본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%9D%80%EB%82%98%EB%85%B8%EC%84%AC
최신순
조회순
나노 바이오칩 질병진단 시대 본격 개막
정기훈 교수 - 1초이내 극미량의 용액 내 DNA 염기 검출 가능해 - - 반도체 양산공정 활용해 상용화 성큼 -- 글로벌 신약개발 및 각종 질환 조기진단기술로서의 활용 기대 - 혈액 몇 방울로 집에서 암을 포함해 모든 질환을 진단할 수 있다는 연구 성과가 최근 쏟아져 나오고 있다. 첨단기술이 집약된 ‘바이오칩’ 덕분인데 KAIST 연구진이 이 칩을 상용화 할 수 있는 연구에 성공했다. 향후 실시간 초고감도 DNA 분석은 물론, 신약개발용 약물 스크리닝 등 다양한 질환의 조기진단기술에 크게 기여할 수 있을 것으로 기대된다. 우리 학교 바이오및뇌공학과 정기훈 교수 연구팀이 3차원 나노플라즈모닉스 구조를 이용해 검출가능 한계를 수십배 이상 향상시킨 초고감도 바이오칩 양산기술 개발에 성공했다. 이번 연구 성과는 재료 및 나노분야 세계적 학술지인 ‘어드밴드스 머터리얼스(Advanced Materials)’ 5월호(2일자) 표지논문으로 선정됐다. 나노플라즈모닉스는 금속나노구조표면에 빛을 집광시켜 특정파장의 세기를 크게 향상 시킬 수 있는 나노광학 분야다. 최근 DNA, 단백질, 항체 또는 세포 등을 감지하는 위한 바이오칩 개발에 필수적인 기술로 학계에서 커다란 관심을 받고 있다. 그러나 사람머리카락의 1/1000의 크기를 갖는 금속나노구조를 넓은 면적의 유리기판에 균일하게 제작하기가 어려워 상용화에 커다란 걸림돌이었다. 정기훈 교수 연구팀은 반도체 양산공정을 활용해 이를 해결했다. 연구팀은 유리기판 위에 은나노 필름을 입히고 열을 가해 은나노섬을 만들었다. 이후 반도체에 적용되는 식각공정을 이용해 3차원 금속나노구조를 유리기판에 균일하게 형성하고 나서 은나노 입자를 증착시켰다. 이 구조는 나노플라즈모닉 현상을 유발하는 다수의 나노갭을 갖고 있어 입사되는 빛의 세기를 수십배 향상시킬 수 있다. 또한, 상용화중인 반도체 증착공정을 그대로 사용 가능하기 때문에 즉시 양산기술에 적용할 수 있는 장점을 갖고 있다. 정기훈 교수는 “이 기술은 유리기판위에 표면강화라만분광기술을 접목해 별도의 형광물질 없이 나노몰 수준의 DNA 염기 4종류를 1초 안에 구분했다”며 “각종 질환을 조기에 진단할 수 있는 바이오칩을 일반 반도체공정을 이용해 넓은 면적의 기판 위에 3차원 나노구조를 저렴하고도 정밀하게 제작할 수 있는 양산기술을 확보하게 됐다”고 말했다. 한편, KAIST 바이오및뇌공학과 정기훈 교수(제1저자 오영재 박사과정 학생)이 수행한 이번 연구는 교육과학기술부가 지원하는 한국연구재단의 도약연구자지원사업 등의 일환으로 실시됐다. 그림1. 유리기판에 넓은 면적으로 제작된 나노플라즈모닉 기판의 사진. 그림2. 나노플라즈모닉 기판의 전자현미경 사진(단면도) 및 전자기장 시뮬레이션. 전자현미경 사진은 3차원적인 금속나노구조가 형성된 것을 보여주고 있으며 이를 통해 나노미터 수준의 갭(gap)을 가진 구조를 설계해 국소 전자기장 극대화를 통해 라만분광 신호 증가를 유도하였음. 시뮬레이션은 나노갭에서 강화된 전자기장을 나타냄. 그림3. 초고감도 나노플라즈모닉 기판의 대면적(직경4인치) 나노공정 순서도. a) 은나노섬을 증착해 식각과정의 마스크로 사용. b) 식각과정을 통한 유리 나노필라어레이(glass nanopillar arrays) 형성. c) 증착을 통한 다수의 나노갭을 가지는 나노플라즈모닉 구조 형성. 그림4. 좌측 : 정기훈 교수, 우측 : 오영재 박사과정(제1저자) 그림5. 논문표지
2012.05.02
조회수 15617
김봉수교수, 은나노선 합성법 개발
단결정 銀 나노선 합성법 최초 개발 - 질병진단센서, 바이오센서, 차세대 자성소자 등 광범위한 활용- 화학분야 최고 권위지인 미국화학회지에 지난 18일자 속보로 게재 KAIST(총장 서남표) 화학과 김봉수(金峯秀, 48) 교수 연구팀은 촉매를 전혀 사용하지 않는 새로운 합성법 개발로 ‘단결정 은 나노선 합성’에 최초로 성공했다. 이 연구 결과는 화학분야 최고 권위지인 미국화학회지(Journal of the American Chemical Society)에 지난 18일(수) 속보로 게재됐다. 은(Ag)은 높은 항균효과를 지니며, 전자 및 광학 재료로도 중요하게 사용된다. 은을 완벽한 단결정 나노선으로 만들면 탄소가 다이아몬드로 변하듯 물질의 특성이 변하면서 가치가 크게 높아진다. 보통의 물질은 촉매 등을 사용하면 단결정 나노선 합성이 가능한데 은과 같은 금속의 경우에는 적절한 촉매를 찾아내지 못해서 합성이 불가능했다. 金 교수는 촉매를 사용하지 않고 산화은을 출발물질로 적절한 응결조건을 맞추어줌으로써 은 입자들이 가장 에너지가 낮은 상태를 스스로 찾아가서 저절로 은 나노선이 생긴다는 사실을 발견했다. 이 기술을 이용하면 금속 및 금속화합물 대부분을 단결정 나노선으로 만들 수 있다. 특히 자성물질 나노선 및 열전소자 나노선 개발로 차세대 자성 소자 및 신에너지 핵심 물질을 개발할 수 있는 가능성이 열렸다. 합성된 은 나노섬유는 소독이 필요 없는 의료용 제품 개발, 바이오센서 및 자성메모리 제작 등에 중요한 소재가 될 수 있다. 은에 분자가 흡착되면 빛을 쪼였을 때 산란되는 빛의 세기가 1조배 이상 커진다. 이를 “표면증강 라만 효과”라 하며, 단 하나의 분자만 존재하더라도 검출이 가능하다. 이 효과는 은이 나노입자 크기로 작아지면 더욱 높아지므로 이를 이용한 질병 진단기 개발 연구가 활발하게 진행되고 있다. 특히, 은 나노선은 진단 능력이 보다 뛰어나 질병진단센서로 개발 전망이 높다. 이 연구는 과학기술부「21세기 프론티어연구개발사업」나노소재기술개발사업단에서 지원했으며, 연구 결과는 현재 세계 각국에 특허 출원중이다. <붙임1. 용어해설> ■ 단결정 은 나노선나노선은 직경이 수 나노미터에서 수백 나노미터 사이에 있는 아주 가늘고 긴 선을 말한다. 단결정은 물질을 이루고 있는 모든 구성원소가 규칙적으로 배열되어 있는 순수하고 독특한 구조인데 다이아몬드 같은 것이 대표적 예다. 은과 같은 금속의 경우에는 적절한 촉매를 찾아내지 못해서 합성이 불가능한데, 이번에 촉매를 사용하지 않고 은이 스스로 단결정 나노선을 이루는 새로운 합성법을 개발했다. ■ 은 나노섬유의 의료분야 응용 은 나노섬유를 이용하여 상처를 보호하기 위해 사용하는 의료용 붕대 등을 제작하면 병균 등의 침투를 근본적으로 방지할 수 있으므로 강력한 의료용 소재가 될 것으로 전망된다. ■ 미국 화학회지(Journal of the American Chemical Society)미국화학회(American Chemical Society)에서 발행하는 대표 학회지로서 가장 역사가 오래되고 권위가 높은 학술지이다. 여기서 특히 긴급하며 중요성이 높은 연구결과는 속보(Communication)로 신속하게 발표된다. <붙임2. 관련 사진 및 설명> 1. 연구팀이 합성에 성공한 단결정 은 나노선의 전자현미경 사진 2. 하나하나의 원자까지 보여주며 완벽한 은 단결정임을 증명하는 초고전압 전자현미경 사진
2007.07.23
조회수 24184
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1