본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%A0%81%EC%99%B8%EC%84%A0
최신순
조회순
초박막으로 초고해상도 이미지 즐긴다
한미 공동 연구진이 기존 센서 대비 전력 효율이 높고 크기가 작은 고성능 이미지 센서를 구현할 수 있는 차세대 고해상도 이미지 센서 기술을 개발했다. 특히 세계 시장에서 소니(Sony)社가 주도하고 있는 초고해상도 단파적외선(SWIR) 이미지 센서 기술에 대한 원천 기술을 확보해 향후 시장 진입 가능성이 크다. 우리 대학 전기및전자공학부 김상현 교수팀이 인하대, 미국 예일대와 공동연구를 통해 개발한 초박형 광대역 광다이오드(PD)가 고성능 이미지 센서 기술에 새로운 전환점을 마련했다고 20일 밝혔다. 이번 연구는 광다이오드의 기존 기술에서 나타나는 흡수층 두께와 양자 효율 간의 상충 관계를 획기적으로 개선한 것으로, 특히 1마이크로미터(μm) 이하의 얇은 흡수층에서도 70% 이상의 높은 양자 효율을 달성했다. 이 성과는 기존 기술의 흡수층 두께를 약 70% 줄이는 결과를 가져왔다. 흡수층이 얇아지면 화소 공정이 간단해져 높은 해상도 달성이 가능하고 캐리어 확산이 원활해져 광캐리어 획득에 유리한 장점이 있다. 더불어 원가도 절감이 가능하다. 그러나 일반적으로 흡수층이 얇아지면 장파장의 빛의 흡수는 줄어들게 되는 본질적인 문제가 존재한다. 연구진은 도파 모드 공명(GMR)* 구조를 도입해 400나노미터(nm)에서 1,700 나노미터(nm)에 이르는 넓은 스펙트럼 범위에서 고효율의 광 흡수를 유지할 수 있음을 입증했다. 이 파장 대역은 가시광선 영역뿐만 아니라 단파 적외선(SWIR) 영역까지 포함해 다양한 산업적 응용에서 중요한 역할을 할 것으로 기대된다. *도파 모드 공명: 전자기학에서 사용하는 개념으로 특정 파동(빛)이 특정 파장에서 공명 (강한 전기/자기장 형성)하는 현상. 해당 조건에서 에너지가 최대화되기 때문에 안테나나 레이더 효율을 높이는데 활용된 바 있음. 단파 적외선 영역에서의 성능 향상은 점점 고해상도화되는 차세대 이미지 센서의 개발에도 중대한 기여를 할 것으로 예상된다. 특히, 도파 모드 공명 구조는 상보적 금속산화물 반도체(CMOS) 기반의 신호 판독 회로(ROIC)와의 하이브리드 집적, 모놀리식 3D 집적을 통해 해상도 및 기타 성능을 더욱 높일 가능성을 가진다. 연구팀은 저전력 소자 및 초고해상도 이미징 기술에 대한 국제 경쟁력을 높여 디지털카메라, 보안 시스템, 의료 및 산업용 이미지 센서 응용 분야부터 자동차 자율 주행, 항공 및 위성 관측 등 미래형 초고해상도 이미지 센서의 실현 가능성을 크게 높였다. 연구 책임자인 김상현 교수는 "이번 연구를 통해 초박막 흡수층에서도 기존 기술보다 훨씬 높은 성능을 구현할 수 있음을 입증했다”며, "특히 세계 시장에서 소니(Sony)社가 주도하고 있는 초고해상도 단파적외선(SWIR) 이미지 센서 기술에 대한 원천 기술을 확보해 향후 시장 진입 가능성을 열었다”고 설명했다. 이번 연구 결과는 인하대학교 금대명 교수(前 KAIST 박사후 연구원), 임진하 박사(現 예일대학교 박사후 연구원)이 공동 제1 저자로 참여해 국제 저명 학술지인 ‘빛, 과학과 응용(Light: Science & Applications, JCR 2.9%, IF=20.6)’에 11월 15일자 발표됐다. (논문제목: Highly-efficient (>70%) and Wide-spectral (400 nm -1700 nm) sub-micron-thick InGaAs photodiodes for future high resolution image sensors) 한편, 해당 연구는 한국연구재단의 지원을 받아 진행됐다.
2024.11.20
조회수 617
페로브스카이트 태양전지의 한계를 극복하다
전체 태양 에너지의 약 52%를 활용하지 못하는 문제점을 가진 기존 페로브스카이트 태양전지가 한국 연구진에 의해 근적외선 광 포집 성능을 극대화하면서도 전력 변환 효율을 크게 향상하는 혁신기술로 개발되었다. 이는 차세대 태양전지의 상용화 가능성을 크게 높이며, 글로벌 태양전지 시장에서 중요한 기술적 진전에 기여할 것으로 보인다. 우리 대학 전기및전자공학부 이정용 교수 연구팀과 연세대학교 화학과 김우재 교수 공동 연구팀이 기존 가시광선 영역을 뛰어넘어 근적외선 광 포집을 극대화한 고효율·고안정성 유무기 하이브리드 태양전지 제작 기술을 개발했다고 31일 밝혔다. 연구팀은 가시광선 흡수에 한정된 페로브스카이트 소재를 보완하고, 근적외선까지 흡수 범위를 확장하는 유기 광반도체와의 하이브리드 차세대 소자 구조를 제시하고 고도화했다. 또한, 해당 구조에서 주로 발생하는 전자구조 문제를 밝히고 다이폴 층*을 도입해 이를 획기적으로 해결한 고성능 태양전지 소자를 발표했다. *다이폴(쌍극자) 층: 소자 내 에너지 준위를 조절해 전하 수송을 원활하게 하고, 계면의 전위차를 형성해 소자 성능을 향상하는 역할을 하는 얇은 물질 층임 기존 납 기반 페로브스카이트 태양전지는 850나노미터(nm) 이하 파장의 가시광선 영역에만 흡수 스펙트럼이 제한돼 전체 태양 에너지의 약 52%를 활용하지 못하는 문제가 있다. 이를 해결하기 위해 연구팀은 유기 벌크 이종접합(BHJ)을 페로브스카이트와 결합한 하이브리드 소자를 설계, 근적외선 영역까지 흡수할 수 있는 태양전지를 구현했다. 특히, 나노미터 이하 다이폴 계면 층을 도입해 페로브스카이트와 유기 벌크 이종접합(BHJ) 간의 에너지 장벽을 완화하고 전하 축적을 억제, 근적외선 기여도를 극대화하고 전류 밀도(JSC)를 4.9 mA/cm²향상하는 데 성공했다. 이번 연구의 핵심 성과는 하이브리드 소자의 전력 변환 효율(PCE)을 기존 20.4%에서 24.0%로 대폭 높인 것이다. 특히, 이번 연구는 기존 연구들과 비교했을 때, 높은 내부 양자 효율(IQE)을 달성하며 근적외선 영역에서 78%에 달하는 성과를 기록했다. 또한, 이 소자는 높은 안정성을 보여, 극한의 습도 조건에서도 800시간 이상의 최대 출력 추적에서 초기 효율의 80% 이상을 유지하는 우수한 결과를 보였다. 이정용 교수는 “이번 연구를 통해 기존 페로브스카이트/유기 하이브리드 태양전지가 직면한 전하 축적 및 에너지 밴드 불일치 문제를 효과적으로 해결하였고 근적외선 광 포집 성능을 극대화하면서도 전력 변환 효율을 크게 향상시켜 기존 페로브스카이트가 가진 기계적-화학적 안정성 문제를 해결하고 광학적 한계를 뛰어넘을 수 있는 새로운 돌파구가 될 것”이라고 말했다. 전기및전자공학부 이민호 박사과정과 김민석 석사과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스트 머티리얼스(Advanced Materials)' 9월 30일 자 온라인판에 게재됐다. (논문명 : Suppressing Hole Accumulation Through Sub-Nanometer Dipole Interfaces in Hybrid Perovskite/Organic Solar Cells for Boosting Near-Infrared Photon Harvesting). 한편 이번 연구는 한국연구재단의 지원을 받아 수행됐다.
2024.10.31
조회수 1448
반도체 웨이퍼 절단 없는 두께 분석장비 개발
우리 대학 기계공학과 이정철 교수 연구팀이 근적외선의 간섭 효과를 이용해 실리콘 박막-공동 구조를 검사할 수 있는 웨이퍼 비파괴 분석 장비를 개발했다고 19일 밝혔다. 1 마이크로미터(이하 μm) 급의 두께를 갖는 박막-공동 구조는 압력센서, 마이크로미러, 송수신기 등의 다양한 미세전자기계시스템(MEMS) 소자로 사용된다. 이러한 MEMS 소자에서 박막의 두께와 공동의 높이는 소자 성능의 주요 설계 인자이기 때문에 소자의 거동 분석을 위해서는 제작된 구조의 두께 측정이 필수적이다. 하지만 최근까지 후속 공정에 사용할 수 없는 단점에도 불구하고 웨이퍼를 절단해 주사 전자 현미경과 같은 고해상도 현미경으로 두께를 측정하는 단면 촬영 기법이 사용됐다. 연구팀은 1μm 급의 두께를 갖는 실리콘 박막-공동 구조의 두께를 비파괴적으로 측정하기 위해 근적외선 간섭 현미경을 개발했다. 연구팀은 실리콘의 광특성과 빛의 간섭 길이를 고려해 근적외선 계측 장비를 설계 및 구축했으며 개발한 근적외선 간섭 현미경은 1μm 급과 서브 1μm 급의 단층 박막-공동 구조를 100 나노미터(nm) 미만의 편차로 측정했다. 이에 더불어 다중 반사로 인한 가상의 경계면을 특정하는 방법을 제안해 복층의 실리콘 박막-공동 구조에서 숨겨진 실리콘 박막의 두께 측정을 성공적으로 시연했다. 이번 연구는 국제학술지 `어드밴스드 엔지니어링 머터리얼즈(Advanced Engineering Materials)'에 지난 7월 14일 字에 온라인 게재됐으며 지난 10월 호의 후면 표지 논문(back cover)으로 선정됐다. 이번 연구는 실리콘 박막-공동 구조뿐만 아니라 기능성 웨이퍼인 실리콘 온 인슐레이터(Silicon-on-Insulator, SOI) 웨이퍼에서도 실리콘과 내부에 숨겨진 산화막의 두께를 성공적으로 측정함으로써 다양한 구조의 반도체 소자 비파괴 검사에 적용 가능함을 연구팀은 확인했다. 또한 연구팀은 적합한 파장 선택을 통해 실리콘뿐만 아니라 게르마늄 등 다른 반도체 물질의 비파괴 검사에도 적용할 수 있음을 밝혔다. 반도체 기판의 비파괴 검사 방법을 제안하는 이번 연구는 반도체 공정 중 소자 결함을 판별하기 위한 실시간 비파괴 검사에 적용될 수 있을 것으로 기대된다. 연구를 주도한 이정철 교수는 "개발된 기술은 널리 사용되는 적외선 광원을 사용해 비파괴 방식으로 반도체 물질 내부 구조를 측정한 점에서 기존 방법과 다르고, 안전하고 정밀한 장점 때문에 반도체 소재 및 소자 검사 속도를 향상하는 효과를 가져와 반도체 관련 산업과 우리 삶의 발전에 기여할 것이다ˮ라고 말했다. 한편 이번 연구는 한국연구재단의 중견연구자 지원사업과 기초연구실 지원사업의 지원을 받아 수행됐다.
2022.12.20
조회수 6173
천 배 넘게 응축된 빛 관측 성공
우리 대학 전기및전자공학부 장민석 교수가 이끄는 국제 공동 연구팀이 그래핀 나노층 구조에 천 배 넘게 응축돼 가둬진 중적외선 파동의 이미지를 세계 최초로 얻어내 초미시 영역에서 전자기파의 거동을 관측했다고 2일 밝혔다. 연구팀은 수 나노미터 크기의 도파로에 초고도로 응축된 `그래핀 플라즈몬'을 이용했다. 그래핀 플라즈몬이란 나노 물질 그래핀의 자유 전자들이 전자기파와 결합해 집단으로 진동하는 현상을 말한다. 최근 이 플라즈몬들이 빛을 그래핀과 금속판 사이에 있는 아주 얇은 유전체에 가둬 새로운 모드를 만들 수 있다는 사실이 밝혀졌다. 이러한 그래핀-유전체-금속판 구조에서는, 그래핀의 전하들이 금속판에 영상 전하(image charge)를 만들게 되고 빛의 전기장에 의해 그래핀의 전자들이 힘을 받아 진동하게 되면 금속에 있는 영상 전하들도 잇따라 진동하게 된다. 이러한 새로운 형태의 그래핀-유전체-금속판에서의 집단적인 전자 진동 모드를 `어쿠스틱' 그래핀 플라즈몬(Acoustic Graphene Plasmon; 이하 AGP)이라고 한다. 하지만 AGP는 광학적 파동을 수 나노미터 정도의 얇은 구조에 응집시키기 때문에, 외부로 새어 나오는 전자기장의 세기가 매우 약하다. 이 때문에 지금까지 직접적인 광학적 검출 방법으로는 그 존재를 밝혀내지 못했으며 원거리장 적외선 분광학이나 광전류 매핑과 같은 간접적인 방법으로 AGP의 존재를 보일 수밖에 없었다. 이러한 한계점을 극복하기 위해, 국제 공동 연구팀은 새로운 실험 기법과 나노 공정 방법론을 제안했다. KAIST 전기및전자공학부의 장민석 교수와 메나브데 세르게이(Sergey Menabde) 박사 후 연구원은 민감도가 매우 높은 산란형 주사 근접장 광학현미경(s-SNOM)을 이용해 나노미터 단위의 도파로를 따라 진동하는 AGP를 세계 최초로 직접적으로 검출했고, 중적외선이 천 배 넘게 응축된 현상을 시각화했다. 해당 나노 구조들은 미국의 미네소타 대학(University of Minnesota)의 전자 및 컴퓨터 공학부의 오상현 교수팀이 제작했으며, 그래핀은 성균관대학교의 IBS 나노구조물리연구단(이하 CINAP) 이영희 연구단장팀이 합성했다. 연구팀은 AGP 에너지의 대부분이 그래핀 아래에 있는 유전체층에 집중된 상황에서도 AGP를 검출했는데, 이는 오상현 교수와 이인호 박사 후 연구원이 만든 고도로 반듯한 나노 도파로와 CINAP에서 합성한 순도 높은 대면적 그래핀 덕분에 플라즈몬이 보다 긴 거리를 전파할 수 있는 환경이 조성됐기 때문이다. 중적외선 영역의 전자기파는 다양한 분자들이 가지고 있는 진동 주파수와 일치하는 주파수를 가지고 있어 이들의 화학적, 물리적 성질을 연구하는데 막대한 비중을 차지한다. 예를 들어, 많은 중요한 유기 분자들이 중적외선 흡수 분광학으로 검출될 수 있다. 하지만 한 개의 분자와 빛 간의 상호작용은 매우 작아 성공적인 검출을 위해서는 분자의 개수가 많아야 한다. AGP는 초고도로 응축된 전자기장을 통해 분자와 빛의 상호작용을 크게 높일 수 있으며 결국 한 개의 분자로도 작동하는 단분자 검출 기술을 가능하게 한다. 또한, 일반적인 그래핀 플라즈몬 기반의 광학 장치들은 그래핀에서의 큰 에너지 흡수율 때문에 높은 성능을 보이기 어렵다. 반면 AGP의 전자기장은 대부분이 그래핀이 아닌 유전체층에 존재하기 때문에 그래핀에서 에너지 손실에 덜 민감하므로 고성능 소자 구현에 유리하다. 이번 연구 결과는 AGP가 중적외선 영역에서 작동하는 다른 그래핀 기반의 메타 표면, 광학적 스위치, 다양한 광전류 장치 등을 대체할 수 있을 것이라는 희망을 보여준다. 장민석 교수는 "이번 연구를 통해 어쿠스틱 그래핀 플라즈몬의 초고도로 응축된 전자기장을 근접장 측정을 통해 관측할 수 있었다.ˮ라며 "앞으로 강한 물질-빛 상호작용이 필요한 다른 상황에서도 어쿠스틱 그래핀 플라즈몬을 이용한 연구가 활발해지기를 기대한다ˮ라고 말했다. 메나브데 세르게이(Sergey Menabde) 박사와 이인호 박사가 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)' 에 2월 19일 字 게재됐다. (논문명: Real-space imaging of acoustic plasmons in large-area graphene grown by chemical vapor deposition). 한편 이번 연구는 삼성전자 미래기술육성센터 및 한국연구재단(NRF), 미국의 National Science Foundation(NSF), 삼성 글로벌 공동연구 프로그램(GRO), 기초과학연구원(IBS)의 지원으로 진행됐다.
2021.03.02
조회수 92000
적외선 세기·위상 제어 가능한 메타표면 개발
우리 대학 전기및전자공학부 장민석 교수와 미국 위스콘신 대학 브라(Victor Brar) 교수 연구팀이 적외선의 세기와 위상을 독립적으로 제어하는 동시에 전기 신호로 광학적 특성을 조절할 수 있는 그래핀 기반 메타 표면을 이론적으로 제안했다. 이번 연구를 통해 기존 능동 메타 표면 분야의 난제였던 빛의 세기와 위상의 독립적 제어 문제를 해결해 중적외선 파면을 더 정확히 고해상도로 변조할 수 있을 것으로 기대된다. 한상준 석사과정과 위스콘신 대학교 김세윤 박사가 공동 1 저자로 참여한 이번 연구는 국제 학술지 ‘ACS 나노(ACS Nano)’ 1월 28일 자 전면 표지논문으로 게재됐다. (논문명 : Complete complex amplitude modulation with electronically tunable graphene plasmonic metamolecules) 광변조기술은 홀로그래피, 고해상도 이미징, 광통신 등 차세대 광학 소자 개발에 필수적인 기반 기술이다. 기존 광변조기술에는 액정을 이용한 방식과 미세전자기계시스템(MEMS)을 이용한 방식이 있다. 그러나 두 방식 모두 단위 픽셀의 크기가 회절 한계보다 크고, 구동 속도에 제한이 있다는 문제가 있었다. 메타표면은 이러한 문제들을 해결할 수 있기에 차세대 광변조기술의 강력한 후보이다. 메타표면은 자연계의 물질이 가질 수 없는 광학적 특성을 가지며, 회절 한계를 극복한 고해상도의 상을 맺는 등 전통적인 광학 시스템의 한계를 극복할 수 있다는 장점이 있다. 특히, 능동 메타표면은 전기 신호로 그 광학적 특성을 실시간 제어할 수 있어 적용 범위가 넓은 기술로 평가받고 있다. 그러나 기존에 연구되던 능동 메타표면은 빛의 세기 조절과 위상 조절 간의 불가피한 상관관계 문제가 있다. 기존 메타표면들은 개별 메타 원자가 하나의 공진 조건만을 가지도록 설계됐으나, 단일 공진 설계는 빛의 진폭과 위상을 독립적으로 제어하기에는 자유도가 부족하다는 한계점이 있다. 연구팀은 두 개의 독립적으로 제어 가능한 메타 원자를 조합해 단위체를 구성함으로써 기존 능동 메타표면의 제한적 변조 범위를 획기적으로 개선했다. 연구팀이 제안한 메타표면은 중적외선의 세기와 위상을 독립적으로 회절 한계 이하의 해상도로 조절할 수 있어 광 파면의 완전한 제어가 가능하다. 연구팀은 제안된 능동 메타표면의 성능과 이러한 설계 방식을 응용한 파면 제어의 가능성을 이론적으로 확인했다. 특히, 복잡한 전자기 시뮬레이션이 아닌 해석적 방법으로 메타표면의 광학적 특성을 예측할 수 있는 이론적 기법을 개발해 직관적, 포괄적으로 적용 가능한 메타표면의 설계 지침을 제시했다. 연구팀의 기술은 기존 파면 제어 기술 대비 월등히 높은 공간 해상도로 정확한 파면 제어가 가능할 것으로 기대된다. 이 기술을 기반으로 향후 적외선 홀로그래피, 라이다(LiDAR)에 적용 가능한 고속 빔 조향 장치, 초점 가변 적외선 렌즈 등의 능동 광학 시스템에 적용 가능할 것으로 보인다. 장민석 교수는 “이번 연구를 통해 기존 광변조기 기술의 난제인 빛의 세기와 위상의 독립제어가 가능함을 증명했다”라며 “앞으로 복소 파면 제어를 활용한 차세대 광학 소자 개발이 더욱 활발해질 것으로 예상된다”라고 말했다.
2020.02.18
조회수 13602
배석형 교수, 3D 스케칭 통해 디자인 과정 획기적 단축 기술 개발
〈배석형 교수 연구팀. 왼쪽부터 이준협 석사, 배석형 교수, 김용관 박사, 안상균 석사과정〉 한 번쯤 자신의 그림이 종이에서 튀어나와 현실이 되는 것을 상상해봤을 것이다. 대부분 사람들에게는 단순히 즐거운 상상이지만 현장의 디자이너에게는 꼭 실현돼야 할 절실한 기술이다. 가전제품, 자동차, 게임 컨트롤러 등 장난감부터 일상 속 필수품까지 모든 입체 형상 디자인은 디자이너의 펜 끝에서 시작되기 때문이다. 디자이너의 그림이 현실로 나오기 위해서는 평면적 그림을 입체적 형상으로 바꾸는 작업이 반드시 필요하다. 화려해 보이지만 이 과정은 힘겨운 반복의 연속이다. 3D 형상을 머릿속으로 생각하며 여러 각도에서 바라본 그림을 수십 장 그린 뒤, 수정 및 보완을 거쳐 시제품을 만들어도 제품의 크기나 비율 등에서 원하는 결과가 나오지 않으면 처음부터 같은 과정을 반복해야 한다. 이는 제품 개발 과정에서 심각한 병목과 마찰을 일으켜 시간과 비용의 상승 원인이 된다. 우리 대학 산업디자인학과 배석형 교수 연구팀이 디자인 과정에서 발생하는 반복적인 작업을 획기적으로 단축시킬 수 있는 3D 스케칭 기술 ‘에어 스캐폴딩(air scaffolding)’을 개발했다. 연구팀의 기술은 지난 4월 캐나다 몬트리올에서 열린 ‘미 컴퓨터협회 인간-컴퓨터 상호작용 학회(ACM CHI 2018)’에서 전체 2천 500여 편의 논문 중 상위 1퍼센트에게만 주어지는 최우수 논문상을 수상했다. 평면 그림을 입체 형상으로 변환하는 과정은 왜 어려운 것일까. 입체 형상을 카메라로 찍거나 그림으로 표현하면 깊이 정보의 손실이 발생한다. 반대로 평면 그림, 사진으로부터 입체 형상을 만들 때는 존재하지 않는 정보가 추가적으로 필요하다. 특히 직접 그린 부정확한 그림에서 의도에 부합하는 입체 형상을 유추하는 것은 매우 어렵다. 3D 스케칭 기술은 이러한 어려움을 극복하기 위해 활발히 연구된 기술이다. 가상의 3차원 공간 안에 스케치한 그림을 돌려보거나 앞뒤로 이동하며 평면 그림에서 얻을 수 없던 입체 형상 정보를 채울 수 있다. 결과적으로 복잡한 3D 캐드 모델링 소프트웨어를 사용하지 않아도 펜과 종이를 사용하듯 입체 형상을 곧바로 그릴 수 있다. 그러나 가상현실 기술의 대중화와 더불어 주목받고 있는 기존의 공중 3D 스케칭 기술은 전체 스케칭 과정을 공중에서의 부정확한 손 움직임에 의존하기 때문에 정교한 결과물을 생성하지 못하고 장시간 사용 시 피로를 유발한다는 단점이 있었다. 배 교수 연구팀은 기존 기술의 단점을 보완해 2016년 ‘스케칭위드핸즈(SketchingWithHands)’라는 3D 스케칭 기술을 개발한 바 있다. 공중의 손 자세 정보와 태블릿 상 펜 드로잉 기법을 결합한 것으로, 적외선 손 추적 센서로 손 모양을 캡처한 뒤 그 손 정보를 3D 캔버스 안에 넣어 정보를 토대로 스케치를 할 수 있는 기술이다. 디자인 초기 단계에서부터 정확한 3차원 손 정보가 입력됐기 때문에 이를 여러 각도로 관찰해가며 아이디어를 빠르게 표현할 수 있고 즉각적인 수정 보완이 가능하다. 위에서 언급한 수 없이 반복되는 디자인 과정을 대폭 줄일 수 있다. 연구팀은 2018년 이 기술을 발전시켜 ‘에어 스캐폴딩(air scaffolding)’을 개발했다. 이전 버전이 손 정보 기반 기술이기 때문에 손으로 쥐는 제품에 국한됐다면 에어 스캐폴딩 기술은 손의 움직임 정보까지 함께 활용함으로써 한 손에 쥐기 힘든 더 큰 규모의 제품에도 적용할 수 있다. 가령 디자이너가 인라인 스케이트 제품을 디자인한다고 가정했을 때, 상상 속의 스케이트를 쓰다듬듯이 공중에서 손을 움직여 대략적 크기와 비율을 나타내면 적외선 손 추적 센서가 측정한 손 관절의 3D 이동 경로로부터 입체 그물망 형태의 밑그림(scaffolding)이 실시간으로 추출되는 것이다. 이를 통해 정확한 크기와 비율의 인라인 스케이트의 입체적 형상 디자인을 완성할 수 있다. 이 프로그램을 통해 대략적인 정보는 손으로 신속하게 입력한 뒤 세밀한 부분은 태블릿에 펜으로 채워 넣음으로써 상호 보완적인 디자인 작업이 가능해진다. 컴퓨터 소프트웨어를 아이디어 개발 과정에서부터 사용함으로써 종이에 그린 아이디어를 모델링 소프트웨어에서 다시 만들어내는 번거로운 과정을 없앤 것이다. 연구팀의 기술은 디자인 실무에 3D 스케칭의 적용 가능성을 높였을 뿐 아니라, 모두가 일상에서 손쉽게 입체적으로 아이디어를 표현하고 공유할 수 있는 기반을 제공했다. 더 나아가 3D 프린팅 등 스마트 생산 기술과 연계돼 빠르고 유연한 제조 혁신에 기여할 수 있을 것으로 기대된다. 연구를 주도한 김용관 박사는 “인간-컴퓨터 상호작용(HCI) 분야 최고의 국제 학회에서 최고의 상을 받아서 기쁘다”며 “학문적인 성공에 그치지 않고 다양한 디자인 현장에서 모든 디자이너가 직관적으로 사용하는 성공적인 제품을 만들고 싶다”고 말했다. 배 교수 연구팀은 디자인 중심의 연구실임에도 불구하고 2016년 ‘스케칭위드핸즈’ 이전에도 아이러브스케치(2008), 에브리바디러브스케치(2009) 등 지속적으로 소프트웨어를 개발하고 있다. 끊임없이 실용적인 3D 스케칭 기술 개발을 통해 디자인 프로세스의 유용성을 찾고 혁신을 시도하는 것이 연구팀의 궁극적 지향점이다. 배석형 교수는 “진보한 컴퓨터 기술을 활용해 다양한 분야의 창의적인 활동을 돕기 위한 시도들이 이뤄지고 있다. 앞으로도 디자이너에 대한 깊은 이해를 바탕으로 첨단 기술을 적용해 디자인 프로세스 혁신에 주도적 역할을 해 나갈 것이다”고 말했다. □ 그림 설명 그림1. 연구팀이 개발한 에어 스캐폴딩 기술 그림2. ACM CHI 2018에서 시연 중인 에어 스캐폴딩 기술
2018.08.09
조회수 10031
이정용 교수. 근적외선 이용한 영구 무선충전 플랫폼 개발
〈 이 정 용 교수 〉 우리 대학 EEWS 대학원 이정용 교수와 서울대학교 최장욱 교수 공동 연구팀이 눈에 보이지 않는 근적외선 대역의 빛 에너지를 전기로 변환하는 기술을 통해 웨어러블 전자기기용 영구 무선충전 플랫폼을 개발했다. 백세웅 박사, 조정민 석사과정이 공동 1저자로 참여한 이번 연구 결과는 국제 학술지 ‘어드밴스드 머티리얼즈(Advanced Materials)’ 5월 11일자 온라인 판에 게재됐다. (논문명 : Colloidal quantum dots-based self-charging system via near-infrared band) 수 나노미터 수준의 콜로이달 양자점은 광 특성 변환이 쉽고 용액 공정을 통해 합성이 가능해 차세대 반도체 재료로 각광받는다. 특히 황화납(PbS) 양자점의 경우 가시광 뿐 아니라 적외선 영역까지 광 흡수가 가능해 여러 광전소자에 응용할 수 있다. 콜로이달 양자점을 이용한 광전변환소자는 지속적 연구와 발전을 통해 현재 12% 이상의 광전변환효율을 달성했으나 그동안 뚜렷한 응용 분야를 찾지 못하고 있었다. 연구팀은 콜로이달 양자점 전지의 높은 근적외선 양자효율을 웨어러블 전자기기의 무선충전에 응용했다. 기존 웨어러블 전자기기는 번거로운 충전 방식이 분야 발전의 큰 걸림돌이었다. 이번 연구에서는 양자점 전지 모듈을 유연 기판에 제작해 고 유연성 웨어러블 배터리와 함께 웨어러블 헬스케어 팔찌의 가죽 내부에 이식했다. 이를 통해 양자점 전지가 근적외선 광자를 통해 생성되는 전기를 배터리에 충전할 수 있는 플랫폼을 개발했다. 이전에도 비슷한 방식으로 태양광 발전 방식이 개발된 바 있으나 이번 연구에서 개발한 플랫폼은 더 많은 장점을 갖는다. 근적외선은 비가시대역의 빛이기 때문에 생활에 지장을 주지 않으며 가시광 대역에 비해 높은 투과도를 가져 전지를 노출할 필요 없이 내부 이식이 가능하다. 위와 같은 측면으로 인해 실제 상용화에 중요한 요소인 디자인 측면에서 더 많은 자유도를 가지며 기존 구조보다 더 높은 소자 효율과 안정성을 확보했다. 연구팀은 이미 상용화된 웨어러블 헬스케어 팔찌의 기존 배터리를 제거하고 개발한 무선충전 플랫폼을 도입했고, 이를 통해 실제 개발한 플랫폼이 상용화된 저전력 웨어러블 전자기기에 응용 가능함을 증명했다. 이 교수는 “근적외선 대역을 이용해 실제 웨어러블 전자기기의 충전문제를 해결한 것은 새로운 방식이다”며 “이번에 개발한 플랫폼의 규모를 넓히면 웨어러블 전자기기를 넘어서 모바일, IoT, 드론 및 4차산업의 핵심 분야의 새로운 방식의 에너지 변환 플랫폼이 될 것이다”고 말했다. 이 연구는 한국연구재단 기초연구사업, 기후변화대응기술개발사업, KAIST 기후변화연구허브 사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 개발한 근적외선 무선충전 플랫폼과 웨어러블 헬스케어밴드에 응용한 모식도" 그림2. 개발한 기술에 대한 양자점 광전변환기기의 구조와 무선충전 플랫폼 성능
2018.06.14
조회수 13805
김유천 교수, 부작용 낮춘 레이저 치료제 개발
〈 노 일 구 박사과정, 김 유 천 교수 〉 우리 대학 생명화학공학과 김유천 교수 연구팀이 기존 광역학 치료제(PhotoDynamic Therapy, 이하 PDT)의 단점을 보완한 근적외선 형광물질 기반의 PDT를 개발했다. 노일구 박사과정이 1저자로 참여하고 바이오및뇌공학과 박지호 교수 연구팀이 공동으로 참여한 이번 연구 결과는 국제 학술지 ‘어드밴스드 사이언스(Advanced Science)’ 2018년도 3월 25일자 표지논문에 게재됐다. PDT는 약물이나 유전자가 아닌 빛을 이용하는 치료법으로 레이저를 특정부위에 쬐어 산소를 독성을 갖는 활성산소로 변화시켜 세포를 자가 사멸(apoptosis)로 유도할 수 있는 기술이다. 이 기술은 피부병 치료 등 일상에서도 많이 활용되는 치료법이다. 그러나 기존에 이용하는 PDT 조영제의 경우 낮은 효율을 가질 때 오히려 암세포의 유전변형이 발생해 치료효과 감소 등의 부작용이 나올 수 있다. 따라서 치료효과를 극대화하기 위해선 원하는 위치에 많은 물질을 전달하는 것이 중요하며 이를 위해 세포 소기관인 미토콘드리아에 치료효과를 집중시키는 연구가 진행 중이다. PDT 조영제로 인해 만들어진 활성산소는 미토콘드리아의 막을 공격해 세포 사멸을 일으킨다. 암세포의 미토콘드리아는 일반 세포와 비교했을 때 미토콘드리아 막의 전위 차이가 높아 양전하의 소수성 물질이 더 잘 투입되는 특성이 있다. 연구팀은 이러한 PDT 조영제 효과를 극대화하기 위해 미토콘드리아 타겟팅 그룹인 트리페닐포스포늄, PDT 증강제인 브롬화물, 그리고 용해도 증가를 위한 아민 그룹으로 구성된 물질을 개발했다. 연구팀은 이 기술을 종양이 이식된 실험용 쥐에 주입한 후 종양 부위에 빛을 조사해 항암효과를 유도했고 이를 분석했을 때 효과적으로 표적 치료가 이뤄지는 것을 확인했다. 이 물질은 근적외선 영역에서의 흡광 및 발광을 통한 662 나노미터(nm) 영역 레이저를 사용한다. 이를 통해 기존 가시광선 조영제가 마이크로미터 수준의 깊이를 보였다면 연구팀의 기술은 밀리미터까지 투과성을 가지며 진단 시 가시광역 조영제 보다 100배 이상 감도가 우수한 특성을 갖고 있다고 밝혔다. 연구를 주도한 노일구 박사과정은 “암세포 미토콘드리아에 오래 머물러 있어 레이저를 조사했을 때 원하는 부분에만 부작용 없이 효과적인 치료가 가능하다는 장점이 있다”며 “치료 후 독성이 없이 분해돼 기존 조영제의 단점을 극복할 수 있을 것이다”고 말했다. 김유천 교수는 “기존에 이용되는 진단 및 치료제를 한 단계 더 발전시킨 새로운 플랫폼의 개발을 통해 부작용을 최소화하고 다양한 질병을 치료하는 데 유용하게 사용될 것으로 기대한다”고 말했다. 이번 연구는 글로벌프론티어 지원사업 ABC 바이오매스 사업단 및 한국연구재단의 중견연구자지원사업, 바이오의료기술개발지원사업을 통해 수행됐다. □ 그림 설명 그림1. Advanced science 3월 25일자 3호 표지 그림2. 완성된 물질의 화학구조, 미토콘드리아 타겟팅 효과 및 레이저에 따른 ROS 생성 그래프
2018.04.17
조회수 17341
유회준 교수, 무선으로 마취 심도 측정할 수 있는 기술 개발
〈 유 회 준 교수 〉 우리 대학 전기및전자공학과 유회준 교수 연구팀이 고려대학교 구로병원 최상식 교수, ㈜케이헬쓰웨어(대표 노태환)와의 공동 연구를 통해 무선으로 마취의 심도를 정확하게 파악할 수 있는 측정기를 개발했다. 하언수 박사과정 학생이 주도한 이번 연구는 9일 미국 샌프란시스코에서 열린 반도체 학술대회인 국제고체회로설계학회(ISSCC)에서 발표됐다. 마취의 심도가 적정하게 유지되는 것은 환자에게 매우 중요하다. 마취가 얕으면 수술 도중 깨어나 큰 고통을 겪기도 하고, 반대로 마취가 너무 깊게 되면 심장발작, 합병증, 사망에 이르기도 한다. 프로포폴도 호흡을 억압하기 때문에 마취 심도가 깊어지면 사망 사고를 유발하기도 한다. 이런 사고 방지를 위해 마취 심도를 정량적으로 측정하려는 시도가 국내외로 활발하게 진행 중이다. 이러한 노력으로 개발된 마취심도계측기로 인해 마취 사고 발생률은 크게 낮아졌다. 그러나 기존의 제품들은 모니터링 장치에 연결하기 위해 긴 전선이 사용돼 번거로움을 유발한다. 또한 마취 약물 종류에 따라 심도를 측정할 수 없다는 한계가 있다. 연구팀이 개발한 마취 심도 모니터링 측정기는 마취 중인 환자의 이마에 접착된 패치를 통해 뇌파 신호 및 혈중 헤모글로빈 농도를 추출한다. 이를 정확히 제어하는 반도체 칩이 패치에 집적돼 무선으로 뇌파와 근적외선 분광 신호를 동시에 측정할 수 있다. 측정된 다중 신호들은 디지털 신호로 바뀌어 전달된 후 딥 러닝(Deep Learning) 기술을 이용해 환자의 마취 심도를 정확히 판단한다. 수술 시간이 길어지면 전극의 젤이 마르게 돼 뇌파 측정신호가 나빠지지만 연구팀은 이런 상황에서도 정확한 신호를 측정할 수 있는 회로 기법을 도입했다. 또한 실제 수술실에서 사용할 수 있는 초소형 근적외선 분광 센서가 붙어 있어 성별, 나이, 인종에 상관없이 유효한 신호 측정이 가능하다. 나아가 다중 신호를 이용하기 때문에 수술 중 전기 잡음을 유발하는 전기 소작기나 삽관 사용 중에도 신호 왜곡 없이 마취심도의 측정이 가능하다. 연구팀의 측정기는 기존 기기로는 측정이 불가능했던 케타민 등의 약물도 마취 심도를 측정할 수 있어 의료 분야에서 응용 가능할 것으로 기대된다. 유 교수는 “그동안 마취 심도 센서는 비싼 가격의 특정 외국회사 제품이 독점하는 형태였다”며 “환자들의 부담을 줄이면서 안전한 마취를 제공할 수 있어 새 제품을 개발할 수 있는 좋은 기회가 될 것이다”고 말했다. □ 그림 설명 그림1. 센서의 구성을 나타낸 모식도 그림2. 마취 심도의 측정 비교
2017.02.10
조회수 13571
남윤기 교수, 빛과 열로 신경세포의 활성을 억제하다
〈 남 윤 기 교수 〉 우리 대학 바이오및뇌공학과 남윤기 교수와 박지호 교수 연구팀이 빛과 열을 통해 신경세포의 활성을 억제할 수 있는 새로운 플랫폼을 개발했다. 이번 연구는 나노분야 학술지 ‘에이씨에스 나노(ACS Nano)’ 9일자 온라인 판에 게재됐다. 신경세포는 활동 전위를 생성해 세포 사이의 정보를 교환하는 역할을 담당한다. 신경세포의 활성은 뇌기능을 이해할 수 있는 핵심 요소로 이를 조절하기 위해 전기 자극, 광유전학 등 다양한 방법의 기술이 연구됐다. 그러나 전기 자극은 신경세포의 활성 유도엔 효과적이나 그 반대인 활성 억제엔 기술적 한계를 갖는다. 광유전학은 빛으로 신경세포 활성을 조절할 수 있지만 유전자 조작이 까다롭고 다른 기술과의 결합이 어려웠다. 연구팀은 문제 해결을 위해 금 나노막대를 신경세포 칩에 결합하는 방법을 선택했다. 금 나노막대는 특정 파장대의 빛을 흡수해 열을 발생시키는 특성이 있어 광열 자극의 매개체로 사용 가능하다. 연구팀은 신경세포가 이 광열 자극에 노출될 경우 그 활성이 억제되는 현상을 발견했고 이를 응용한 전기 광학적 신경플랫폼을 제작했다. 근적외선을 선택적으로 흡수하는 금 나노막대를 합성한 후 생체 친화성을 갖는 중합체(polymer)로 코팅해 신경세포 칩 표면에 결합했다. 신경세포 칩 상의 금속 전극은 금 나노막대가 결합한 후에도 전기적 특성이 변하지 않아 신경세포 활성 측정에 적합하다. 금 나노막대가 결합한 칩에 신경세포를 배양하면 전기적으로 신경세포의 활성을 측정하는 동시에 광열 자극으로 신경세포의 활성을 억제함을 확인했다. 이 기술은 유전자 조작 없이도 빛으로 활성 조절이 가능해 기존의 광유전학 기술의 단점을 상쇄시켰다. 연구팀이 개발한 전기 광학적 신경플랫폼은 광유전학 기술의 대안이 될 것으로 기대된다. 또한 기존 신경플랫폼과 결합해 뇌기능 연구 및 뇌질환 치료에 다각적으로 활용 가능할 것으로 예상된다. 남 교수는 “나노입자와 신경세포를 결합해 새로운 자극 플랫폼을 제시했다”며 “기존의 전기적 신경 시스템을 활용하는 동시에 광열 자극으로 신경세포의 활성을 자유롭게 억제할 수 있다”고 말했다. 우리 대학 바이오및뇌공학과 유상진 박사과정 학생이 1저자로 참여한 이번 연구는 한국연구재단 중견연구자지원사업 도약연구의 지원을 받아 수행됐다. □ 그림 설명 그림1. 금나노막대와 미세전극칩을 결합한 광-전기 복합 자극칩 플랫폼 모식도
2016.03.31
조회수 11310
과학기술위성 3호 우주관측 시험영상 최초 공개
- 국내 최초 근적외선 위성 카메라 탑재, 우주관측 영상 확보 - 우리 학교 인공위성센터에서 제작한 과학기술위성 3호가 지난 11월 21일 러시아 야스니 발사장에서 성공적으로 발사된 뒤 안드로메다 은하와 오리온 성운 및 로제타 성운을 촬영(’13.12.17, ’13.12.21, ’13.12.22)한 적외선 우주관측 영상이 공개됐다. 과학기술위성 3호는 현재 초기 운영 및 검․보정을 진행 중으로 탑재체 기능 점검 중 성능 검증을 위하여 촬영된 첫 시험영상이다. 이번에 촬영한 안드로메다 은하(M31)는 지구에서 가장 가까운 (약 200만 광년) 나선은하로서, 과학기술위성 3호에 탑재된 적외선 우주망원경으로 관측한 첫 적외선 영상이다. 과학기술위성 3호는 발사 이후 위성 상태, 자세 제어 기동 성능, 태양전지판 전개, 우주관측 적외선영상 관측 기능 등 우주관측 탑재체 구성품 전반의 기능 점검을 거쳤으며, "14년 2월까지 정상 궤도에서 최종 검․보정 작업을 진행한 이후, 2년간 600km 상공에서 우리은하에 있는 고온 가스의 기원 연구를 위한 은하면 탐사와 우주 초기 상태를 예측할 수 있는 적외선 우주배경복사에 관한 영상정보를 수집한다. 과학기술위성 3호와 함께 러시아 드네프르 발사체에 실려 우주로 향했던 두바이샛 2호*도 지난 12월 6일 북한과 미국, 중국, 이탈리아, 말레이시아, 남아프리카 일대를 촬영한 위성사진을 공개한바 있으며, 경희대 큐브위성도 2대(CINEMA 1,2) 모두 교신에 성공하여 본격적인 임무수행을 위한 검․보정 작업을 진행 중이다. * 위성전문제작회사 쎄트렉아이가 아랍에미리트에 수출한 상용지구관측위성 앞으로 미래부는 과학기술위성3호의 지구관측 적외선카메라와 소형 영상 분광기, 핵심우주기술 부품의 기능 및 성능 점검도 ’14년 2월까지 완료할 계획이다. 지구관측 적외선 영상과 분광영상은 산불탐지, 도시 열섬현상, 홍수피해 관측, 수질예측 등에 필요한 기초 연구 및 국가재난․재해 모니터링 등에 활용될 예정이며, 위성 본체에 적용된 핵심부품의 우주 검증을 통해 실용위성의 우주기반 기술 확보 등에도 기여할 것으로 기대된다. <우주관측 적외선 영상 - 안드로메다 은하>
2013.12.26
조회수 12974
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1