본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%B8%A1%EC%A0%95%EA%B8%B0
최신순
조회순
반도체 다층 소자의 개별 층 두께를 옹스트롬 정확도로 비파괴 검사하는 기술 개발
우리 대학 기계공학과 김정원 교수 연구팀이 삼차원 낸드플래시 메모리(이하 3D-NAND)의 비파괴적인 검사를 위해 광학 측정법과 머신러닝을 사용한 다층 두께 측정기술을 개발했다. 이 기술은 200층 이상의 초고밀도 3D-NAND 소자 공정 과정에서 전수검사 방법으로 사용돼 공정의 효율을 극대화할 수 있을 것으로 기대된다. 3D-NAND 메모리는 수백층의 메모리 셀이 적층되어 있는 메모리 반도체로, 기존의 평면형 플래시 메모리와 비교하여 저장용량과 에너지 효율이 매우 우수하여 개인용 USB부터 서버 시스템까지 다양하게 사용되고 있다. 기존에는 수직으로 적층된 반도체 셀들의 두께를 측정하기 위하여 전자현미경을 사용하였다. 하지만 전자현미경을 사용한 방법은 샘플의 단면을 이미징하기 위하여 샘플을 절단해야 하고 비용도 많이 들기 때문에, 전수검사로서는 적합하지 않은 문제가 있었다. 연구팀은 반도체 다층 구조가 초고속 광학 시스템에 자주 사용되는 유전체 거울의 구조와 유사하다는 점에 착안하여, 유전체 거울의 분석에 활용되는 광학 스펙트럼 측정법을 반도체 다층 구조에도 적용했다. 연구팀은 엘립소미터(ellipsometer)와 스펙트로포토미터(spectrophotometer)를 이용한 반도체 다층 샘플의 스펙트럼 측정과 머신러닝 알고리즘을 활용하여 200층이 넘는 반도체 물질의 각 층 두께를 1.6 옹스트롬 (1Å = 1미터의 100억 분의 1)의 평균제곱근오차로 예측할 수 있는 방법을 개발했다. 이 기술은 삼차원 반도체 소자의 검수 공정, 적층 공정, 그리고 식각 공정의 정확도를 크게 향상시킬 수 있을 것으로 기대된다. 연구팀은 또한 시뮬레이션 스펙트럼 데이터를 생성해 개별 층의 두께 불량을 검출할 수 있는 머신러닝 학습법도 개발했다. 그 결과 반도체 물질 적층 시 목표로 설정한 두께보다 약 50Å만큼 얇게 제작된 샘플들을 정상 범주의 샘플들로부터 성공적으로 분리할 수 있었다. 연구팀이 개발한 불량샘플 검출법은 시뮬레이션 데이터를 활용하기 때문에 큰 비용이 들지 않으며, 공정의 초기에 발견될 수 있는 불량 샘플들을 효과적으로 검출할 수 있을 것으로 기대된다. 최근 글로벌 IT 기업들의 서버 시스템에 대한 수요가 늘어나고 높은 저장용량을 가진 스마트 기기들이 개발됨에 따라, 초고밀도, 초고효율을 갖는 3D-NAND 메모리가 반도체 시장에서 각광받고 있다. 이번 연구 결과는 다양한 삼차원 반도체 소자들의 비파괴적인 검수를 위해 활용될 수 있다. 김 교수는 “비파괴적인 광학 측정법과 머신러닝을 결합한 방법은 다양한 반도체 검수 공정에도 적용할 수 있다”고 밝히며, “다양한 반도체 소자들의 형상이나 공정 조건 모니터링에도 광학측정법과 머신러닝을 결합한 접근방식을 활용할 것”이라고 말했다. 기계공학과 곽현수 박사과정 학생이 제1저자로 참여하고 삼성전자 메모리 계측기술팀과의 산학협력연구로 수행된 이번 연구는 국제학술지 ‘라이트: 어드밴스드 매뉴팩처링(Light: Advanced Manufacturing)’ 창간호에 1월 12일 게재됐다. (논문명: Non-destructive thickness characterisation of 3D multilayer semiconductor devices using optical spectral measurements and machine learning) 이번 연구는 삼성전자 산학연구과제의 지원을 받아 수행됐다.
2021.01.13
조회수 64077
조영호 교수, 손목시계형 개인별 열적 쾌적감 측정기 개발
〈 조 영 호 교수, 윤 성 현 연구원 〉 우리 대학 바이오및뇌공학과 조영호 교수 연구팀이 손목의 땀을 측정해 인간의 개인별 열적 쾌적감을 측정할 수 있는 손목시계형 쾌적감 측정기를 개발했다. 심재경, 윤성현 연구원의 주도로 개발한 이번 연구 성과는 융합, 과학 분야의 네이처 자매지 ‘사이언티픽 리포트(Scientific Reports)’ 1월 19일자에 게재됐다. 인간이라면 누구나 더위를 느끼면 땀 발생률이 증가하며 추위를 느끼면 땀 발생률이 감소한다. 따라서 동일한 환경에서도 개인별 땀 발생률을 측정하면 개인마다 느끼는 더위와 추위 상태를 판별해 열적 쾌적감을 측정할 수 있다. 일반적인 냉, 난방기는 공기의 습도와 온도를 일정하게 유지하도록 동작하고 있기 때문에 동일한 온도와 습도여도 개인별 체질과 기후환경에 따라 개인마다 느끼는 추위와 더위 상태는 모두 다르다. 기존의 땀 발생률 측정기는 생리학 실험용으로 사용돼 펌프 및 냉각기 등의 큰 크기를 갖는 외부 장치가 필요하다. 피부 미용 용도는 크기가 작지만 장시간의 회복 시간을 필요로 하는 문제점이 있다. 연구팀은 작은 크기를 가지며 인간의 피부에 착용 가능하면서 환기구동기를 집적해 연속적으로 땀 발생률 측정이 가능한 손목시계형 쾌적감 측정기를 개발했다. 연구팀이 개발한 손목시계형 쾌적감 측정기는 인간이 느끼는 더위나 추위의 정도에 따라 땀 발생률이 변화하는 점에 착안해 땀 발생률을 측정해 주어진 환경 내에서 인간의 체감 더위와 추위를 파악할 수 있는 기술이다. 연구팀은 밀폐된 챔버가 피부에 부착됐을 때 습도가 증가하는 비율을 통해 땀 발생률을 측정하는 방식을 이용했다. 이 측정기는 피부에 챔버가 완전히 부착된 후 측정하기 때문에 외부 공기나 인간의 움직임에도 안정적인 땀 발생률 측정이 가능하다. 또한 소형 열공압 구동기를 집적해 챔버를 피부 위로 들어올려 자동 환기가 가능하다. 연구팀의 손목시계형 쾌적감 측정기는 주위의 온도나 습도에 관계없이 인간의 인지기능에 따라 변화하는 땀 발생률을 측정할 수 있어 개인별 맞춤형 냉난방을 실현할 수 있다. 연구팀의 측정기는 직경 35mm, 두께 25mm, 배터리 포함 무게 30g으로 자동 환기기능을 갖추고 있으며 기존 측정기 대비 무게는 절반 이하(47.6%) 47.6%, 소비전력은 12.8%에 불과하다. 6V 소형 손목시계용 배터리로 4시간 동작이 가능하며 사람의 걸음에 해당하는 공기흐름인 0~1.5m/s에서 안정적으로 작동하기 때문에 움직이는 상태에서 성능을 유지하여야 하는 포터블, 웨어러블 기기로 사용가능하다는 장점이 있다. 이를 이용해 연구팀은 실내 또는 자동차 내에서 기존의 냉, 난방기에 비해 훨씬 더 인간과 교감 기능이 뛰어난 새로운 개념의 인지형 냉, 난방기를 제작할 예정이다. 조영호 교수는 “기존 냉난방기는 주변의 온, 습도 기준으로 쾌적감을 판단해 개인적으로 느끼는 쾌적감과 무관하지만 우리가 개발한 쾌적감 측정기는 개인적 쾌적감을 판단할 수 있어 새 개념의 개인맞춤형 지능형 냉, 난방기로 활용 가능하다”며 “나아가 미래사회에서는 인간의 신체적 건강 뿐 아니라 정신적 건강과 감정 상태의 관리가 필요하기에 향후 인간과 기계의 감성 교감을 이룰 수 있을 것이다”고 말했다. 이번 연구는 과학기술정보통신부의 중견연구자지원사업을 통해 수행됐으며 국내특허로 등록을 완료했다. □ 그림 설명 그림1. 인간 열적 쾌적감 측정이 가능한 손목시계형 쾌적감 측정기 그림2. 손목시계형 쾌적감 측정기 그림3. 손목시계형 쾌적감 측정기의 동작 원리
2018.02.01
조회수 12840
유회준 교수, 무선으로 마취 심도 측정할 수 있는 기술 개발
〈 유 회 준 교수 〉 우리 대학 전기및전자공학과 유회준 교수 연구팀이 고려대학교 구로병원 최상식 교수, ㈜케이헬쓰웨어(대표 노태환)와의 공동 연구를 통해 무선으로 마취의 심도를 정확하게 파악할 수 있는 측정기를 개발했다. 하언수 박사과정 학생이 주도한 이번 연구는 9일 미국 샌프란시스코에서 열린 반도체 학술대회인 국제고체회로설계학회(ISSCC)에서 발표됐다. 마취의 심도가 적정하게 유지되는 것은 환자에게 매우 중요하다. 마취가 얕으면 수술 도중 깨어나 큰 고통을 겪기도 하고, 반대로 마취가 너무 깊게 되면 심장발작, 합병증, 사망에 이르기도 한다. 프로포폴도 호흡을 억압하기 때문에 마취 심도가 깊어지면 사망 사고를 유발하기도 한다. 이런 사고 방지를 위해 마취 심도를 정량적으로 측정하려는 시도가 국내외로 활발하게 진행 중이다. 이러한 노력으로 개발된 마취심도계측기로 인해 마취 사고 발생률은 크게 낮아졌다. 그러나 기존의 제품들은 모니터링 장치에 연결하기 위해 긴 전선이 사용돼 번거로움을 유발한다. 또한 마취 약물 종류에 따라 심도를 측정할 수 없다는 한계가 있다. 연구팀이 개발한 마취 심도 모니터링 측정기는 마취 중인 환자의 이마에 접착된 패치를 통해 뇌파 신호 및 혈중 헤모글로빈 농도를 추출한다. 이를 정확히 제어하는 반도체 칩이 패치에 집적돼 무선으로 뇌파와 근적외선 분광 신호를 동시에 측정할 수 있다. 측정된 다중 신호들은 디지털 신호로 바뀌어 전달된 후 딥 러닝(Deep Learning) 기술을 이용해 환자의 마취 심도를 정확히 판단한다. 수술 시간이 길어지면 전극의 젤이 마르게 돼 뇌파 측정신호가 나빠지지만 연구팀은 이런 상황에서도 정확한 신호를 측정할 수 있는 회로 기법을 도입했다. 또한 실제 수술실에서 사용할 수 있는 초소형 근적외선 분광 센서가 붙어 있어 성별, 나이, 인종에 상관없이 유효한 신호 측정이 가능하다. 나아가 다중 신호를 이용하기 때문에 수술 중 전기 잡음을 유발하는 전기 소작기나 삽관 사용 중에도 신호 왜곡 없이 마취심도의 측정이 가능하다. 연구팀의 측정기는 기존 기기로는 측정이 불가능했던 케타민 등의 약물도 마취 심도를 측정할 수 있어 의료 분야에서 응용 가능할 것으로 기대된다. 유 교수는 “그동안 마취 심도 센서는 비싼 가격의 특정 외국회사 제품이 독점하는 형태였다”며 “환자들의 부담을 줄이면서 안전한 마취를 제공할 수 있어 새 제품을 개발할 수 있는 좋은 기회가 될 것이다”고 말했다. □ 그림 설명 그림1. 센서의 구성을 나타낸 모식도 그림2. 마취 심도의 측정 비교
2017.02.10
조회수 13635
고감도 나노광학측정기술 개발
- 머리카락 단면적의 70만배 보다 작은 나노유체기술과 나노광학기술을 융합한 바이오분석기술.- 신약개발 및 신경질환 조기진단기술로 활용 기대. 우리학교 바이오및뇌공학과 정기훈 교수 연구팀이 소분자 생화합물 (small molecules) 검출을 위한 획기적인 고감도 나노광학측정기술을 개발했다. 소분자 생화합물은 분자량이 작은 생체내 분자들로 다양한 세포의 세포막을 드나들며 세포간의 신호전달 등에 큰 역할을 담당한다. 최근에는 제약업계에서도 소분자 생화합물을 이용한 신약 개발 관련 연구 및 개발에 큰 관심을 기울이고 있다. 그러나 이러한 소분자 생화합물은 대부분 특정 항원-항체 화학 결합반응을 유도하기 힘들어 기존에 많이 사용되는 형광이나 전기화학적인 방법으로 극소량을 분석하는데 어려움이 많았다. 정 교수 연구팀은 사람의 머리카락 단면적의 70만배 보다 작은 나노유체관내 유동특성을 이용해 나노몰(nM) 수준의 농도를 갖는 극미량의 소분자 생화합물의 농도를 국소적으로 증가시켰다. 이후 나노플라즈모닉 광학기술과 접목해 측정하는 빛의 세기를 1만배 이상 향상시켜, 별도의 생화학처리를 사용하지 않은 도파민(Dopamine)과 가바(GABA)와 같은 신경전달물질을 1초 이내에 구별하는 데 성공했다. 이 결과는 현존 세계 최고수준의 검출한계를 수백배 이상 향상시킨 기술로 평가받고 있다. 이번 연구결과는 앞으로 소분자 생화합물을 이용한 다양한 글로벌 신약개발은 물론, 알츠하이머병과 같은 퇴행성 신경질환의 조기진단 및 뇌기능 진단기술에 크게 기여할 수 있을 것이라 기대된다. 한편, 교육과학기술부가 지원하는 한국연구재단의 도약연구자지원사업과 한국생명공학연구원이 지원하는 오픈이노베이션사업의 일환으로 수행된 이번 연구는 오영재 박사과정 학생 주도하에 진행됐으며, 독일에서 발간되는 나노분야 국제저명학술지인 ‘스몰(Small)’지의 1월 17일자 표지논문으로 게재됐다.
2011.01.26
조회수 17840
김승우교수, 정밀거리측정기술 개발
- 네이처 포토닉스誌 발표, “미래우주핵심기술 개발을 통한 우주선진국 도약 가능성 열어”- 수 백 km의 거리에서 1nm*의 차이까지 정확히 측정할 수 있는 정밀거리 측정기술이 국내 연구진에 의해 개발되었다. * 1nm(나노미터) : 10억분의 1m 우리학교 기계공학과 김승우 교수가 주도한 이번 연구는 교육과학기술부(장관 안병만)와 한국연구재단(이사장 박찬모)이 추진하는 중견연구자지원사업 (도약연구)과 우주원천기초기술개발사업의 지원을 받아 수행되었고, 연구결과는 광학 분야 최고 권위지인 ‘네이처 포토닉스(Nature photonics)’ 온라인 속보(8월 8일자)에 게재되었다. 김 교수팀은 지금까지 장거리 측정의 한계점이던 1mm 분해능*을 1nm 분해능으로 측정할 수 있는 획기적인 정밀거리 측정기술 개발에 성공하였다. * 분해능(分解能, resolving) : 측정기가 검출할 수 있는 가장 작은 단위의 물리량을 의미하며, 1mm 분해능은 수백 km의 거리에서 1mm의 차이를 측정할 수 있음. 특히 이 기술은 일반적으로 장거리를 측정할 때 나타나는 모호성(ambiguity)도 극복하여, 이론적으로 100만km를 모호성 없이 측정할 수 있다. 김 교수팀은 실제 700m의 거리에서 150nm의 분해능 구현에 성공하였고, 우주와 같은 진공상태에서는 1nm의 분해능 구현도 가능하다는 사실을 실험을 통해 검증하였다. 이번 연구결과로 향후 지구와 유사한 행성을 찾기 위한 편대위성군 운용* 및 위성 또는 행성 간의 거리측정을 통한 상대성 이론 검증과 같은 미래우주기술개발에 한 발 다가서게 되었다. * 편대위성군운용(formation flying of multiple satellites) : 여러 대의 소형위성을 동시에 쏘아 올려 위성간의 거리를 측정함으로써, 지구와 유사한 행성을 찾거나 상대성이론 검증에 활용 위성 또는 행성 간의 정밀거리측정은 지구와 유사한 행성을 찾거나 상대성 이론을 검증하는 핵심기술로, 우주 선진국에서는 이 기술을 개발‧보유하기 위해 경쟁적으로 연구하고 있다. 김승우 교수는 “장거리를 1nm 분해능으로 측정할 수 있는 기술개발로, 우리나라도 편대위성군운용과 같은 미래우주핵심기술인 정밀거리측정 기술을 보유하게 되어, 명실 공히 우주 선진국으로 도약할 수 있는 기반을 마련하게 되었다”라고 연구의의를 밝혔다.
2010.08.17
조회수 16514
전기화학식 이산화탄소 센서 개발
신소재공학과 박종욱(朴鍾郁, 49) 교수팀은 일본이나 독일제품보다 월등히 우수한 특성을 지닌 전기화학식 이산화탄소 센서 개발에 성공했다. 2001년부터 농림부 기술개발과제의 일환으로 시작된 센서 연구는 자체 개발한 전극 보조물질을 채용한 새로운 구조로, 수 ppm에서 수십% 범위의 이산화탄소 농도를 정확히 측정할 수 있다. 초기 동작시간도 10분 이내로 빠르고 보정 없이 2년 이상 사용할 수 있어, 일본(Figaro사)과 독일(Zirox사) 제품의 초기 동작시간이 각각 7일과 30분인데 비하면 월등히 우수하다. 공기 중 이산화탄소 양을 측정하는 방법은 광학적 방법과 전기화학적 방법이 있다. 현재 가장 많이 사용 중인 광학적 방법은 이산화탄소가 특정 파장(4.26 um)의 적외선(NDIR) 만을 흡수하는 성질을 이용, 적외선의 흡수정도를 측정함으로서 이산화탄소의 양을 계산한다. 정교한 광학계를 사용해야 하기 때문에 가격이 비싸고 열악한 환경에서는 광학계가 쉽게 더러워져 사용이 어렵다는 단점이 있다. 산화물 전해질을 사용하는 전기화학식 센서는 값이 싸고 더러운 환경에서도 안정적으로 작동하지만, 광학식에 비해 초기 동작시간이 길고 자주 보정해 주어야 하는 단점 때문에 사용이 제한적이었다. 이번에 개발된 朴 교수팀의 전기화학식 센서는 이러한 단점들을 극복하여 이산화탄소 센서 기술의 새로운 표준을 제시, 제품의 흐름을 바꿀 수 있는 혁신적 연구 성과로 평가할 수 있다. 한편, 이산화탄소는 물 햇빛과 함께 식물 발육을 좌우하는 3대 요소 중 하나. 선진국에서는 이산화탄소 양을 조절하여 농식물의 생산성을 높이고 보관기간을 늘리는 기술이 다양하게 개발되고 있다. 특히 심야의 악조건에서도 신뢰성 있게 작동되는 저렴한 이산화탄소 측정기의 필요성이 점점 증대되고 있다. 우리나라에서는 최근 "빌딩 증후군(sick building syndrome)" 방지를 위해 건물 내 이산화탄소 양을 1000ppm 이하로 낮추도록 관련 법령을 개정했다. 도심의 빌딩에서도 이산화탄소 양을 정확히 측정하여 과도한 환기를 줄이고 에너지 효율을 높이는 기술이 절실해지게 된 것이다. 박종욱 교수는 화학 센서 분야의 세계적인 권위자로, 2000년에는 산화물 반도체식 센서를 이용한 음주 측정기를 개발, 실험실 벤처회사 (주)CAOS를 설립했고, 음주측정기는 현재 세계 최대의 시장점유율을 갖는 명품이 됐다. 또한 작년에는 2편의 해외 저명 학술지(J. Materials Science)에 화학센서 특별기획을 편집하기도 했다.
2004.09.22
조회수 25366
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1