 핀 구조는 1마이크로미터 당 600개의 탄소나노튜브 증착이 가능해 약 30개 정도만을 증착할 수 있는 2차원 구조에 비해 20배 이상의 탄소나노튜브를 쌓을 수 있다. 그리고 연구팀은 이전 연구를 통해 개발된 99.9% 이상의 높은 순도를 갖는 반도체성 탄소나노튜브를 이용해 고수율의 반도체를 확보했다. 연구팀의 반도체는 50나노미터 이하의 폭에서도 높은 전류밀도를 갖는다. 실리콘 기반의 반도체보다 5배 이상 빠르면서 5배 낮은 소비 전력으로 동작 가능할 것으로 예상된다. 또한 기존의 실리콘 기반 반도체에 쓰이는 공정 장비로도 제작 및 호환이 가능해 별도의 비용이 발생하지 않는다. 제 1저자인 이동일 연구원은 “차세대 반도체로서 탄소나노튜브 반도체의 성능 개선과 더불어 실효성 또한 높아질 것이다”며 “실리콘 기반 반도체를 10년 내로 대체하길 기대한다”고 말했다. 이번 연구는 미래창조과학부 글로벌프론티어사업 스마트IT융합시스템 연구단과 미래유망융합파이오니아 사업의 씨모스 THz 기술 융합 연구단의 지원을 받아 수행됐다. □ 그림 설명 그림1. 3차원 구조의 탄소나노튜브 전자소자의 모식도 및 실제 SEM 이미지 그림2. 개발된 8인치 기반의 대면적 3차원 탄소나노튜브 트랜지스터 전자 소자의 사진 및 단면을 관찰한 투과 전자 현미경 사진
2017.01.04
조회수 15095
최양규 교수, 5단 나노선 통한 D램-플래시 융‧복합메모리 개발
우리 대학 전기 및 전자공학부 최양규 교수와 이병현 박사과정이 나노선의 5단 수직 적층 기술을 통해 D램과 플래시 메모리 동작이 동시에 가능한 융합메모리 반도체 소자를 개발했다. 이번 연구 결과는 나노 분야 학술지 ‘나노 레터스(Nano Letters)’ 8월 31일자 온라인 판에 게재됐다. 메모리 반도체는 정보화 기술 사회의 핵심 기기로서 국내 반도체 산업의 주력 제품이다. 메모리 반도체 분야는 크게 D램과 플래시 메모리로 양분되는데 이는 각 메모리가 가진 고유 특성 때문이다. D램은 빠른 동작속도를 자랑하지만 휘발성 메모리이기 때문에 안정적 정보 저장을 위해 전력이 많이 소모된다. 반면 플래시 메모리는 D램에 비해 느린 동작속도가 문제점으로 지적된다. 연구팀은 D램과 플래시 메모리 기능이 하나의 트랜지스터 안에서 동시에 동작하는 전면-게이트 실리콘 나노선 구조 기반의 융합 메모리 소자를 제안했다. 그러나 이 구조는 트랜지스터의 소형화에 따른 나노선 면적 감소로 인해 동작 전류도 같이 감소됐고 이는 메모리 소자 성능의 저하로 이어졌다. 문제 해결을 위해 연구팀은 전면-게이트 실리콘 나노선을 수직으로 5단까지 쌓았다. 이러한 5단 수직 집적 실리콘 나노선 채널을 보유한 융합 메모리소자는 단일 나노선 기반의 메모리 소자와 대비해 5배의 향상된 성능을 보였다. 이 연구를 통해 시스템 레벨에서 칩 사이즈의 소형화 및 전력 효율의 개선, 패키징 공정 단순화를 통한 제작비용 절감 등이 가능하다. 시스템 안에서 칩 간의 간섭효과를 줄여줌으로써 시스템 전체 속도 향상에도 기여가 가능해 융합 메모리의 실효성이 높아질 것으로 기대된다. 또한 수직 집적 나노선 구조는 말 그대로 위쪽으로 채널이 쌓여있기 때문에 단일 구조와 달리 면적이 증가되지 않아 집적도 향상에도 기여할 수 있다. 이러한 수직 집적은 지난 해 최양규 교수 연구팀에서 개발된 일괄 플라즈마 건식 식각 공정을 통해 이뤄졌다. 이병현 연구원은 이 기술을 통해 작년 비 메모리 반도체 소자 개발에 성공했고, 이번 연구를 통해 고성능 융합 메모리 소자를 개발했다. 최양규 교수는 “이번 연구를 통한 메모리 반도체의 제작 공정과 성능의 개선 및 높은 실효성이 기대된다”며 “궁극적으로는 메모리 반도체의 소형화를 계속 이어나갈 것으로 예상한다”고 말했다. 이병현 연구원은 “나노종합기술원의 강민호 박사를 포함한 관련 엔지니어들의 적극적 기술 지원이 큰 도움이 됐다”고 말했다. 이번 연구는 미래창조과학부 글로벌프론티어사업 스마트IT융합시스템 연구단과 미래유망융합파이오니아 사업의 씨모스(CMOS) THz 기술 융합 연구단의 지원을 받아 수행됐다. □ 그림 설명 그림1. 전자 현미경 사진 및 투과 전자 현미경 사진 그림2. 고성능 융합메모리에 대한 요약 모식도
2016.09.21
조회수 11498
김일두 교수, 호흡으로 폐암, 당뇨 조기 진단하는 초소형 센서 개발
혈액 체취나 영상촬영을 하지 않고도 사람의 호흡만으로 폐암, 당뇨 등 각종 질병을 실시간으로 파악할 수 있는 초소형 감지 센서 기술이 개발됐다. 우리 대학 신소재공학과 김일두 교수신소재공학과 연구팀은 사람의 호흡 내에 질병과 관련된 극미량의 특정 가스의 농도를 실시간으로 정확하게 분석할 수 있는 세계 최고 수준의 고감도·초소형 센서를 개발하였다고 밝혔다. 이를 통해, 현재 병원에서 혈액 체취나 조직 검사, MRI 등을 통해 고비용으로 진단하고 있는 폐암이나 당뇨 등의 질병을 개인 스마트폰이나 웨어러블 장치를 통해 수시로 저렴하게 진단할 수 있는 길을 열었다. 사람이 숨을 쉬면서 내뱉는 호흡 속 가스 성분 중에는 다양한 휘발성 유기화합물 가스들이 포함되어 있으며, 이중 일부 가스는 질병과 밀접한 연관이 있는 것으로 알려져 있다. 대표적으로 아세톤, 톨루엔, 황화수소 가스는 각각 당뇨병, 폐암, 구취 환자에서 더 높은 농도로 배출되며, 이러한 호흡 속 특정 가스의 농도를 정확하게 분석할 수 있다면 여러 질병들을 간편한 방법으로 조기에 진단할 수 있다. 그러나, 입안에는 수분을 포함하여 수백 종의 가스들이 존재하기 때문에, 그간 개발된 센서는 사람 호흡 속에 포함되어 있는 극미량(10 – 2,000ppb)의 특정 가스를 선택적으로 검출하는데 한계가 있었다. 연구팀은 수백 종의 가스 중 질병과 관련된 특정 가스만 선택적으로 탁월하게 검출할 수 있는 고성능 촉매를 개발하였으며, 이를 나노 섬유 형상의 센서 소재에 적용하여 개인 스마트폰과 연동이 가능한 초소형·고감도 질병 진단 센서를 구현하는데 성공하였다. 김일두 교수는 “질병 진단 센서는 차량이나 모바일 기기 등에 활용하여 개인 질병을 지속적으로 모니터링 할 수 있을 뿐만 아니라, 향후 대기 오염 분석, 실내 공기질 분석 등 가스 센서와 관련된 산업분야에서 사물인터넷(IoT) 제품과 융합되어 새로운 시장을 창출할 것으로 기대된다.”라고 연구의의를 밝혔다. 이번 연구는 김일두 교수 외 최선진·김상준 연구원이 주도하였고, 미래창조과학부 글로벌프런티어사업(스마트 IT 융합시스템 연구단)의 지원으로 수행되었다. 연구 결과는 재료과학분야 세계적 국제학술지인 ‘스몰(small)’ 표지논문에 2월 17일(수) 게제 되었으며, 관련 특허는 국내기업에 기술이전 되어 향후 조기 상용화가 이뤄질 것으로 기대된다. □ 그림 설명 그림1. 스마트폰과 연결된 호기가스 분석 센서 및 호흡지문 패턴 인식을 통한 질병 진단 그림2. 동글 타입(Dongle-type), 패치 타입(Patch-type), 및 시계 타입(Watch-type) 센서 모듈을 이용한 휴대형, 실시간 호기가스 분석 센서 그림3. 'small' 표지에 게재된 논문
2016.03.07
조회수 17867
5단 수직 적층 반도체 트랜지스터 개발
우리 대학 전기 및 전자공학부 이병현 연구원(지도교수 최양규)과 나노종합기술원(원장 이재영) 강민호 박사가 실리콘 기반의 5단 수직 적층 반도체 트랜지스터를 개발했다. 그리고 반도체 트랜지스터를 이용한 비휘발성 메모리 개발에 성공했다. 이번 연구는 나노 분야 학술지 ‘나노 레터스(Nano letters)’ 11월 6일자 온라인판에 게재됐다. 반도체 트랜지스터 분야는 모든 전자기기의 핵심 구성요소로 국내 산업과 경제 발전에 큰 영향을 끼쳤다. 세계적 추세에 따라 치열한 소형화를 통해 생산성과 성능의 향상을 거듭했으나 최근 10나노미터 시대에 접어들며 제작 공정의 한계 및 누설전류로 인한 전력소모 문제가 커지고 있다. 학계 및 산업계는 문제 해결을 위해 전면-게이트 실리콘 나노선 구조를 개발했다. 이는 누설전류 제어에 가장 효과적인 구조로 저전력 트랜지스터 개발에 이용됐다. 그러나 이 역시 소형화에 따른 나노선 면적 감소로 성능 저하의 한계가 있었다. 연구팀은 전면-게이트 실리콘 나노선을 수직으로 5단으로 쌓아 문제를 해결했다. 이 5단 적층 실리콘 나노선 채널을 보유한 반도체 트랜지스터는 단일 나노선 기반의 트랜지스터보다 5배의 향상된 성능을 보였다. 또한 수직 적층 나노선 구조는 말 그대로 위로 쌓기 때문에 단일 구조와 달리 면적이 증가되지 않아 집적도 향상에도 기여할 수 있다. 나노선 수직 적층은 개발된 ‘일괄 플라즈마 건식 식각 공정’ 방식을 통해 이뤄졌다. 이 공정은 고분자 중합체를 이용해 패턴이 형성될 영역에 미리 보호막을 친 뒤 등방성 건식 식각을 통해 나노선 구조를 형성하는 기술이다. 수직 적층 나노선 구조는 이 기술의 연속 작용을 통해 확보한 결과물이다. 이 기술은 지속적 소형화로 인해 기술적 한계에 부딪힌 반도체 트랜지스터 분야에 새로운 돌파구를 제시할 것으로 기대된다. 관련 연구가 이전부터 진행됐지만 더 간단한 공정기술을 이용해 가장 많은 나노선 채널의 적층에 성공했기 때문에 비용절감 및 제작 시간 단축, 반도체 트랜지스터의 성능 향상으로 인한 상용화 등에 크게 기여할 것으로 예상된다. 연구팀은 건식 식각 공정 기술이 기존 방법보다 간단하고 안정적으로 수직 적층 실리콘나노선 구조 제작을 가능하게 함으로써 고성능 트랜지스터 개발에 응용 가능할 것이라고 밝혔다. 이병현 연구원과 강민호 박사는 “이번 기술 개발은 미래창조 국가 나노기술 인프라 기관 나노종합기술원의 훌륭한 반도체 연구 기반과 김진수 부장 포함 관련 연구진들의 우수한 공정 능력이 뒷받침돼 가능했다”고 소감을 말했다. 이번 연구는 글로벌프론티어사업 스마트IT융합시스템 연구단의 지원을 받아 수행됐다. 연구를 주도한 이병현 연구원은 우리 대학 최양규 교수 지도하에 박사과정을 수행 중이며, 삼성전자 메모리 사업부의 책임 연구원으로 재직 중이다. □ 그림 설명 그림1. 일괄 플라즈마 건식 식각 공정 과정의 모식도. 그림2. 서로 다른 방향에서 단면을 관찰한 주사 전자 현미경 사진 및 투과 전자 현미경 사진
2015.11.24
조회수 12778
호흡 분석해 질병 진단한다!
- 나노섬유 형상 120ppb급 당뇨병 진단센서 개발 -- 음주 측정하듯 후~ 불면 질병 진단할 수 있어 - 우리 학교 신소재공학과 김일두 교수 연구팀이 인간이 호흡하면서 배출하는 아세톤 가스를 분석해 당뇨병 여부를 파악할 수 있는 날숨진단센서를 개발했다. 연구 결과는 신소재 응용분야 세계적 학술지 ‘어드밴스드 펑셔널 머티리얼스(Advanced Functional Materials)’ 5월 20일자 표지논문으로 게재됐다. 인간이 숨을 쉬면서 내뿜는 아세톤, 톨루엔, 일산화질소 및 암모니아와 같은 휘발성 유기화합물 가스는 각각 당뇨병, 폐암, 천식 및 신장병의 생체표식인자(바이오마커)로 알려져 있다. 당뇨병의 경우 일반적으로 정상인은 900ppb(parts per billion), 당뇨환자는 1800ppb의 아세톤 가스를 날숨으로 내뿜는다. 따라서 날숨 속 아세톤 가스의 농도 차이를 정밀하게 분석하면 당뇨병을 조기에 진단할 수 있고 발병 후 관리를 쉽게 할 수 있다. 연구팀은 얇은 껍질이 겹겹이 둘러싸인 다공성 산화주석(SnO2) 센서소재에 백금 나노입자 촉매가 균일하게 도포된 1차원 나노섬유를 대량 제조하는 기술을 개발했다. 이 소재의 표면에 아세톤 가스가 흡착될 때 전기저항 값이 변화하는 120ppb급 아세톤 농도 검출용 센서에 적용해 날숨진단센서를 개발했다. 개발한 나노섬유 센서는 1000ppb급 아세톤 농도에서 소재의 저항 값이 최대 6배 증가해 당뇨병을 진단할 수 있음이 입증됐다. 이와 함께 7.6초의 매우 빠른 아세톤 센서 반응속도를 나타내 실시간 모니터링이 가능해져 상용화에 대한 기대를 높였으며, 전기방사 기술로 제조해 나노섬유형상을 쉽게 빠르게 대량생산할 수 있는 게 큰 장점이다. 연구팀이 개발한 날숨진단센서는 사람의 호흡가스 속에 포함된 다양한 휘발성 유기화합물의 농도를 정밀하게 분석할 수 있다. 따라서 당뇨병은 물론 향후 폐암, 신장병 등의 질병을 조기에 진단하는데 활용될 수 있을 것으로 기대된다. 김일두 교수는 이번 연구에 대해 “ppb급 농도의 날숨 휘발성 유기화합물 가스를 실시간으로 정밀하게 진단하는 나노섬유 센서를 당뇨병 또는 폐암 진단용 감지소재로 이용하면 다양한 질병을 조기에 검출하고 관리하는 일이 가능해질 것”이라고 말했다. 김 교수는 향후 다양한 촉매와 금속산화물 나노섬유의 조합을 통해 많은 종류의 날숨가스를 동시에 정확하게 진단하는 센서 어레이(array)를 개발해 상용화를 앞당길 계획이다. 미래창조과학부 글로벌프린티어사업 스마트 IT 융합시스템 연구단의 지원을 받은 이번 연구는 KAIST 신소재공학과 신정우 학부생(2월 졸업), 최선진 박사과정 학생, 박종욱 교수, 고려대학교 신소재공학과 이종흔 교수가 참여했다. 그림1. 날숨진단센서 어레이(우측)와 날숨진단센서 크기 비교(좌측 상단) 그림2. 나노섬유 센서들이 어레이로 구성된 당뇨진단 센서 이미지 그림3. 날숨 가스들을 분석하는 질병진단 분석기의 소형화 및 실시간 분석 그림4. 주석산화물 나노섬유를 이용한 당뇨진단 센서 이미지
2013.05.30
조회수 20651
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1