본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%ED%8C%94%EB%9D%BC%EB%93%90
최신순
조회순
KAIST-현대자동차, 0.6초 이내 초고속 수소 누출 감지
최근 친환경 수소 자동차 보급이 증가함에 따라 안전과 직결된 필수 요소인 수소 센서의 중요성이 더욱 높아지고 있다. 특히 빠른 수소 누출 감지를 위한 핵심 성능 지표인 센서 감지 속도의 경우 1초 이내로 감지하는 기술이 도전적인 과제로 남아있다. 이에 세계 최초 미국 에너지청(U.S. Department of Energy) 기준 성능을 충족하는 수소 센서가 개발되어 화제다. 우리 대학 조민승 박사(전기및전자공학부 윤준보 교수팀)가 현대자동차 기초소재연구센터 전자기에너지소재 연구팀, 부산대학교 서민호 교수와의 협업을 통해 모든 성능 지표가 세계적인 공인 기준을 충족하면서 감지 속도 0.6초 이내의 기존보다 빠른 수소 센서를 세계 최초로 개발했다고 10일 밝혔다. 기존 상용화된 수소 센서보다 빠르고 안정적인 수소 감지 기술 확보를 위해 우리 대학은 현대자동차와 함께 2021년부터 차세대 수소 센서 개발에 착수했고, 2년여의 개발 끝에 성공하였다. 기존의 수소 센서 연구들은 수소 센서에 많이 활용되는 팔라듐(palladium, Pd) 소재에 촉매 처리를 하거나 합금을 만드는 등 주로 감지 소재에만 집중하여 연구됐다. 이러한 연구들은 특정 성능 지표에선 매우 뛰어난 성능을 보이지만 모든 성능 지표를 충족하지는 못했으며, 일괄 공정이 어려워 상용화에 한계가 있었다. 이를 극복하기 위해 해당 연구진은 순수한 팔라듐 물질 기반으로 독자적인 마이크로/나노 구조 설계 및 공정 기술을 접목해 모든 성능 지표를 만족하는 센서를 개발했다. 또한 향후 양산을 고려해 합성 소재가 아닌 물질적 제약이 적은 순수 금속 소재들을 활용했으며, 반도체 일괄 공정 기반으로 대량 생산이 가능한 차세대 수소 센서를 개발했다. 개발한 소자는 히터-절연층-감지물질이 수직으로 적층 되어 있는 구조의 기존 가스 센서가 가지는 불균일한 온도 분포를 극복하기 위해 히터와 감지물질이 동일 평면상에 나란히 집적되어 있는 차별적인 공면(Coplanar) 구조가 적용됐다. 감지 물질인 팔라듐 나노 소재는 완전히 공중 부유 된 구조로 하단부까지 공기 중에 노출되어 있으며, 가스와의 반응 면적을 극대화해 빠른 반응 속도를 확보했다. 또한 팔라듐 감지 물질은 전 영역이 균일한 온도로 동작하며, 이를 통해 온도에 민감한 감지 성능들을 정확히 조절해 빠른 동작 속도, 폭넓은 감지 농도, 온도/습도 둔감성을 연구팀은 확보했다. 연구팀은 제작된 소자를 블루투스 모듈과 패키징 하여 무선으로 1초 이내로 수소 누출을 감지하는 통합 모듈을 제작한 후 성능을 검증했으며, 이는 기존 고성능 광학식 수소 센서와 달리 휴대성이 높아 수소 에너지가 보급되는 다양한 곳에 적용될 수 있을 것으로 기대된다. 연구를 주도한 조민승 박사는 “이번 연구 결과는 기존 수소 센서 성능 한계를 뛰어넘어 고속 동작할 뿐만 아니라 실사용에 필요한 신뢰성, 안정성까지 확보했기에 중요한 가치를 가지며, 자동차, 수소 충전소, 가정 등 다양한 곳에 활용될 수 있을 것”이라고 말했다. 또한 “이번 수소 센서 기술의 상용화를 통해 안전한 친환경 수소 에너지 세상을 앞당기는 데 기여하고 싶다” 라며 앞으로의 계획을 밝혔다. 연구팀은 개발된 소자를 현재 현대자동차와 함께 소자를 웨이퍼 스케일로 제작한 후 차량용 모듈에 탑재해 감지 및 내구 성능을 추가로 검증하는 중이다. 조민승 박사가 제1 저자로 수행한 이번 연구는 미국, 한국 등에 3건의 특허가 출원돼 있으며, 저명 국제 학술지 `ACS 나노(Nano)'에 출판됐다. (논문명: Ultrafast (∼0.6 s), Robust, and Highly Linear Hydrogen Detection up to 10% Using Fully Suspended Pure Pd Nanowire). (Impact Factor: 18.087). (https://pubs.acs.org/doi/10.1021/acsnano.3c06806?fig=fig1&ref=pdf) 한편 이번 연구는 한국연구재단의 나노및소재기술개발사업 지원과 현대자동차 기초소재연구센터의 지원 및 공동 개발을 통해 수행됐다.
2024.01.10
조회수 4516
팔라듐 나노와이어를 이용한 고민감도 고신뢰성 무선 수소 가스센서 개발
우리 대학 전기및전자공학부 윤준보 교수와 부산대학교 의생명융합공학부 서민호 조교수(KAIST 박사 졸업) 연구팀이 넓은 범위의 수소가스 농도를 무선으로 검출하는 고 민감도 센서 기술을 개발했다고 28일 밝혔다. (제1 저자: KAIST 조민승 박사과정) 연구팀은 팔라듐 금속을 3차원 나노구조로 설계함으로써 나타날 수 있는 `팔라듐 상전이(phase-transition)* 억제 효과'를 통해 0~4% 농도의 수소가스를 높은 선형성으로 감지하는 무선 가스 센서 기술을 개발했다. *상전이(phase transition): 화학, 열역학 및 기타 관련 분야에서 일반적으로 물질의 기본 상태(결정성, 고체, 액체, 기체) 사이의 변화를 뜻한다. 우리 대학 전기및전자공학부 조민승 박사과정이 제1 저자로 참여한 이번 연구 결과는 국제 학술지 ACS 나노(ACS nano) 온라인판에 지난달 27일 게재됐으며, 그 우수성을 인정받아 추가 표지 논문으로 선정됐다. (논문명: Wireless and Linear Hydrogen Detection up to 4% with High Sensitivity through Phase-Transition-Inhibited Pd Nanowires) (https://pubs.acs.org/doi/10.1021/acsnano.2c01783) 수소가스는 에너지 효율성이 높고 연소 시 물을 생성하는 친환경적인 이점으로 차세대 에너지원으로 주목받고 있다. 하지만, 무색, 무취의 수소가스는 4% 이상의 농도에서 낮은 발화에너지로 폭발하는 위험성이 크기 때문에 주의 깊은 사용과 관리가 필요하다. 다양한 방식의 수소가스 감지 기술 중, 팔라듐(palladium, Pd) 금속 소재 기반의 기술은 수소가 팔라듐 내부 격자 사이에 해리되어 팔라듐 하이드라이드(PdHx)를 형성하면서 저항이 바뀌는 간단한 원리로 동작할 뿐만 아니라, 상온에서도 수소가스를 선택적으로 감지할 수 있고, 반응 시 부산물이 없어 습도 안정성도 매우 우수하다는 장점이 있다. 하지만, 팔라듐은 상온에서 2% 이상의 수소가스에 노출되게 되면, 상 변이가 일어나면서 1) 센서로서의 농도 범위가 제한*되고, 2) 반응 속도가 지연*되며, 3) 내구성이 저해*되는 등 다양한 문제를 발생시켜, 최소 4%까지의 농도를 감지해야 하는 수소가스의 기초 요구 조건을 만족시키지 못하는 실정이다. *1) 농도 범위 제한: 상 변이와 함께 팔라듐 내부에 수소가 포화되어 저항 변화가 더 이상 일어나지 않고 이로 인해 수소가스 감지 범위 특성이 저해되는 현상 *2) 반응 속도 지연: 상 변이에 의한 시간 소요로 느린 저항 변화를 보임 *3) 내구성 저해: PdHx는 상 변이하면서 10%가 넘는 부피 팽창이 발생하는데, 이때, 기계적인 스트레스로 인해 Pd의 파단이 일어남 이에, 연구팀은 나노미터 두께로 얇고 납작한 3차원 나노구조를 팔라듐에 도입함으로써 4%까지의 수소가스를 정확하게 측정할 수 있는 무선 팔라듐 수소가스 감지 기술을 세계 최초로 개발했다. 팔라듐이 얇고 납작한 3차원 나노구조로 기판에 형성되게 되면, 팔라듐이 수소가스에 노출돼도 쉽게 부피 팽창을 일으킬 수 없게 되고 내부에 높은 응력이 발생하게 된다. 이러한 응력은 팔라듐의 상전이 활성화 에너지를 높이게 되는데, 연구진은 이 현상을 이용해 4% 이상의 높은 수소가스 농도에도 상전이 없이 안정적으로 수소가스를 감지하는 팔라듐 나노구조를 개발할 수 있었다. 실제 연구진은, 15 나노미터 (nm) 두께와 160 나노미터 (nm) 폭으로 팔라듐 나노구조를 설계·제작했고, 이를 기반으로 제작된 센서 소자는 0.1~4%의 수소가스를 98.9%의 선형성(linearity)으로 감지하는 성능을 성공적으로 보였다. 특히, 연구팀은 개발한 소자에 BLE(Bluetooth low energy) 기술과 3D 프린팅 기술, 안드로이드 앱 개발을 통해 무선으로 수소가스를 감지하는 센서 시스템 기술도 시연했는데, 이 기술은 센서와 20 미터(m) 떨어진 상황에서도 스마트폰이나 PC로 수소가스 누출을 안정적으로 감지할 수 있게 한다. 연구팀 관계자는 "이번 결과는 2% 이상 고농도에서 측정이 어려웠던 기존 팔라듐 기반 수소가스 센서의 문제점을 해결할 수 있는 새로운 기술을 개발했다는 점에서 중요한 의미가 있다ˮ고 말했다. 특히, "이번 센서 기술이 향후 수소가스를 이용한 청정에너지 시대에 안전관리를 위해서 활발히 활용될 수 있을 것ˮ이라고 기대했다. 한편 이번 연구는 2022년도 과학기술정보통신부의 재원으로 한국연구재단의 나노및소재기술개발사업, 선도연구센터지원사업과 기본연구지원사업의 지원을 받아 수행됐다.
2022.06.28
조회수 7332
자연계 효소 원리를 이용한 신개념 산업용 촉매 개발
우리 대학 생명화학공학과 최민기 교수 연구팀이 자연계 효소와 같이 원하는 반응물만 선택적으로 전환할 수 있는 신개념의 고성능 산업 촉매를 개발했다고 9일 밝혔다. 촉매는 기초 유분 생산에서부터 다양한 화학 제품 제조까지 대부분의 석유화학 공정에서 사용되는 물질로 공정의 경제성과 친환경성을 높이기 위해서 원하는 생성물만 만들어지는 높은 선택성을 갖는 촉매 개발이 필수적이다. 지구상에 존재하는 촉매 중 가장 높은 선택성을 보이는 촉매는 효소다. 효소는 천연 고분자인 단백질이 반응이 일어나는 활성점을 3차원적으로 둘러싸고 있는 구조를 갖는데, 단백질의 구조 및 활성점과의 상호작용에 따라 특정 반응물만 선택적으로 접근할 수 있도록 조절해 높은 선택성을 갖는다. 연구팀은 이번 연구에서 효소의 단백질과 유사한 고분자를 이용해 금속 활성점과의 상호작용을 조절한 새로운 개념의 촉매 설계 방법을 제시했다. 고분자는 일정 단위체의 반복적인 화학 결합을 통해 만들어지는 높은 분자량의 거대분자이며 합성에 사용한 단위체에 따라 고분자의 작용기를 쉽게 조절할 수 있다. 연구팀은 금속과 상호작용을 할 수 있는 작용기를 포함한 고분자를 합성하고 팔라듐 금속 입자를 포함한 촉매를 만들었다. 금속과 강하게 상호작용을 하는 고분자는 효소와 같이 금속 주위를 고분자가 3차원적으로 둘러싸는 형태를 보이는 한편 약하게 상호작용하는 고분자는 금속을 둘러싸지 못하고 금속 표면이 노출된 형태가 됐다. 연구팀은 이렇게 합성된 촉매를 이용해 석유화학의 에틸렌 생산 공정에서 매우 중요한 아세틸렌 부분 수소화 반응에 적용했다. 에틸렌은 플라스틱, 비닐, 접착제 등 다양한 제품을 만드는 데 이용하는 기본 핵심 원료이며 현재 우리나라에서는 주로 나프타를 분해하여 생산한다. 나프타분해시설에서 생산되는 에틸렌에는 불순물인 미량의 아세틸렌이 함께 포함돼 있는데, 이 아세틸렌이 화학 제품을 만드는 데 사용되는 촉매에 치명적으로 작용하기 때문에 수소화 반응을 통해 제거해 주는 공정이 필수적이다. 이 공정에서 핵심은 99% 이상의 에틸렌은 소모하지 않으면서 1% 미만의 아세틸렌만 선택적으로 제거하는 것이다. 연구진이 개발한 신규 촉매를 이 공정에 적용한 결과, 강하게 상호작용해 3차원 구조를 형성한 촉매는 고분자가 아세틸렌에만 접근해 높은 선택도를 보였다. 하지만 약한 상호작용으로 인해 고분자가 금속 표면을 덮지 못한 촉매에서는 아세틸렌과 에틸렌에 모두 접근해 낮은 선택도를 보였다. 또한 강하게 상호작용을 하는 고분자일수록 비활성화를 일으키는 탄소 침적물인 코크의 생성을 차단하고 금속 입자의 뭉침 현상을 억제해 장기간 반응에서도 높은 활성과 선택도를 유지했다. 연구를 주도한 최민기 교수는 "자연계 효소의 원리를 모방해 고분자와 금속 사이의 상호작용을 조절하고 원하는 반응물만 선택적으로 전환할 수 있으면서도 매우 우수한 안정성을 가지는 촉매 설계 방법은 세계적으로 보고된 바가 없던 새로운 개념이다ˮ라며, "향후 높은 선택도가 필요한 다양한 화학반응에 폭넓게 응용 및 적용될 수 있을 것이다ˮ라고 말했다. 우리 대학 생명화학공학과 현경림 박사과정 학생이 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `앙게반테 케미(Angewandte chemi)'에 지난 5월 17일 字 온라인판에 게재됐다. (논문명: Tailoring a Dynamic Metal-Polymer Interaction to Improve Catalyst Selectivity and Longevity in Hydrogenation), 한편 이번 연구는 한국연구재단 중견연구자 지원사업과 LG화학의 지원을 받아 수행됐다.
2021.06.09
조회수 71340
수소 가스 민감성 광투과도 변화 필름을 활용한 무전원 가스센서 기술 개발
우리 대학 기계공학과 박인규 교수 연구팀과 전기및전자공학부 윤준보 교수, POSTECH 노준석 교수 공동 연구팀이 외부 전력 공급 없이도 장기간 안정적으로 동작할 수 있는 무전원 수소 감지 센서를 개발했다고 18일 밝혔다. 연구팀은 유연한 폴리머 나노 창살(nanograting)의 한쪽 측벽에 팔라듐(Pd)을 비대칭적으로 코팅하면, 팔라듐(Pd)이 수소 분자를 흡수함에 따라 부피가 팽창하면서 폴리머 나노 창살이 기계적으로 굽혀 일종의 ‘커튼’과 같이 광투과도 변화를 일으킨다는 것을 발견했다. 이러한 현상을 활용하여 태양전지 표면에 감지막을 부착하면 수소 가스에 노출되었을 때 태양전지에 도달하는 빛을 가리고, 이는 태양전지 출력 변화로 이어져 외부의 전력 공급 없이도 수소 가스의 농도를 정밀하게 포착하게 된다. 수소 가스는 석유화학, 반도체, 제약 등 다양한 산업에서 널리 활용되고 있으며 차세대 친환경 에너지원으로도 주목받고 있지만, 누출 발생 시 폭발의 위험이 큰 만큼 안전한 사용을 위해 지속적인 모니터링이 필수적이다. 그러나 기존의 수소 감지 장치들은 지속적인 전원 공급이 필요해 다양한 무선환경에서 장시간 사용하는데 큰 제약이 있었다. 연구팀에서 개발한 무전원 수소 감지 센서는 외부 전원 없이도 수소 가스의 농도를 정밀하게 예측할 수 있어 수소를 활용하는 다양한 무선 원격 환경에서 널리 활용될 것으로 기대된다. 연구팀은 센서의 성능을 극대화하기 위해 수치 시뮬레이션을 통해 팔라듐 코팅 조건(입사각)을 최적화해 0.1%의 저농도 수소 가스에 대해서도 높은 센서 민감도를 달성할 수 있었고, 또한 반복적인 수소 가스 노출 및 습도 변화에도 안정적인 신호를 유지하는 것을 검증했다. 특히 연구팀은 개발한 무전원 수소 센서를 모바일 장치에 탑재해 감지된 수소 농도를 스마트폰에서 원격으로 확인할 수 있는 시제품을 함께 선보여 실제 무선환경에서의 활용성을 높였다. 본 시제품은 수소 감지에 활용되는 태양전지뿐만 아니라 주변 광 세기 변화를 보상하기 위한 추가적인 태양전지를 탑재해 실시간 보상이 이뤄지며, 블루투스를 통해 스마트폰으로 신호를 전송한다. 스마트폰 앱에서는 수소 가스의 폭발 하한 농도인 4%를 초과했을 때 알람을 울려 사용자에게 알려준다. 박인규 교수는 “이번 연구는 첨단 나노기술을 통해 수소 가스를 정밀하게 감지할 수 있는 새로운 감지 메커니즘을 규명했을 뿐만 아니라 개발된 시제품은 센서 전원 공급이 원활하지 않은 원격지에서의 활용성을 크게 높여, 차세대 에너지원으로 주목받고 있는 수소의 안전한 사용에 기여할 것으로 기대된다”라고 말했다. 한국연구재단의 선도연구센터지원사업, 나노·소재기술개발사업의 지원을 받아 진행된 이 연구의 성과는 국제학술지 ‘ACS Nano’2020년 12월자에 게재됐다. (논문명: Chemo-Mechanically Operating Palladium-Polymer Nanograting Film for a Self-Powered H2 Gas Sensor)
2021.01.18
조회수 69694
자연계 효소처럼 작동하는 신개념 산업용 촉매 개발
우리 대학 연구진이 생체 내 단백질 *촉매인 *효소를 모방해 공급자 또는 개발자가 원하는 화학반응만 선택적으로 유도하되 안정성도 갖춘 기존에 없는 새로운 개념의 산업용 촉매 개발에 성공했다. ☞ 촉매(catalyst): 자신은 변하지 않으면서 물질 간의 화학반응이 잘 일어나도록 돕는 물질. 표면에 흡착된 반응물을 생성물로 빠르게 전환해주는 역할을 한다. ☞ 효소(enzyme): 생체 내의 화학반응을 매개하는 단백질 촉매. 반응물을 전환할 수 있는 금속 촉매 활성점(active site)이 부드러운 유기 고분자인 단백질로 둘러싸인 형태를 지니고 있는데, 단백질의 구조에 따라 오직 원하는 반응물만이 활성점에 접근해 생성물로 전환될 수 있다. 생명화학공학과 최민기, 화학과 김형준 교수 공동연구팀은 실생활에 흔히 쓰이는 플라스틱, 비닐 등의 재료인 화학 원료를 만들 때, 자연계 효소와 동일한 원리로 반응물을 선택적으로 전환할 수 있는 고성능 산업용 촉매를 개발하는 데 성공했다. 한정된 자원을 효율적으로 이용하기 위해서는 다양한 화학반응 경로 중 목표하는 반응물을 원하는 생성물로 선택적으로 전환해줄 수 있는 촉매를 디자인하는 것이 매우 중요하다. 지구상에 존재하는 촉매 중 가장 효율이 좋은 촉매는 자연계 및 우리 몸 등에 존재하는 '효소'다. 이와 달리 석유화학 산업에서 이용되는 촉매들은 알루미나·실리카·제올라이트와 같이 딱딱한 무기물 표면 위에 금속을 퍼뜨려 노출한 구조로 구성돼 있다. 이런 형태의 촉매에서는 금속 표면에 모든 반응물이 흡착되기 쉬워 특정 반응물만을 선택적으로 생성물로 전환하기에는 한계가 있다. 그 럼에도 불구하고 대부분 산업용 촉매 설계에서 무기 소재를 사용하는 이유는 이들이 열화학적 안정성이 뛰어나 다양한 반응 조건에서도 촉매가 안정적으로 작용하기 때문이다. 최민기·김형준 교수 공동연구팀은 이번 연구를 통해 단백질과 같이 부드럽고 유동성이 있으면서도 매우 높은 열화학적 안정성을 지닌 `폴리페닐렌설파이드(polyphenylene sulfide, PPS)'라는 엔지니어링 플라스틱 물질을 이용해서 고분자 막이 금속촉매 활성점을 감싼 형태의 신개념 촉매를 세계 최초로 개발했다. PPS는 내열성과 내화학성이 매우 뛰어나 자동차나 항공우주 산업 등에서 많이 사용되는 상용 고분자다. 연구팀은 이 새로운 촉매를 이용해 석유화학의 에틸렌 생산 공정 중 매우 중요한 아세틸렌 수소화 반응에 적용하는 데 성공했다. 우리나라 석유화학 산업의 원료는 90% 이상이 *나프타인데, 나프타분해시설(Naphtha Cracking Center, NCC)에서 이를 분해해 에틸렌 및 기타 기초유분들을 생산하고 있다. 특히 에틸렌은 주변에 흔한 플라스틱, 비닐, 접착제, 페인트까지 일상에서 사용하는 다양한 제품을 만드는데 이용하는 기본 핵심 화학 원료다. ☞ 나프타(naphtha): 원유를 증류할 때, 35~220℃의 끓는점 범위에서 유출되는 탄화수소의 혼합체이다. 중질 가솔린이라고도 부른다. 나프타를 분해할 때 생산되는 에틸렌에는 미량의 아세틸렌이 불순물로 함께 포함돼 있다. 아세틸렌은 추후 에틸렌을 이용해 화학제품을 만드는 데 매우 치명적이므로 미량의 아세틸렌을 수소화 반응으로 제거해 주는 공정을 반드시 거쳐야 한다. 그런데 이 공정은 99% 이상 에틸렌은 건들지 않으면서도, 1% 미만의 아세틸렌만 선택적으로 전환해야 하는 난제가 존재해왔다. 공동연구팀은 새로 개발한 촉매를 이 공정에 적용한 결과 1% 미만의 아세틸렌은 금속 입자를 둘러싸고 있는 고분자막을 투과해 쉽게 전환되는 대신 99% 이상의 에틸렌은 고분자막에 가로막혀 촉매 반응이 진행되지 않아서 기존 팔라듐(Pd) 촉매와 비교할 때 선택도는 2 배 이상, 안정성은 10배 이상 증진된 놀라운 결과를 얻었다. 우리 대학 생명화학공학과 이송현, 화학과 신승재 박사과정 학생이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 '사이언스 어드밴시스(Science Advances)' 7월 8일 字 온라인판에 게재됐다(논문명: Dynamic Metal-Polymer Interaction for the Design of Chemoselective and Long-Lived Hydrogenation Catalysts). 최민기 교수는 "자연계의 효소를 모방해 원하는 반응물만 선택적으로 전환할 수 있으면서도 매우 우수한 안정성을 갖는 촉매 설계 방법은 세계적으로 보고된 바가 없던 새로운 개념"이라면서 "향후 높은 선택도가 있어야 하는 다양한 화학반응에 폭넓게 응용 및 적용될 수 있을 것"이라고 전망했다. 이번 연구는 한국연구재단 중견연구자 지원사업과 LG화학의 지원으로 이뤄졌다.
2020.07.31
조회수 37674
섬유 위에 기능성 나노구조체 구현
기계공학과 박인규 교수와 한국기계연구원 정준호 박사 공동 연구팀이 섬유 위에 다양한 기능성 나노 구조체를 구현하는 생체적합성 공정을 개발했다. 연구팀은 개발한 공정을 통해 다양한 재료의 나노 구조체를 섬유 위에 자유롭게 구현하는 데 성공했다. 섬유 위에 직접 나노 구조체를 전사할 수 있어 추가적인 기판이나 접착층 없이도 기능성 기기를 손쉽게 제작할 수 있다. 연구팀은 전기적·광학적 특성을 이용해 환경 및 신체 움직임 모니터링, 나노 구조색을 이용한 보안패턴, 광촉매를 이용한 자가 세정 기능 등을 섬유에 부여할 수 있으며, 스마트 섬유로 활용 가능할 것으로 전망했다. 고지우 박사과정이 1 저자로 참여한 이번 연구는 나노분야의 권위 있는 국제 학술지인 ‘에이씨에스 나노(ACS Nano, IF: 13.903)’2월 25일 자 14권 2호 논문에 게재됐다. (논문명: Nanotransfer Printing on Textile Substrate with Water-Soluble Polymer Nanotemplate, 수용성 폴리머 나노템플릿을 이용한 섬유에의 나노패턴전사) 최근 웨어러블 디바이스에 대한 관심이 커짐에 따라 섬유를 기판으로 하는 스마트 섬유 연구가 활발히 진행되고 있다. 섬유에 초미세 패턴을 구현하기 위해 다양한 방법이 시도되지만, 섬유의 거친 표면 특성으로 인해 기존의 공정은 기기 소형화 및 성능 향상에 필수적인 정교한 패턴을 구현할 수 없다는 한계가 있다. 이번 연구에서는 이를 해결하기 위해 물에 잘 젖는 섬유의 특성을 이용해 수용성 고분자이며 생체적합성이 우수한 히알루론산의 나노 패턴을 사용했다. 연구팀은 히알루론산 기판에 나노 패턴의 템플릿을 제작한 후 다양한 기능성 소재의 박막을 진공증착을 통해 형성했다. 그 후 섬유에 흡수된 물을 이용해 히알루론산 템플릿을 녹여냄으로써 최소 선폭 50 나노미터인 나노 구조체를 섬유 위에 전사했다. 이 방법을 통해 금, 은, 팔라듐, 알루미늄, 이산화규소와 같은 금속과 비금속 소재의 나노 패턴 형성이 모두 가능하며 동시에 다양한 나노 구조체의 조합을 자유롭게 섬유 위에 제작할 수 있다. 연구팀은 개발한 공정을 통해 팔라듐 나노 구조체를 전사해 수소 감지 센서를 제작했고, 나노 구조체가 없는 센서와 비교해 센서의 감도가 향상됐음을 확인했다. 또한, 나노 구조체가 갖는 광학적 특성인 국소 표면 플라즈몬 공명 현상으로 인한 나노 구조색을 이용해 같은 금속 및 구조이지만 두께 및 형상 파라미터에 따라 서로 다른 고유한 색을 나타냄으로써 보안패턴에 적용할 수 있음을 입증했다. 박인규 교수는 “스마트 섬유를 구현할 수 있는 간편하면서도 범용성 있는 나노 패터닝 공정을 개발했다. 다양한 섬유에 센서, 배터리, 보안패턴, 자가 세정 등의 첨단 기능을 쉽게 구현할 수 있는 데 큰 의의가 있다”라고 말했다. 이번 연구는 한국연구재단의 중견 연구 과제 (올인원 스마트 스킨을 위한 웨어러블 멀티센서 시스템 핵심기술 연구)와 글로벌 프론티어 사업 (극한물성시스템 제조 플랫폼기술)의 지원을 통해 수행됐다.
2020.03.18
조회수 16601
고성능 완전 분산 금속 앙상블 촉매 개발
생명화학공학과 이현주 교수 연구팀이 자동차 촉매로 활용할 수 있는 고성능의 완전 분산 금속 앙상블 촉매를 개발했다. 연구팀의 금속 앙상블 촉매는 휘발유 차량 배기가스 정화 반응인 삼원 촉매 반응에서(three-way catalysis, TWC) 기존의 단일원자 촉매, 상용 삼원 촉매 대비 월등한 저온 촉매 성능을 보였다. 또한, 노화 및 장기 반응 등의 내구성 평가에서 탁월한 성능을 보였다. 연구팀의 금속 앙상블 촉매는 불균일계 촉매 분야에서 기존의 단일원자 촉매를 뛰어넘어 그 가치가 높을 것으로 기대된다. 정호진 박사과정이 1 저자로 참여한 이번 연구결과는 화학 분야 국제학술지 ‘네이처 카탈리시스(Nature Catalysis)’ 2월 17일 자 온라인판에 게재됐다. (논문명 : 단일원자 촉매를 뛰어넘는 완전분산된 고내구성 자동차 촉매용 금속 앙상블 촉매, Highly durable metal ensemble catalysts with full dispersion for automotive applications beyond single-atom catalysts) 다양한 불균일계 촉매 중 귀금속(백금, 팔라듐, 로듐) 촉매는 높은 활성을 보여 널리 사용되지만, 귀금속의 희소성과 비싼 가격으로 인해 제약이 많다. 이에 사용 효율을 극대화하는 것이 매우 중요한 과제로 남아있다. 단일원자 촉매는 모든 금속 원자가 촉매 반응에 참여할 수 있어 널리 사용되지만, 금속 원자가 독립적으로 존재하기 때문에 앙상블 자리가 필요한 촉매 반응에서 촉매 성능을 발휘하지 못한다. 한편 일산화탄소(CO), 프로필렌(C3H6), 프로판(C3H8), 일산화질소(NO)는 대표적인 휘발유 차량 배기가스 오염물질로 반드시 삼원 촉매 반응을 통해 이산화탄소(CO2), 물(H2O), 질소(N2)로 전환한 뒤 배출돼야 한다. 이때 탄화수소(프로필렌, 프로판) 산화 반응은 탄소-탄소, 탄소-수소 결합을 깨뜨려야만 반응이 진행되기 때문에 촉매 반응을 위해서는 금속 앙상블 자리를 확보하는 것이 필수이다. 연구팀은 문제 해결을 위해 100%의 분산도를 갖는 금속(백금, 팔라듐, 로듐) 앙상블 촉매를 개발해 삼원 촉매 반응에 적용했다. 100%의 분산도를 갖는다는 것은 모든 금속 원자가 표면에 드러나 있어 모든 원자가 반응에 참여할 수 있다는 의미이다. 이는 단일원자 촉매도 갖는 특징이지만 앙상블 촉매는 100% 분산도와 더불어 두 개 이상의 원자가 붙어있는 앙상블 자리가 존재한다는 장점을 갖고 있다. 그 결과 금속 앙상블 촉매는 일산화탄소, 프로필렌, 프로판, 일산화질소를 동시에 제거하는 삼원 촉매 반응에서 매우 우수한 저온 촉매 성능을 보였다. 이는 탄화수소 산화 반응 성능이 없어서 삼원 촉매 성능이 저하되는 단일원자 촉매의 문제점을 해결한 것이다. 특히 연구팀이 개발한 분산도 100%의 금속 앙상블 촉매는 수열 노화, 장기 반응, 재사용 반응 등의 내구성 평가에서도 탁월한 성능을 보여 실제 휘발유 차량 배기가스 정화에 적용 가능할 것으로 기대된다. 이현주 교수는 “이번에 개발한 금속 앙상블 촉매는 기존의 단일원자 촉매의 한계를 극복하는 새로운 금속 촉매로써 학술적으로 기여하는 바가 크다”라며 “휘발유 차량 배기가스 정화 촉매 분야에도 산업적으로 적용 가능해 연구의 가치가 매우 크다”라고 말했다. 이번 연구는 선도연구센터사업의 초저에너지 자동차 초저배출 사업단과 한국연구재단 중견연구사업의 지원을 받아 수행됐다.
2020.02.27
조회수 11505
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1