-
실내 조명 활용해 최고 수준 이산화질소 감지 가능
우리 연구진이 기존까지 전무했던 녹색빛을 가스 센서에 조사하여 상온에서 최고 수준의 이산화질소 감지 성능을 보이는 것을 확인했다. 이를 통해 녹색광이 50% 이상 포함된 실내조명을 통해서도 작동이 가능한 초고감도 상온 가스 센서를 개발했다.
우리 대학 신소재공학과 김일두 교수 연구팀이 가시광을 활용해 상온에서도 초고감도로 이산화질소(NO2)를 감지할 수 있는 가스 센서를 개발했다고 10일 밝혔다.
금속산화물 반도체 기반 저항 변화식 가스 센서는 가스 반응을 위해 300 oC 이상 가열이 필요해 상온 측정에 한계가 있었다. 이를 극복하기 위한 대안으로 최근 금속산화물 기반 광활성 방식 가스 센서가 크게 주목받고 있으나, 기존 연구는 인체에 유해한 자외선 내지는 근자외선 영역의 빛을 활용하는 데에 그쳤다.
김일두 교수 연구팀은 이를 녹색 빛을 포함한 가시광 영역으로 확대해 범용성을 크게 높였으며, 녹색광을 조사했을 때 이산화질소 감지 반응성이 기존 대비 52배로 증가하였다. 특히 실내조명에 사용되는 백색광을 조사해 최고 수준의 이산화질소 가스 감지 반응성(0.8 ppm NO2, 감도 = 75.7)을 달성하는 데에 성공했다.
연구진은 가시광선의 흡수가 어려운 인듐 산화물(In2O3) 나노섬유*에 비스무스(Bi) 원소**를 첨가하여 청색광을 흡수할 수 있도록 중간 밴드 갭***을 형성시켰고, 금(Au) 나노입자를 추가적으로 결착하여 국소 표면 플라즈몬 공명** 현상을 통해 가시광 중 가장 풍부한 녹색광 영역에서의 활성도를 극대화했다. 비스무스와 금 나노입자 첨가 효과와 나노섬유가 갖는 넓은 비표면적 특성을 통해 상온에서 이산화질소 반응성을 기존 센서 대비 52배(0.4 ppm NO2 감도 기준) 증가시켰다.
*인듐 산화물 나노섬유: 인듐 산화물은 전기 전도 특성을 지닌 금속 산화물로, 이를 전기방사 공정을 통해 나노섬유 형상으로 제작함
**비스무스(Bi) 원소: 원자번호 83번의 원소로, 주기율표에서는 질소(N), 인(P), 비소(As), 안티모니(Sb)와 함께 15족(질소 족)에 속하는 원소
***밴드 갭(Band gap): 전자(electron)가 속박 상태에서 자유롭게 벗어나는 데 필요한 에너지 차를 의미하며 물질의 전기적, 광학적 성질을 결정하는 중요 요인 중 하나
***국소 표면 플라즈몬 공명(LSPR): 빛에 의해 나노입자 표면의 전하 수송체를 들뜬 상태로 만들고 금속산화물로 이동시켜 가스와의 산화-환원 반응을 촉진하는 원리
이번 연구의 연구책임자인 신소재공학과 김일두 교수는 “자동차 배기가스 및 공장 매연 등에서 배출되는 대표적인 대기 환경 유해가스인 이산화질소 가스를 우리 주변에서 일반적으로 접근할 수 있는 녹·청색광(430~570 nm) 영역의 가시광을 활용해 상온에서 초고감도로 감지가 가능한 신소재를 개발했다”라며 “가스 센서의 소비전력 및 집적화 문제를 해결할 수 있어, 향후 실내조명 및 기기와의 결합을 통한 가스 센서의 상용화에 큰 역할을 할 것으로 기대한다”라고 밝혔다.
신소재공학과 졸업생 박세연 박사(現 펜실베니아 대학교 박사 후 연구원), 신소재공학과 김민현 박사과정이 공동 제1 저자로 주도한 이번 연구는 재료 분야 국제권위 학술지인 ‘어드밴스드 머티리얼즈(Advanced Materials)’에 3월 4일 온라인 공개됐으며 6월 13일 24호 전면 속표지(Inside Front Cover) 논문으로 발표 예정이다. (논문명 : Dual-Photosensitizer Synergy Empowers Ambient Light Photoactivation of Indium Oxide for High-Performance NO2 Sensing)
한편 이번 연구는 한국연구재단 중견연구자지원 사업, 중소벤처기업부와 중소기업기술정보진흥원(TIPA)의 소재부품장비 전략협력기술개발사업의 지원을 받아 수행됐다.
2024.06.10
조회수 3143
-
저농도 폐수에서 암모니아 생산 기술 개발
현대사회에서 우리의 삶을 위협하는 탄소 순환 불균형에 못지않게 부각되는 질소 순환 문제가 중요한 이슈다. 특히 질산염은 수질 오염, 산성비, 그리고 최근 기승을 부리는 미세먼지의 생성 원인으로도 알려져 있으며, 암모니아는 주로 농업용 비료, 플라스틱, 폭발물, 의약품, 선박용 청정원료, 수소 운반체, 암모니아 발전 등 다양한 산업군에 쓰이는 유용한 자원이다.
우리 대학 신소재공학과 강정구 교수 연구팀이 전기를 이용해 저농도 질산염 수용액으로부터 암모니아를 생산하는 고효율 촉매를 개발했다고 8일 밝혔다.
연구팀이 개발한 전기 촉매는 구리 금속 폼(Cu foam)과 니켈-철 층상이중수산화물(NiFe Layered double hydroxide)의 복합체로 구성돼 있다. 구리 폼은 질산염을 선택적으로 흡착하고, 니켈-철 층상이중수산화물은 화학이나 생체반응을 통해 반응 중 생성된 중간체 수소 라디칼을 생성해 구리 폼에 전달함으로써 질산염이 암모니아로 바뀌도록 효율적으로 진행한다. 구리, 철, 니켈 모두 귀금속과 비교해 지구에 풍부하고 비교적 저렴하므로 연구팀이 개발한 기술은 친환경적이고 경제적인 원천기술이다.
이 기술은 질산염을 통해 직접적으로 암모니아를 생산할 수 있을 뿐 아니라, 기존 질산염 환원의 가장 큰 문제였던 저농도 질산염 수용액에서도 좋은 성능을 갖는다. 실제 하천이나 강물, 혹은 여러 질산염을 배출하는 저농도 폐수를 이용해 암모니아를 생산할 수 있어 경제적이고 실용적이다는 특성을 가진다.
김건한 박사 (現 옥스퍼드 대학교 화학과, KAIST 신소재공학과 졸업생)가 제1 저자로 참여하고, 더모트 오헤어 교수 (옥스퍼드 대학교 화학과) 연구팀이 공동으로 참여한 강정구 교수 연구팀의 이번 연구 결과는 에너지 및 환경 분야 국제 학술지 `에너지 환경 과학(Energy & Environmental Science, IF 39.71)' 1월 24일 字 온라인 게재됐다. (논문명: Energy-efficient electrochemical ammonia production from dilute nitrate solution)
현재 암모니아 생산은 대부분 `하버-보쉬 공정'을 통해 생산된다. 이 공정은 고온, 고압의 합성 조건을 전제로 하기 때문에 안전성에서 문제를 갖고 있을 뿐만 아니라 값비싼 수소 기체를 반응물로 이용하기 때문에 경제성 문제를 동시에 유발한다. 이에 대한 대안으로, 친환경적이며 값싸고 풍부한 질소 기체를 직접 전기 환원시키는 전기화학적 질소 환원법도 수용액에 대한 낮은 용해도와 강한 질소-질소 삼중결합 때문에 발생하는 낮은 효율로 큰 문제를 겪고 있다.
반면, 전기에너지를 이용해 질산염을 암모니아로 환원시키는 전기화학적 질산염 환원법은 수용액에 잘 녹는 질산염과 상대적으로 더 약한 질소-산소 결합에너지로 질소 환원법보다 더 높은 효율을 가지고 있다. 하지만, 기존의 질산염 전기 촉매의 경우, 경쟁 반응인 물 환원 반응으로 인해 암모니아로의 환원 효율이 떨어진다는 단점을 가지고 있다. 또한, 실제 하천이나 강물, 혹은 여러 질산염을 배출하는 폐수의 경우, 약 10mM(밀리몰) 이하 낮은 농도의 질산염을 포함하고 있는데, 저농도에서 촉매 특성이 급격히 떨어진다는 특성이 있다.
이에 강정구 교수 연구팀은 표면적이 넓은 구리 금속 폼을 호스트로 사용하여 저농도의 질산염이 효율적으로 흡착될 수 있도록 했다. 한편, 호스트인 구리 금속 폼에 수소 라디칼 생성이 가능한 니켈-철 층상이중산화물을 포함하는 `구리 금속 폼/니켈-철 층상이중수산화물' 복합체를 형성하였는데, 니켈-철 층상이중수산화물의 전기전도도가 낮아 질산염 환원이 일어나는 전압에서 수소-수소 결합을 통한 수소가스 (H2)를 생성하지 않고 효율적으로 수소 라디칼 (H)을 물로부터 만들 수 있었다.
강정구 교수는 "친환경적인 전기에너지를 이용해 질산염 환원법으로 암모니아를 생성하는 경우, 주로 메탄 리포밍을 통해 생산되는 값비싼 수소 기체를 이용하며 고온/고압의 반응 조건으로 유발되는 안전성 문제를 가진 하버-보쉬 공정을 효과적으로 대체할 수 있다ˮ라고 소개하면서 "특히, 반응 자리와 수소 라디칼 자리가 분리된 촉매 구조를 통해 저농도 질산염에서도 효율적으로 암모니아를 생성할 수 있기 때문에, 실제 강물, 하천, 공장 폐수에 포함돼있는 질산염을 농축시키는 과정 없이도 효율적으로 암모니아를 생산할 수 있어 질산염을 통한 암모니아 생산의 상용화에 이바지할 것이다ˮ고 말했다.
한편 이번 연구는 과학기술정보통신부 나노 및 소재기술개발사업 미래기술연구실의 지원을 받아 수행됐다.
2023.02.08
조회수 6050
-
일산화질소로부터 암모니아 생산하는 고효율 전기화학 기술 개발
발전소, 산업 시설 등에서 배출되는 배기가스 내 주요 대기오염 물질인 일산화질소(NO)로부터 암모니아를 생산하는 기술이 국내 연구진에 의해 개발됐다. 대기 중에서 초미세먼지를 유발하는 골칫거리인 일산화질소를 사용해 최근 수소 저장체로 주목받는 암모니아를 생산한 것이다.
우리 대학 건설및환경공학과 한종인 교수 연구팀이 UNIST(총장 이용훈) 에너지화학공학과 권영국 교수팀, 한국화학연구원(원장 이미혜) 환경자원연구센터 김동연 박사와 함께 일산화질소로부터 암모니아를 생산하는 고효율 전기화학 시스템을 개발했다고 23일 밝혔다. 개발된 시스템은 비싼 귀금속 촉매 대신 값싼 철 촉매를 이용해 상온 및 상압 조건에서 세계 최고 수준의 전기화학적 암모니아 생산 속도를 기록했다.
일산화질소는 발전소, 산업용 보일러, 제철소 등 연소시설에서 배출되는 질소산화물(NOx)의 대부분(95% 이상)을 차지하고 있는 유해 가스로, 호흡기 질환을 유발할 뿐만 아니라 산성비 및 대기 중 오존을 생성해 배출량이 엄격히 규제되고 있다. 현재 대부분의 처리 기술은 일산화질소의 단순 제거에만 초점을 맞추고 있지만 한 교수팀은 버려지는 일산화질소의 가치에 주목했다. 일산화질소의 높은 반응성을 이용해 적은 에너지만으로 유용 자원인 암모니아 생산의 가능성을 본 것이다.
연구팀은 물에 잘 녹지 않는 일산화질소의 한계를 극복하기 위해 기존의철-킬레이트를 포함한 일산화질소 흡수제를 사용하는 방식 대신 기체를 직접적으로 전극에 주입하는 기체 확산 전극을 사용해 물질전달 속도를 획기적으로 늘렸다. 이로써 공정에 소모되는 화학약품 비용을 줄이고 전기화학 셀 운전 시 발생하는 폐수 처리를 간편화했다.
나노 크기의 철 촉매를 전극에 도포해 부반응을 억제하고 암모니아에 대한 생성물의 선택도를 확보했으며, 전기화학적 암모니아 생산 성능을 결정하는 중요한 지표인 암모니아 생산 속도는 1,236μmolcm-2h-1를 기록했다. 이는 기존의 질소 기체(N2)를 활용한 전기화학적 암모니아 생산 속도 범위인 10μmolcm-2h-1을 100배 이상 넘어선 수준이다.
이러한 접근법은 대부분의 전기화학 반응에서 100%의 순수한 원료 기체를 필요로 하는 것과 달리 사용되는 일산화질소 가스의 농도를 1~10%까지 낮출 수 있어 해당 기술의 현장 적용성을 높일 수 있을 것으로 기대된다.
또한 기존의 암모니아 생산 공정인 하버-보쉬법이 섭씨 400도, 200기압 이상의 고에너지 조건을 요구하는 데 반해, 연구팀이 개발한 전기화학 시스템은 상온 및 상압 조건에서 암모니아 생산이 가능해 공정 설비와 비용 부담을 크게 줄일 수 있을 전망이다.
이번 연구를 주도적으로 진행한 한 교수 연구팀의 천선정 박사과정 학생은 "최근 대기오염, 탄소 중립 등의 이슈가 꾸준히 확산하는 가운데 지속할 수 있는 기술 개발에 대한 중요성이 커지고 있다ˮ며 "대기오염의 원인을 효과적으로 제거하는 동시에 탄소배출이 없는 암모니아 연료를 생산해 새로운 관점으로 환경문제를 해결하고자 했다ˮ고 말했다.
우리 대학 천선정 박사과정, 창원대학교 김원준 교수가 공동 제1 저자로 참여한 이번 연구성과는 저명 국제 학술지인 `ACS 에너지 레터스(Energy Letters)'에 3월 11일 자로 출판됐으며, 속표지논문으로 선정됐다. (논문명: Electro-synthesis of ammonia from dilute nitric oxide on a gas diffusion electrode).
한편 이번 연구는 한국에너지기술평가원, 한국연구재단 등의 지원을 받아 수행됐다.
2022.03.24
조회수 10308
-
전기화학 분야의 오랜 난제인 전기 이중층 구조 규명
우리 대학 화학과 김형준 교수 연구팀이 GIST 신소재공학부 최창혁 교수 연구팀과 공동 연구를 통해 전기화학 분야의 오랜 난제 중 하나인 전기 이중층 구조를 이론적으로 규명하는 데 성공했다고 27일 밝혔다.
태양광 발전 등 친환경적으로 생산된 전기를 화학연료의 형태로 변환 및 저장하는 기술은 현재 인류가 직면하고 있는 에너지-환경 문제를 해결할 수 있는 가장 효율적인 미래전략이다. 2019년 리튬이온 배터리의 노벨 화학상 수상에서도 볼 수 있듯이, 전기화학 기술은 이러한 지속 가능한 탄소 중립 사회의 구축에 있어 가장 중요한 코어 기술로 여겨진다. 그러나 전기화학 분야에서 교과서에도 등장하는 100년 가까운 오래된 난제 중 하나가 있는데, 이는 바로 `전기 이중층'이라 불리는 특별한 액체 구조를 밝혀내는 것이다.
전기 이중층은 전기를 가한 금속 전극 주변에 액체 속의 이온이 쌓이면서 생성되는 특이한 층 구조를 의미한다. 이 구조적 특성에 따라 에너지 변환/저장 성능이 결정되기 때문에, 전기 이중층의 구조를 밝히려는 노력이 오랫동안 이어져 왔다. 그러나 전기 이중층은 금속 전극과 액체 전해질 사이 계면에 파묻혀 생성되는 나노 크기 정도 공간 속, 물과 이온들의 복잡한 배열을 가지는 구조이기 때문에 이를 직접 관측하기란 거의 불가능에 가까웠으며 지난 수십 년간 난제의 풀이에 대한 뚜렷한 진보를 이룰 수 없었다.
김형준 교수 연구팀은 컴퓨터 속 디지털 세상에 전기 이중층을 구현해 이러한 실험적 한계를 돌파하고자 했다. 양자 역학 및 분자동역학에 기반한 높은 정확도의 컴퓨터 시뮬레이션 방법을 개발해 그동안 베일에 싸여있던 전기 이중층 구조를 규명하는 데 성공했다. 이러한 가상공간에서의 결과는 GIST 최창혁 교수 연구팀이 실제로 실험에서 측정한 전기 이중층의 물리적 특성을 정확하게 예측할 수 있었다. 더 나아가 이러한 지식의 진보를 바탕으로, `주인-손님 화학' (특정 `손님' 분자만을 선택적으로 받아들이는 `주인' 분자의 특이한 화학적 성질을 의미)이라는 특별한 화학 반응을 활용해 전기 이중층 구조를 실제로 제어할 수 있는 전략을 도출했으며, 이를 통해 탄소 저감에 중요한 전기화학적 이산화탄소의 연료화 반응 효율 제어에 성공했다.
연구진은 "이번 연구를 통해 전기화학 분야의 오래된 난제인 전기 이중층 구조를 규명하는 데 성공했을 뿐만 아니라, 궁극적으로 이를 제어해 친환경 전기 에너지의 변환 및 저장 성능을 획기적으로 높일 가능성에 첫 단추를 끼웠다ˮ며, 이어 "이번 연구를 시발점으로 연료전지, 배터리, 질소 고정화 등 인류의 생존에 꼭 필요한 신 전기화학 기술 개발을 위한 연구를 지속하겠다ˮ고 소감을 밝혔다.
우리 대학 화학과 신승재 박사과정 학생과 GIST 신소재공학부 김동현, 배근수 박사과정 학생이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)' 에 1월 10일 字 게재됐다. (논문명: On the importance of the electric double layer structure in aqueous electrocatalysis)
한편 이번 연구는 삼성전자 미래기술육성사업 및 한국연구재단(NRF)의 지원으로 진행됐다.
2022.01.27
조회수 12033
-
차세대 양자광원을 위한 반도체 양자점 대칭성 제어기술 개발
우리 대학 물리학과 조용훈 교수 연구팀이 LED에 널리 사용되는 질소화합물 반도체를 이용해 대칭성이 매우 높은 삼각형 형태의 양자점(퀀텀닷)을 형성하고 제어하는 데 성공, 광자들 사이에 얽힘을 발생시키는 차세대 양자광원 개발에 핵심적인 양자점 제어 기술을 갖추게 됐다고 13일 밝혔다.
‘얽힘(entanglement)’은 입자들이 쌍으로 상관관계를 가져 거리에 상관없이 얽혀 있는 쌍의 한쪽 특성을 측정하면 나머지 한쪽의 특성을 즉시 알게 되는 현상으로, 전문가들은 얽힘이라는 양자역학적인 현상을 활용하면 양자통신과 양자컴퓨팅과 같은 양자정보에 필요한 기술 개발과 함께 물리학적으로 새로운 주제들이 개척될 것으로 기대하고 있다.
반도체 양자점(Quantum Dot)은 원하는 순간에 광자를 한 개씩 방출하는 대표적인 고체 기반의 양자광 방출 소자로써 널리 연구되고 있다. 특히, 반도체 양자점의 대칭성을 제어해 양자점 내부의 미세 에너지 구조를 정교하게 조절할 수 있다면, 두 개의 광자를 양자얽힘 상태로 만드는 편광얽힘 광자쌍 방출이 원리적으로 가능하므로 이를 이용한 양자통신 및 양자컴퓨팅 분야에서 주목받고 있다.
격자구조를 갖는 반도체는 일반적으로 원자들을 한 층씩 천천히 쌓아 올리는 박막 증착기술을 통해 제작된다. 이때 발광층을 형성하기 위해 격자크기가 다른 층을 쌓게 돼 반도체 내부에 응력이 발생하게 되는데, 발광층이 갖는 응력을 에너지로 사용해 양자점이 무작위적으로 형성되므로 양자점의 크기의 균질성과 대칭성이 떨어지고 근본적으로 양자점의 위치와 모양을 제어할 수 없는 한계를 가진다. 따라서 얽힘 광자쌍 방출소자를 제작하기 위해서는 제작단계에서 위치와 대칭성을 제어할 수 있는 기술이 필수적이다.
한편, 청⦁녹색 LED에 사용되는 물질로 잘 알려진 질소화합물 반도체는 상온에서도 양자적인 특성을 유지할 수 있어 상온에서 안정적으로 구현할 수 있는 양자광원 소자의 후보 물질로도 주목받고 있다. 그러나, 이 물질계는 양자점의 대칭성이 조금만 무너져도 양자역학적 얽힘 특성을 쉽게 잃어버리게 되므로 높은 수준의 대칭성 제어 기술을 확보하지 않고는 실질적으로 구현이 쉽지 않은 한계가 있었다.
조용훈 교수 연구팀은 양자점의 위치와 대칭성을 높은 수준으로 제어하기 위해, 삼각형 형태의 나노 배열 패턴을 갖는 기판 위에 삼각 피라미드 형태를 갖는 질소화합물 반도체 나노 구조를 우선 제작했다. 이후 양자점을 성장하는 단계에서 나노 피라미드 꼭지점 부분의 기하학적 형태를 조절하면서, 열역학적 안정성에 의해 자체적으로 성장 방식이 조절되는 자기제한적 성장메커니즘을 적용했다.
그 결과 육각형 결정구조를 갖는 질소화합물 반도체에서 일반적으로 나타나는 육각 대칭성을 갖는 비균일한 양자점 대신, 삼각 대칭성을 갖는 고품위의 양자점을 최초로 구현함으로써 질소화합물 반도체 양자점의 대칭성을 정교하게 제어하는 데 성공했다.
연구팀은 제작된 나노 구조체의 발광을 분석하기 위해 공간분해능이 수 나노미터 수준으로 좋은 주사전자현미경을 이용해 발광을 측정, 삼각 피라미드의 꼭지점에 양자점이 안정적으로 형성되었음을 확인했고, 시간에 따른 광자 간 상관관계 측정을 통해 양자광이 방출되는 것을 실험적으로 관측했다.
또한, 성장된 양자점의 비대칭성 정도를 가늠할 수 있는 양자광의 편광도와 미세구조 분리 정도를 측정해 높은 대칭성을 갖는 삼각 양자점이 형성되었음을 실험적으로 확인했으며, 이를 이론적 계산 결과와 비교함으로써 측정 결과의 타당성을 확보했다.
이번 연구에서는 기존에 질화물 반도체 양자점의 비대칭성과 높은 편광도를 이용해 상온 단일광자 방출기 제작에 집중해 오던 방식에서 벗어나, 양자점의 대칭성을 정밀하게 조절해 편광얽힘 광자쌍 방출기로도 응용 가능함을 제안했다. 또한 범용 반도체 박막 증착장비와 미세 패턴 기술을 사용했기 때문에 산업적인 측면에서 확장성이 높을 것으로 기대된다.
연구를 주도한 조용훈 교수는 "반도체 양자점을 제작하는 과정에서 발생하는 양자점의 비대칭성을 효과적으로 제어하여 양자점 내부의 미세 에너지 구조를 정교하게 조절할 수 있음을 보여준 결과”라며, “상온에서도 동작이 가능한 질소화합물 반도체 양자점을 이용해 편광얽힘 광자쌍 방출소자와 같은 차세대 양자광원 개발에 활용될 수 있을 것”이라고 의미를 말했다.
우리 대학 물리학과 여환섭 박사가 제1 저자로 참여한 이번 연구 결과는 삼성미래기술육성사업 등의 지원을 받아 수행됐으며, 나노분야 국제 학술지인 `나노 레터스(Nano Letters)' 12월 9일 字에 보충 표지와 함께 정식 출간됐다. (논문명: Control of 3-fold symmetric shape of group III-nitride quantum dots: Suppression of fine structure splitting / 질소화합물 반도체 양자점의 삼각 대칭적 모양 제어: 미세구조 분리현상의 완화)
2020.12.14
조회수 47214
-
김도현 교수, 2차원 나노소재 분산용액 양산 기술 개발
〈 김도현 교수 연구팀 〉
우리 대학 생명화학공학과 김도현 교수 연구팀이 수력 공정의 전단력(剪斷力)과 혼합특성을 이용해 2차원 나노소재 분산용액을 대량생산할 수 있는 기술을 개발했다.
2차원 나노소재 분산용액은 전자, 에너지 저장 및 전환 소자 개발에 사용되는 용액기반 공정에 직접 적용 가능해 소자의 다양화와 성능 개선을 실현시키는 데 기여할 것으로 기대된다.
동국대학교 한영규 교수(제일원리 계산), 강원대학교 최봉길 교수(용액 특성 평가), 한국화학연구원 황성연 박사(물질 특성 평가) 연구팀과 공동으로 진행하고 정재민 박사가 1저자로 참여한 이번 연구 결과는 재료 분야 국제 학술지 ‘어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)’ 8월 12일자에 온라인 게재됐고, 논문의 우수성을 인정받아 표지논문에 선정됐다. (논문명 : Hydraulic Power Manufacturing for Highly Scalable and Stable 2D Nanosheet Dispersions and Their Film Electrode Application)
2차원 소재는 나노사이즈의 두께로 박리됐을 때 새롭고 우수한 물리, 화학적 특성이 나타나는 장점이 있어, 다양한 2차원 나노소재의 대량생산연구가 진행되고 있다.
그러나 높은 물리적 힘이나 화학적 반응성만을 이용하는 기존 박리기술들은 용량이 증가함에 따라 2차원 소재에 균일한 에너지를 주는 것이 힘들고 고비용과 많은 시간이 소요된다는 한계가 있다.
또한 나노두께로 박리된 2차원 나노시트들은 표면에너지의 증가로 다시 원래 두께로 돌아가려는 성질이 있어 유기용매나 계면활성제 등의 사용이 필수 조건이기 때문에 농도 제어나 응용성에 한계가 있다.
연구팀은 최근 2년간의 연구를 통해 반응기 내 최적화된 전단력과 혼합효율이 2차원 소재의 박리에 가장 효율적임을 규명했다. 연구팀은 증가된 반응기 용량에서도 이를 균일하게 유지할 수 있는 유동 모델과 응용 분야에 유용한 분산제를 선택해 수용액의 물리적 박리를 통한 고농도 2차원 나노소재의 고속 대량 생산기술을 개발했다.
연구팀은 테일러-쿠에트 흐름 기반의 유동 반응기를 제작했다. 테일러-쿠에트 흐름은 반응기 용량의 증가에도 높은 전단응력과 효과적인 혼합 효과를 가져 균일한 사이즈로 2차원 나노소재가 박리될 수 있다는 장점을 갖는다.
연구팀은 2차원 나노소재를 소량으로도 수용액상 안정화 및 분산시킬 수 있는 이온성 액체를 동국대 한영규 교수팀의 제일원리 계산을 통해 분산제로 선정하여 박리효율과 분산농도를 극대화했다.
연구팀은 개발한 분산용액의 성능을 확인하기 위해 막 여과 공정 (membrane filtration process)과 잉크젯 프린터의 잉크에 용액을 적용했다.
막 여과 공정은 매우 빠르고 간단하게 다양한 두께의 필름을 형성할 수 있는 방법으로 최근 각광받는 제한된 공간 내 높은 용량을 갖는 부피 대비 고용량 전극의 제조방법으로 응용되고 있다.
연구팀은 고속생산 된 그래핀 분산용액을 막 여과 공정에 적용해 유연하고 높은 전도성의 마이크로 전극 필름을 만들었고, 슈퍼캐패시터 소자의 전극으로 적용했을 때 안정적이고 고성능 용량을 보임을 확인했다.
연구팀은 고속생산 된 그래핀(graphene), 이황화 몰리브덴(MoS2), 붕화 질소(BN) 나노소재 분산용액을 잉크로 사용해 A4용지에 수 마이크로 두께의 나노소재 패턴을 만들었다. 그 중 그래핀 나노소재 패턴은 인쇄 후에도 추가적인 열처리 없이 기존의 전기적 성질을 잃지 않아 패턴 기반의 전기회로 역할을 하는 것을 확인했다.
김 교수는 “연구팀의 수용액상 나노소재 고속, 대량 생산기술은 다양한 종류의 2차원 소재들도 쉽게 적용 가능하다”며 “전자, 바이오센서, 에너지 저장/전환 시스템의 고효율 및 저비용 생산 최적화가 가능할 것이다”고 말했다.
이번 연구는 한국연구재단과 한국화학연구원의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 어드밴스드 펑셔널 머티리얼즈 표지
2018.10.11
조회수 10458
-
김상욱,이원종,이덕현 연구팀, 질소가 도핑된 전도성 탄소나노튜브의 고효율 제조공정 개발
- 세계적 학술지 나노 레터스지 3.13(금)일자 온라인판 발표
신소재공학과 김상욱(金尙郁, 37, 교신저자), 이원종(李元鐘, 52, 교신저자) 교수와 박사과정 이덕현(李德睍, 29, 제1저자) 연구팀이 분자조립(molecular self-assembly) 나노기술을 이용하여 질소가 도핑(doping)된 높은 전기전도성의 탄소나노튜브(Carbon Nanotube : CNT)를 탄소벽의 개수를 원하는 대로 조절하며 매우 빠른 속도로 합성할 수 있는 새로운 공정을 개발했다.
이 연구결과는 나노기술분야의 세계적 학술지인 나노 레터스(Nano Latters)지 최신호(3.13, 금) 온라인 판에 게재됐다.
탄소나노튜브는 전기적, 물리적 성질이 매우 우수하여 플렉서블 전자소자 등 다양한 미래기술에 적용될 것으로 예상된다. 그러나 탄소나노튜브를 이용한 나노소자를 실용화하기 위해서는 탄소나노튜브의 전기 전도도를 높이고, 물리적 특성을 결정짓는 탄소나노튜브의 직경과 탄소벽의 개수를 원하는 대로 조절할 수 있는 기술의 개발이 필요하다. 일반적으로 탄소나노튜브의 전기 전도도를 향상시키기 위해서는 실리콘 등의 반도체 물질에 이용되는 방법과 같이 붕소(B)나 질소(N) 등의 소량의 불순물을 첨가시키는 도핑 기술이 필요하다. 또한 탄소나노튜브의 직경 및 탄소벽의 개수는 합성에 이용되는 금속 촉매의 크기에 의해 결정되므로 형태가 균일한 나노튜브를 대량으로 성장시키기 위해서는 균일한 크기의 촉매입자를 기판위에 대면적으로 제조할 수 있는 나노패턴 공정이 필요하다.
金 교수 연구팀은 고분자의 분자조립 나노패턴기술을 통해 탄소나노튜브의 성장에 필요한 금속 촉매의 크기를 대면적에서 수 옹스트롱 수준으로 균일하게 조절하고 이를 이용하여 탄소나노튜브의 직경 및 탄소벽의 개수를 원하는 대로 조절하는데 성공하였다. 또한, 질소가 도핑되어 높은 전기 전도도를 보이며, 화학적인 기능화가 용이한 탄소나노튜브를 분당 50마이크로미터의 높은 속도로 성장시키는데 성공하였다.
金 교수 연구팀은 그동안 ‘고분자 자기조립 나노기술’에 관련된 일련의 연구 결과들을 네이처지와 사이언스지 그리고 어드밴스드 머티리얼스지 등에 발표해 왔다. 이번 연구 결과로 고분자소재뿐만 아니라 유/무기 혼성소재공정 분야에서도 우수한 역량을 보여주게 됐다. 이번 연구는 金 교수와 李 교수의 공동 지도하에 박사과정 이덕현 씨가 진행했다.
<용어설명>
- 탄소나노튜브(carbon nanotube): 나노미터 수준의 직경을 가지는 일차원적 구조의 탄소소재로 높은 전하이동도와 전하 축척도를 가지며, 전 세계적으로 초미세/고효율 소자의 부품으로 활용하기 위한 연구가 활발하게 진행되고 있다.
- 분자조립(molecular self-assembly): 분자들이 외부의 도움 없이 스스로 정렬되어 정형화된 구조를 형성하는 현상을 의미하며, 초미세 나노패턴구조를 형성시킬 수 있는 원리로 많은 관심을 모으고 있다.
2009.03.17
조회수 19934