본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%ED%83%84%EC%86%8C%EC%84%AC%EC%9C%A0
최신순
조회순
에너지 저장, 하중지지 동시 가능한 구조배터리 개발
친환경 에너지 기반 자동차, 모빌리티, 항공우주 산업군 등에 활용되는 구조배터리는 높은 에너지 밀도를 통한 에너지 저장과 높은 하중 지지의 두 기능을 동시에 충족되어야 한다. 기존 구조배터리 기술은 두 가지 기능이 상충하여 동시에 향상하기 어려웠지만 우리 연구진이 이를 해결하기 위한 기반 기술 개발에 성공했다. 우리 대학 기계공학과 김성수 교수 연구팀이 하중 지지가 가능하고 화재 위험이 없고 얇고 균일한 고밀도 다기능 탄소섬유 복합재료 구조 배터리*를 개발했다고 19일 밝혔다. *다기능 복합재료 구조 배터리(Multifunctional structural batteries): 복합재료를 구성하는 각 소재가 하중 지지 구조체 역할과 에너지 저장 역할을 동시에 수행할 수 있다는 점을 의미 초기의 구조 배터리는 상용 리튬이온전지를 적층형 복합재료에 삽입한 형태로, 기계적-전기화학적 성능 통합 정도가 낮으므로, 이는 소재 가공, 조립 및 설계 최적화에 어려움이 있어 상용화되기 어려운 실정이었다. 이러한 문제를 해결하기 위해 김성수 교수 연구팀은 ‘에너지 저장이 가능한 복합재료’의 관점에서 기존 복합재료 설계에서 중요한 계면 및 경화 특성을 중심으로 구조전지의 다기능성을 최대화할 수 있는 고밀도 다기능 탄소섬유 복합재료 구조 배터리를 개발하기 위한 체계적인 방식을 연구했다. 연구팀은 이번 연구를 통해 기계적 물성이 높은 에폭시 (Epoxy) 수지와 이온성 액체(ionic liquid)/탄산염 전해질(carbonate electrolyte) 기반 고체 폴리머 전해질이 단단해지는 경화 메커니즘을 분석하고 이를 통해 적절한 온도와 압력 조건을 제어하여 경화 공정을 최적화하였다. 또한 개발된 구조 배터리는 진공 분위기에서 복합재료를 압축 성형하여 구조배터리 내에서 전극과 집전체 역할을 담당하는 탄소섬유의 부피 비율을 기존 탄소섬유를 활용한 배터리 대비 약 160% 이상 향상시켰다. 이를 통해 전극과 전해질과의 접촉면이 획기적으로 증가함으로써 전기화학적 성능을 개선된 고밀도 구조 배터리를 제작할 수 있었다. 뿐만 아니라 경화 공정 중 구조배터리 내부에 발생할 수 있는 기포를 효과적으로 제어하여 구조 배터리의 기계적 물성을 동시에 향상시킬 수 있었다. 연구 책임자인 김성수 교수는 “고강성 초박형 구조 배터리의 핵심 소재인 고체 폴리머 전해질을 소재 및 구조적 관점에서 설계하는 프레임워크를 제시하였고, 이러한 소재 기반의 구조배터리를 자동차, 드론, 항공기, 로봇 등의 구조체 내부에 삽입하여 한번 충전으로 작동시간을 획기적으로 늘릴 수 있는 차세대 다기능 에너지 저장 어플리케이션 개발에 일조하는 기반 기술이 될 것”이라고 연구의 의미를 설명했다. 기계공학과 모하마드 라자(Mohamad Raja) 석사가 제1 저자로 참여하고 국제 저명 학술지인 ‘ACS Applied Materials & Interfaces’에 9월 10일 자로 게재됐다. 이번 연구는 해당 논문의 우수성을 인정받아 국제 학술지의 표지 논문(Supplementary cover)으로 선정됐다. (논문명 : Thin, Uniform, and Highly Packed Multifunctional Structural Carbon Fiber Composite Battery Lamina Informed by Solid Polymer Electrolyte Cure Kinetics. https://doi.org/10.1021/acsami.4c08698). 한편, 이번 연구는 한국연구재단 중견연구사업 및 국가반도체연구실개발사업의 지원으로 수행되었다.
2024.11.19
조회수 617
김용훈 교수, 차세대 탄소섬유 개발 위한 이론 규명
우리 대학 EEWS대학원 김용훈 교수 연구팀이 고품질 탄소섬유 개발에 필요한 고분자 전구체와 저차원 탄소 나노소재 간 계면의 원자구조 및 전자구조적 특성을 규명했다. 이번 연구로 차세대 탄소섬유 개발의 이론적 청사진을 제시할 것으로 기대된다. 이주호 박사과정이 1저자로 참여한 이번 연구 성과는 국제 과학 학술지인 ‘어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)’ 4월 11일자에 속표지(Inside Back Cover) 논문으로 게재됐다. 탄소섬유는 매우 가벼우면서도 뛰어난 기계적, 열적 특성을 갖고 있기 때문에 초경량 자전거, 골프 클럽 등 스포츠 용품부터 자동차, 항공우주, 원자력 등 다양한 첨단 기술 분야에 활발히 활용되고 있는 신소재이다. 탄소섬유는 전구체(precursor) 고분자를 방사, 안정화 및 탄화 등의 작업을 통해 얻어지며 현재 폴리아크릴로나이트릴(polyacrylonitrile, PAN)이 탄소섬유의 주 전구체로 사용되고 있다. 고품질 차세대 탄소섬유를 얻는 방법으로 탄소나노튜브(carbon nanotube, CNT)를 탄소섬유 전구체 고분자 매트릭스에 분산시켜 고분자의 결정성을 높이는 연구가 대표적이다. 탄소나노튜브와 전구체 고분자의 조합이 탄소섬유의 물성을 향상시킬 수 있다는 것도 실험을 통해 확인된 바 있다. 그러나 20년 이상의 연구에도 탄소나노튜브와 전구체 고분자 간 상호작용에 대한 이해는 실험적 접근법의 어려움으로 인해 부족한 상황이다. 따라서 탄소나노튜브를 활용한 고품질 탄소섬유 제작 기술은 한계가 있었다. 김 교수 연구팀은 슈퍼컴퓨터를 활용해 양자역학적 제1원리 기반 멀티스케일 시뮬레이션을 수행해 대표적인 탄소섬유 전구체인 폴리아크릴로나이트릴 고분자가 탄소나노튜브 계면에서 배열되는 과정을 원자 수준에서 체계적으로 재현했다. 또한 탄소나노튜브-폴리아크릴로나이트릴 고분자 계면이 특히 좋은 특성을 보일 수 있는 이유를 연구했다. 폴리아크릴로나이트릴 고분자의 단위체가 누워있는 형태의 특정 원자구조를 선호하고, 이 때 양전하와 음전하가 균형 있게 이동하는 계면 특유의 특성이 발현되므로 이 계면 구조를 최대화 시키는 것이 최적의 대규모 폴리아크릴로나이트릴 고분자 정렬을 유도할 수 있음을 밝혔다. 또한 폴리아크릴로나이트릴 고분자의 정렬도가 그래핀 나노리본과의 계면에서 극대화되는 것을 확인해 최근 각광을 받고 있는 그래핀을 이용해 탄소 섬유의 품질을 더욱 향상시킬 수 있다는 가능성도 제시했다. “김 교수는 양자역학에 기반한 전산모사가 첨단 소재·소자의 개발을 위한 기본원리를 제공해 줄 수 있음을 보여준 연구의 예다”며 “이러한 전산모사 연구의 중요성은 컴퓨터 성능 및 전산모사 이론체계의 비약적인 발전과 더불어 더욱 커질 것이다”라고 말했다. 이번 연구는 미래창조과학부 중견연구자지원사업, 나노소재원천기술개발사업, 기초연구실지원사업, 글로벌프론티어사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 어드밴스드 펑셔널 머티리얼즈 표지 그림2. 연구 개요 모식도
2018.04.26
조회수 20209
KAIST-서울대 공동 연구팀, 하이브리드 과학로켓 발사
〈 권 세 진 교수 〉 우리 대학 항공우주공학과 권세진 교수 연구팀이 서울대학교 로켓 동아리 하나로(지도교수 윤영빈)팀과 공동으로 개발한 소형 하이브리드 과학로켓 SNUKA-Ⅱ를 발사한다. 발사 시험은 28일(금) 열리는 제22차 고흥군 우주항공산업발전협의회 행사의 일환으로 오후 5시 20분 발사돼 오후 6시까지 약 40분간 진행된다. 이 과학 로켓은 총 길이 3.5미터, 직경 0.2미터, 무게 58킬로그램으로 과산화수소를 주 추진체로 사용하는 친환경 과학 로켓이다. 발사 시 엔진이 10초간 작동 후 20여 초 간 관성 비행을 해 최대 고도 3킬로미터까지 도달한 뒤 낙하산을 이용해 지상에 착지한다. 로켓의 비행 데이터는 모두 지상국으로 전송되고 로켓 내부의 데이터 저장 장치에 저장된다. 연구팀은 이번 발사를 위해 상세 설계를 끝낸 뒤 추진기관 지상연소시험, 낙하산 사출장치 시험, 기체구조해석 등을 수행했다. 과학 로켓은 저고도에서 준궤도 수준 고도 범위에서 운용된다. 개발 과정을 통해 로켓 추진기관 기술, 대기권 재진입 기술 등 우주발사체 관련 기반 기술을 확보할 수 있다. 또한 무중력 실험 공간 확보, 대기 측정, 천체 촬영 등의 임무를 수행하며 과학 기술 발전에 기여할 수 있다. 이로 인해 미국이나 유럽 등 우주기술 선진국도 과학 로켓 개발 프로그램에 지속적으로 투자하고 있다. 권 교수 연구팀의 과학 로켓은 최대 2천 500 뉴턴(N)의 추력을 낼 수 있는 하이브리드 로켓 엔진이 장착됐다. 하이브리드 로켓 엔진은 구조가 간단해 취급이 편하면서도 성능이 뛰어나 과학 로켓의 추진기관으로 적합하다. 이 엔진은 ㈜스페이스솔루션에서 개발한 고성능 추진체 밸브가 장착돼 로켓 발사 후에도 지속적 전력 공급 없이 엔진 작동이 가능하다. 촉매반응기를 포함한 모든 부품은 순수 국내 기술로 제작됐고 경량화를 위해 추진제 탱크를 복합 재료로 제작했다. 탄소섬유 튜브를 동체로 활용해 무게를 획기적으로 줄이면서 높은 기계적 성능을 확보하는 설계 기법을 적용했다. 권 교수는 “이번 개발 경험을 토대로 저비용 캔위성(CanSAT)을 우주 궤도에 진입시킬 수 있는 로켓을 구상 중이다”며 “성공적으로 개발한다면 우리나라 위성 및 발사체 기술이 획기적으로 발전할 것이다”고 말했다. □ 그림 설명 그림1. SNUKA-Ⅱ 그림2. 로켓 엔진 지상시험
2017.07.27
조회수 11109
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1