본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%9D%B4%EB%8F%99%ED%86%B5%EC%8B%A0
최신순
조회순
공승현 교수, 30미터 정확도의 스마트폰 위치측정 기술 개발
〈 공승현 교수 연구팀 〉 우리 대학 조천식녹색교통대학원 공승현 교수 연구팀이 LTE 신호만을 이용해 실제 환경에서 평균 30미터 이내의 정확도를 갖는 스마트폰 위치 측정 기술을 개발했다. 김태선 연구원 및 조상재, 김보성, 정승환 석사과정이 참여한 이번 연구를 통해 연구팀은 KT와 협력해 기술 상용화를 추진하고 있다. 최근 전 세계적으로 도심 내에서의 신뢰도 높은 위치 기반 서비스를 제공하기 위한 다양한 기술 개발이 이뤄지고 있다. 그러나 우리나라처럼 기지국과 중계기가 혼재하는 이동통신 환경에서 새로운 장치를 추가하지 않고 이동통신 신호만을 이용하는 제한적인 기술로 넓은 도시 지역에서 높은 정확도와 완성도를 갖는 기술은 아직 보고되지 않고 있다. 일반적으로 GPS 등의 위성항법 시스템은 도심이나 아파트 단지 등 고층 건물이 밀집한 곳에서 극심한 신호의 난반사로 인해 위치 측정 오차가 발생하고 이로 인해 수백 미터 이상의 큰 오차가 발생하기도 한다. 이러한 문제로 최근에는 도심이나 실내에서 와이파이 신호의 RF 핑거프린트를 이용해 스마트폰의 위치를 파악하는 기술이 많이 사용된다. 그러나 이 기술은 여러 대의 와이파이 공유기 신호가 수신되는 특정 공간에서만 높은 신뢰도를 가지고, 공유기가 구축되지 않은 곳에서는 측정할 수 없거나 정확도가 현저하게 떨어진다는 한계가 있다. 연구팀은 스마트폰에서 얻을 수 있는 LTE 기지국 신호에 대한 다양한 측정치를 일정 위치마다 수집해 이를 LTE 핑거프린트(Fingerprint) 데이터베이스로 저장했다. 이후 임의의 사용자 스마트폰에서 측정한 LTE 신호 측정치를 서버로 전달하면 그 측정치를 LTE 핑거프린트 데이터베이스와 비교해 스마트폰의 위치를 파악하는 방식으로, 이는 RF 핑거프린트를 고도화한 기술이다. 연구팀이 개발한 기술의 특징은 LTE 신호를 측정해 얻은 다양한 데이터로부터 각 데이터의 특성에 따라 효과적으로 데이터베이스를 구성하고, 변화가 많은 이동통신 신호 환경에 강인한 최적의 패턴 매칭 기법을 활용하고 있다는 점이다. 연구팀은 개발한 LTE 핑거프린트 기술을 KAIST 교내, 주변 아파트 및 상업 단지를 포함 대전지역과 광화문 일대부터 인사동에 이르는 서울 도심에서 시연해 평균 30미터의 오차를 갖는 성능을 확인했다. 공승현 교수는 “현재 개발된 기술보다 더 높은 정확도를 갖는 LTE 핑거프린트 기술을 개발하는 것도 가능하며 5G에서는 LTE보다 2배 높은 평균 15미터 내외의 측위 정확도를 얻을 수 있다”라며 “머신러닝 기술을 이용해 기지국이나 중계기의 이설과 추가 등으로 LTE 신호 환경이 바뀌었을 때 이를 자동 탐지하고 LTE 핑거프린트 데이터베이스를 신속히 갱신하는 기술을 추가 연구할 계획이다”라고 밝혔다. 현재는 개발된 기술을 이동통신 시스템에 적용하기 위한 단계별 방안을 계획하면서 상용화를 추진 중이다. □ 그림 설명 그림1. 기지국 LTE 핑거프린트의 실례
2019.04.16
조회수 10107
정송교수팀, 인간 이동패턴 모델(Self-similar Least Action Walk, SLAW) 개발
- 전염병 통제, 도시, 교통망 및 통신망 설계 등 활용 전망 전기 및 전자공학과 정송 교수(44)팀과 미국 노스캐롤라이나 주립대 전산학과 이인종 교수(43)팀은 사람들이 일상생활에서 이동하는 패턴을 더욱 정확히 묘사할 수 있는 새로운 통계적 모델을 개발했다. 이 연구결과는 신종 인플루엔자나 에이즈 같은 전염성 질병의 확산 통제나 효율적인 도시 교통망 설계, 이동통신망 설계 등 다양한 분야에 활용될 것으로 기대된다. 두 연구팀은 지난 2년여 간의 공동 연구를 통한 대규모 측정 데이터를 근거로 일상생활에서 인간의 주기적인 이동 패턴을 분석하고 이러한 이동패턴이 발생하는 원인을 규명했다. 연구진은 한국과 미국의 대학 캠퍼스, 뉴욕 맨해튼, 디즈니월드 등 서로 다른 다섯 곳에서 총 100명 이상의 자원자에게 GPS(위치정보시스템) 장비를 나눠주고 총 226일 동안 그들의 움직임을 분석했다. 이들은 각 자원자가 멈춰 섰던 장소들을 2차원 지도상에 도식화하고 이동경로를 그 위에 겹쳐 그리는 방식으로 이동 특성을 연구했다. 그 결과 자원자들은 지리적으로 가까운 장소들의 군집(Cluster)에서 다양한 활동들을 하는 것으로 나타났다. 예를 들면 쇼핑과 식사, 은행 방문 등이 가까운 장소에서 연이어 이뤄졌다. 자원자들은 또 사람들 사이에서 인기가 많은 장소들을 방문하는 빈도가 높았다. 정 교수는 이에 대해 “사람들은 시간과 에너지를 효과적으로 사용하기 위해 지리적으로 근접한 곳에서 해야 할 활동들을 군집화(Clustering)하며 이로 인해 실제 사람들의 움직임은 방문장소들이 군집된 지역 내에서의 수많은 짧은 거리이동과 군집 지역간의 소수의 장거리 이동이 합쳐진 형태로 나타난다” 고 설명했다. 연구진은 이런 이동패턴의 근본적인 통계적 속성들을 이용해 사람들이 하루 동안 보여주는 정규 이동 패턴을 효과적으로 묘사하는 모델(SLAW : Self-similar Least Action Walk)을 개발했다. 이 모델을 이용하면 실제 사람이나 차량들의 움직임을 일일이 추척하지 않고도 전염성 질병의 확산 경로, 특정 장소나 거리에서의 유동인구나 교통량, 이동통신 사용자 수 등 다양한 정보들을 예측할 수 있다. 연구팀 관계자는 “SLAW 모델은 공중 보건 당국의 전염성 전파 및 통제 연구나 도시 및 교통망 설계, 통신 사업자들의 이동통신망 설계 등 사람들이 어떤 방식으로 움직이는지에 대한 예측이 필요한 다양한 분야에 효과적으로 사용될 수 있다”고 말했다. 연구진은 이 연구 결과를 지난달 브라질 리우데자네이루에서 열린 네트워크분야 최고 학회 ‘IEEE INFOCOM 2009’에서 발표했으며, 물리학 분야 최고 학술지 ‘Physical Review Letter’에 제출한 상태다. 이번 연구는 전기 및 전자공학과 이경한(28, 박사과정)학생의 박사학위 논문연구의 일부로서 진행됐으며, 미국 노스캐롤라이나 주립대 홍성익(36, 박사과정), 김성준(31, 박사후과정), 이인종교수(43)가 공동 연구자로 참여했다.
2009.05.13
조회수 19286
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1