-
페로브스카이트 태양전지의 한계를 극복하다
전체 태양 에너지의 약 52%를 활용하지 못하는 문제점을 가진 기존 페로브스카이트 태양전지가 한국 연구진에 의해 근적외선 광 포집 성능을 극대화하면서도 전력 변환 효율을 크게 향상하는 혁신기술로 개발되었다. 이는 차세대 태양전지의 상용화 가능성을 크게 높이며, 글로벌 태양전지 시장에서 중요한 기술적 진전에 기여할 것으로 보인다.
우리 대학 전기및전자공학부 이정용 교수 연구팀과 연세대학교 화학과 김우재 교수 공동 연구팀이 기존 가시광선 영역을 뛰어넘어 근적외선 광 포집을 극대화한 고효율·고안정성 유무기 하이브리드 태양전지 제작 기술을 개발했다고 31일 밝혔다.
연구팀은 가시광선 흡수에 한정된 페로브스카이트 소재를 보완하고, 근적외선까지 흡수 범위를 확장하는 유기 광반도체와의 하이브리드 차세대 소자 구조를 제시하고 고도화했다.
또한, 해당 구조에서 주로 발생하는 전자구조 문제를 밝히고 다이폴 층*을 도입해 이를 획기적으로 해결한 고성능 태양전지 소자를 발표했다.
*다이폴(쌍극자) 층: 소자 내 에너지 준위를 조절해 전하 수송을 원활하게 하고, 계면의 전위차를 형성해 소자 성능을 향상하는 역할을 하는 얇은 물질 층임
기존 납 기반 페로브스카이트 태양전지는 850나노미터(nm) 이하 파장의 가시광선 영역에만 흡수 스펙트럼이 제한돼 전체 태양 에너지의 약 52%를 활용하지 못하는 문제가 있다.
이를 해결하기 위해 연구팀은 유기 벌크 이종접합(BHJ)을 페로브스카이트와 결합한 하이브리드 소자를 설계, 근적외선 영역까지 흡수할 수 있는 태양전지를 구현했다.
특히, 나노미터 이하 다이폴 계면 층을 도입해 페로브스카이트와 유기 벌크 이종접합(BHJ) 간의 에너지 장벽을 완화하고 전하 축적을 억제, 근적외선 기여도를 극대화하고 전류 밀도(JSC)를 4.9 mA/cm²향상하는 데 성공했다.
이번 연구의 핵심 성과는 하이브리드 소자의 전력 변환 효율(PCE)을 기존 20.4%에서 24.0%로 대폭 높인 것이다. 특히, 이번 연구는 기존 연구들과 비교했을 때, 높은 내부 양자 효율(IQE)을 달성하며 근적외선 영역에서 78%에 달하는 성과를 기록했다.
또한, 이 소자는 높은 안정성을 보여, 극한의 습도 조건에서도 800시간 이상의 최대 출력 추적에서 초기 효율의 80% 이상을 유지하는 우수한 결과를 보였다.
이정용 교수는 “이번 연구를 통해 기존 페로브스카이트/유기 하이브리드 태양전지가 직면한 전하 축적 및 에너지 밴드 불일치 문제를 효과적으로 해결하였고 근적외선 광 포집 성능을 극대화하면서도 전력 변환 효율을 크게 향상시켜 기존 페로브스카이트가 가진 기계적-화학적 안정성 문제를 해결하고 광학적 한계를 뛰어넘을 수 있는 새로운 돌파구가 될 것”이라고 말했다.
전기및전자공학부 이민호 박사과정과 김민석 석사과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스트 머티리얼스(Advanced Materials)' 9월 30일 자 온라인판에 게재됐다. (논문명 : Suppressing Hole Accumulation Through Sub-Nanometer Dipole Interfaces in Hybrid Perovskite/Organic Solar Cells for Boosting Near-Infrared Photon Harvesting).
한편 이번 연구는 한국연구재단의 지원을 받아 수행됐다.
2024.10.31
조회수 1473
-
전기 공급만으로 공기 중 CO₂를 제거하다
대기 중 이산화탄소 농도가 증가됨에 따라 지구 평균 기온도 약 1.2도 상승했으며 이는 극단적인 기상 현상, 해수면 상승, 생태계 파괴 등 심각한 환경 문제를 초래하고 있다. 우리 연구진이 공기 중 0.04%가량 존재하는 이산화탄소를 95% 이상 순도로 포집해 추후 이산화탄소 기반 연료 및 화학제품 생산 등 사용할 수 있는 기술을 개발해 화제다.
우리 대학 생명화학공학과 고동연 교수 연구팀이 순수 전기만으로 작동해 공기 중 이산화탄소를 효율적으로 제거할 수 있는 혁신적인 탄소 포집기를 개발하고 상용화하는 데 성공했다고 29일 밝혔다. 이 기술은 이번 연구를 주도한 김규남 박사과정 연구원의 학생 창업기업(소브(Sorv), 대표 김규남)을 통해 기술 상업화를 추진 중이다.
고동연 교수 연구팀은 전기 가열원이 이산화탄소 흡착제와 한꺼번에 대량 생산될 수 있는 기술을 자체적으로 개발하고, 이를 통해 벤치 규모의 직접 공기 포집(Direct Air Capture, 이하 DAC) 시스템 구현에 성공했다.
외부 열에너지의 공급 없이 전기만으로 구동할 수 있는 본 기술은 태양광, 풍력 등 다양한 재생에너지원을 직접 이용할 수 있고, 시스템의 부피가 매우 작아 기존 탄소 포집기가 적용될 수 있는 영역의 한계를 뛰어넘을 수 있다.
공기 중 극미량 존재하는 이산화탄소를 포집하는 기술을 기술 수준 하단에서 상단까지, 즉 실험실 단계에서 상업적 규모로 확대하는 것은 매우 어려운 일이다. 첫째, 대기 중 이산화탄소 농도가 낮아 이를 효과적으로 포집하기 위해서는 매우 효율적인 흡착제가 필요하다. 둘째, 포집된 이산화탄소를 경제적이고 에너지 효율적으로 분리하는 시스템이 필요하다. 셋째, 이 모든 과정을 대규모로 구현하기 위해서는 안정하고 일관성 있는 공정이 보장돼야 한다.
연구팀은 이러한 도전에 맞서 전기 가열원이 통합된 흡착제 및 시스템을 개발해 이산화탄소 포집기의 성능을 극대화했다. 이 흡착제는 대량 생산이 가능하며, 넓은 비표면적을 제공해 이산화탄소를 더 효율적으로 흡착할 수 있다. 또한, 빠른 흡착 및 탈착 속도를 자랑하며, 구조적으로 강해 반복적인 사용에도 변형이 적다.
연구팀이 개발한 탄소 포집기는 고성능의 흡착 소재에 이산화탄소를 흡착한 후 전기로 작동하는 가열원을 통해 발생하는 열을 이용해 순수한 이산화탄소 얻어내는 방식으로, 에너지 효율이 높고 정밀한 온도 제어가 가능하다. 이 시스템의 큰 장점 중 하나는 재생에너지로만 가동이 가능할 정도로 에너지 효율적이라는 점이다. 이는 전기에 접근성이 있는 모든 지리적 환경에 배치가 가능해, 다양한 장소에서 이산화탄소를 포집할 수 있게 한다.
현재 실험실 스케일에서는 하루 약 1~3kg의 이산화탄소를 처리할 수 있을 것으로 예상된다. 이 기술은 향후 하루 포집량 1톤 규모 이상으로 스케일업 및 대규모 배치도 가능하며 대기 중 이산화탄소를 포집하는 용도 뿐만 아니라 화력발전소, 시멘트 공장, 철강 공장 등 대규모 이산화탄소 배출원을 대상으로도 중요한 역할을 할 것으로 기대된다.
김규남 박사과정 연구원은 "이번 연구는 대기 오염 문제 해결에 한 발 더 다가설 수 있는 중요한 성과이며, 앞으로도 지속적인 연구를 통해 기술을 발전시키고 실제 환경에서의 적용 가능성을 높이겠다”라고 말했다.
연구팀은 본 기술의 혁신성을 인정받아 2022년에는 랩 스타트업(Lab Startup) KAIST 최우수상 수상, 2023년에는 미국 R&D 100 어워즈(Awards)의 파이널리스트(Finalist)로 선정됐으며, 2024년 1월에는 라스베이거스에서 개최된 국제전자제품박람회(CES 2024)에 e-DAC 데모 유닛을 전시하고 부스 발표를 하며 기술의 우수성을 널리 알린 바 있다.
이번 연구는 사우디 아람코-KAIST 이산화탄소 연구센터의 지원으로 이루어졌으며, 양 기관의 지속적인 협력을 통해 더욱 혁신적인 기술 개발이 기대된다.
2024.07.29
조회수 2284
-
초투과성 분리막을 이용한 이산화탄소 전환 시스템 개발에 성공
우리 대학 생명화학공학과 고동연 교수 연구팀이 에너지 집약 산업체의 이산화탄소 배출량을 줄이는 동시에 산업 부산물을 유용한 자원으로 전환하는 신개념 고체 탄산화 시스템을 개발했다고 23일 밝혔다.
연구팀이 개발한 이 시스템은 *중공사막 형태의 `초투과성 분리막'을 이용해 연속적으로 이산화탄소 포집과 전환이 가능하기 때문에 탄소 배출량을 대량으로 줄일 수 있다.
☞ 중공사막: 가운데가 비어있는 형태의 막. 인공 신장 투석기나 정수기 따위의 여과재로 사용된다.
생명화학공학과 황영은 박사과정이 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `ACS 서스테이너블 케미스트리 앤드 엔지니어링(ACS Sustainable Chemistry & Engineering)' 10월호에 실렸는데 연구의 파급력을 인정받아 표지논문으로 선정됐다. (논문명 : Solid Carbonation via Ultrapermeable PIM-1 Hollow Fiber Membranes for Scalable CO2 Utilization).
최근 탄소배출권 가격이 오르면서 산업계의 이산화탄소 배출 비용에 대한 절감도 절실히 요구되고 있다. 또한 에너지 집약 산업체의 부산물(석탄회 및 철강 슬래그 등)에 대한 처리비용도 날로 증가하고 있어 이산화탄소를 산업 부산물과 반응시켜 부가가치가 있는 물질로 전환하는 데 관심이 쏠리고 있다.
특히, 이산화탄소를 탄산칼슘 등의 고체 탄산염으로 전환해 건설 소재로 이용하는 기술은 전 세계 시장에서 2030년까지 연간 약 1조 달러의 수익을 창출할 것으로 예상되며, 배출되는 이산화탄소를 연간 약 30~60억 톤 감축할 수 있는 기술로 주목받고 있다.
고동연 교수팀이 개발한 고체 탄산화 기술은 이산화탄소와 알칼리 금속(칼슘, 마그네슘)의 자발적 결정화 반응을 이용하는 일종의 자연모방 기술이다. 이 기술은 이산화탄소를 열역학적으로 가장 안정된 탄소 저장체인 고체 탄산염(CaCO3, MgCO3)으로 전환하는 기술이다. 고체 탄산염은 고품위 물성 제어를 통해 건설·토목 소재, 제지산업, 고분자, 의약, 식품, 정밀화학 분야에 활용할 수 있다.
결과적으로 고 교수팀이 개발한 기술을 활용하면 이산화탄소 배출량을 대폭 줄여 탄소배출권의 절약은 물론 고부가가치 생산물을 통해 추가적인 경제성을 확보할 수 있다는 게 큰 장점이다.
고 교수팀은 우선 미세다공성 고분자로 이뤄진 초투과성 분리막 기술을 통해 기존 공정 유닛보다 5~20배가량 작은 부피로 기존 공정 대비 50% 이상 뛰어난 물질전달 효율을 갖는 고체 탄산화 시스템을 구현하는 데 성공했다.
미세다공성 고분자는 회전할 수 없는 단단한 부분과 고분자 사슬이 뒤틀리는 지점이 반복적으로 나타나는 독특한 구조를 가지는데 기체 분자를 빠른 속도로 투과시킬 수 있어 가스 분리 분야에서 유망한 소재로 주목받고 있다.
연구팀은 이와 함께 미세다공성 고분자를 속이 빈 실과 같은 중공사막 형태로 가공해 모듈화할 수 있는 기술을 확보했다. 이렇게 제조된 초투과성 중공사막 모듈에 이산화탄소/질소 혼합 기체를 흘려보내면 이산화탄소만 선택적으로 빠르게 분리막을 가로질러 중공사막 외부의 알칼리 이온과 반응해 순간적으로 탄산염을 생성하는 원리를 연속식 모듈로 구현했다.
고 교수팀이 개발한 기술은 부피 대비 표면적이 기존 시스템보다 수 배 이상 높아 매우 높은 공간 효율성을 갖는 분리막 모듈의 특성을 이용해 장시간의 연속 공정이 가능한 게 특징이자 장점이다. 이 때문에 이산화탄소 전환 공정의 에너지 및 비용 대비 효율성을 높일 수 있어 고체 탄산염을 활용하는데 높은 경제성뿐만 아니라 이산화탄소 포집 및 전환(CCU) 기술 활성화에도 기여할 것으로 기대가 크다.
이번 연구를 주도한 고동연 교수는 "신기술을 적용해 이번에 새로 개발한 고체 탄산화 시스템은 온실가스 배출량이 많은 발전소나 제철소, 시멘트 제조업체 등 관련 산업계의 탄소배출권 구매량을 줄일 수 있고 동시에 자원 재순환을 통해 경쟁력을 증대시킬 수 있을 것으로 기대된다ˮ고 설명했다.
한편 이번 연구는 산업통상자원부 에너지국제공동연구사업의 지원을 받아 수행됐다.
2020.11.23
조회수 36063
-
오지훈 교수, 이산화탄소 90%이상 분해 가능한 광전극 구조 개발
우리 대학 EEWS 대학원 오지훈 교수 연구팀이 빛을 이용해 이산화탄소를 분해하기 위한 금 나노 다공성 박막과 실리콘(Silicon) 기반의 새로운 광전극 구조를 개발했다.
광전기화학적 이산화탄소 변환은 태양광 에너지를 이용해 물과 이산화탄소를 연료로 바꿔주는 기술로 많은 주목을 받고 있다. 연구팀이 개발한 기술은 이를 위한 반도체 광전극 구조의 기본 틀을 제공할 것으로 기대된다.
송준태 박사가 1저자로 참여한 이번 연구는 화학, 에너지 및 소재 분야의 국제 학술지 ‘어드밴스드 에너지 머티리얼즈(Advanced Energy Materials)’ 8일자 내면 표지 논문에 게재됐다.
안정적인 이산화탄소를 환원시키기 위해서는 낮은 과전압을 지닌 우수한 촉매가 필요하다. 그 중 금(Au)은 이산화탄소를 일산화탄소로 환원시키는 전기 촉매로 알려져 있다.
그러나 금은 과전압이 비교적 높고 일산화탄소 생산성이 낮아 수소가 많이 발생하는 문제점이 있다. 또한 가격이 비싸기 때문에 사용량도 조절을 해야 한다.
연구팀은 문제 해결을 위해 나노 다공성 구조를 갖는 금 박막을 제작하는 데 성공했다. 금을 박막형태로 기판 재료에 증착해 이를 양극산화 처리한 뒤 연속적인 환원 처리를 통해 제작했다.
높은 전류 효율을 보였다. 이전의 나노구조 촉매는 0.1mm의 두꺼운 호일을 이용해 제작됐다면 연구팀의 박막은 약 5만 배 정도 얇은 200나노미터 수준으로서 금 기반 촉매의 제작비용을 최소화했다.
나아가 연구팀은 직접 제작한 나노다공성 금 박막을 촉매로 활용하기 위해 새로운 실리콘(Si) 광전극 구조를 개발했다. 기존 방법인 나노 입자 형태로 반도체 표면에 촉매를 형성하면 전기화학적 처리 과정에서 기판 자체에 영향을 주게 된다.
따라서 연구팀은 금 박막을 표면 전체에 연결될 수 있는 메쉬 패턴 구조로 제작해 광전극에 영향을 주지 않고도 독립적으로 표면의 전극 접합을 통해 전기화학처리를 가능하게 했다.
제작된 광전극은 실리콘에서 생성된 광전압과 금 박막층의 높은 촉매 특성이 작용돼 기존의 일산화탄소 변환을 위해 필요한 에너지보다 더 낮은 양으로도 변환이 가능하다.
오 교수는 “다양한 반도체 및 촉매 재료도 쉽게 적용 가능한 플랫폼 역할을 할 수 있을 것이다”며 “다른 연구자들이 우리 연구팀의 구조를 적용해 이산화탄소 광전환의 광변환 효율을 향상시킬 수 있을 것이다”고 말했다.
1저자인 송준태 박사는 “발상의 전환을 통해 매우 간단하지만 중요한 새로운 타입의 광전극 구조를 개발했고, 이를 통해 효율적인 이산화탄소 환원이 가능해졌다”며 “생성물의 평형 전위보다 더욱 낮은 전위조건에서 이산화탄소 환원을 하는 결과를 낸 것은 처음이다”고 말했다.
이번 연구는 KAIST EEWS 대학원 정성윤 교수가 공동으로 참여했고 한국이산화탄소 포집 및 처리 연구개발센터의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 게재된 논문 이미지
그림2. 실리콘 광전극 모식도 및 전자현미경 사진
그림3. 제작된 광전극의 광전기화학적 이산화탄소 특성
2017.02.24
조회수 19070
-
김일두 교수, 새집증후군 유발하는 톨루엔 초정밀 감지센서 개발
우리 대학 신소재공학과 김일두 교수 연구팀이 새집증후군, 새차증후군의 대표적 유해 가스인 톨루엔을 극미량의 농도에서도 검출할 수 있는 초고감도 감지소재 센서를 개발했다.
이번 연구 결과는 화학분야 권위 학술지 미국화학회지(JACS : Journal of the American Chemical Society) 10월자 온라인 판에 게재됐다.
톨루엔은 대표적 유독성, 휘발성 유기화합물로 중추신경계와 호흡기관에 이상을 유발한다. 두통을 유발하고 장기간 노출될 경우에는 사망에 이를 수도 있다.
실내 공기질 관련 톨루엔 농도의 정부 권고기준은 약 244ppb(10억분의 1 단위) 이하로 기준 수치를 넘어가면 새집증후군, 새차증후군 등을 유발시킨다.
하지만 공기 중의 톨루엔을 정밀 분석하기 위해서는 고가의 설비를 활용해야 하는 어려움이 있다. 현재까지 개발된 반도체식(저항 변화식) 휴대용 톨루엔 센서들은 톨루엔의 유무만 구분 가능할 뿐 십 억분의 1에서 백만분의 1(ppm) 사이의 극미량의 톨루엔은 검출할 수 없다는 한계가 있다.
연구팀은 기존 센서의 한계를 극복하기 위해 다공성 물질인 금속유기구조체(metal-organic framework)의 내부에 3나노미터 크기의 촉매 입자를 담지하고, 이를 나노섬유 소재에 붙여 최고 수준의 톨루엔 감지 특성을 갖는 센서를 개발했다.
연구팀은 금속유기구조체를 팔라듐 촉매와 결합시켜 복합 촉매로 활용했다. 이 복합 촉매는 다공성 금속산화물 나노섬유에 결착된 구조로 나노섬유 표면에서 형성되는 비균일 접합(heterojunction) 구조와 나노 촉매의 시너지 효과로 인해 초고감도의 톨루엔 감지특성을 보였다.
연구팀이 개발한 센서는 100ppb 수준의 극미량의 톨루엔 가스 노출에도 일반 공기 중의 상태에 비해 4배 이상의 탁월한 감도 변화를 보였다.
금속유기구조체 기반의 이종 촉매가 결합된 나노섬유 감지소재는 실내외 공기 질 측정기, 환경 유해가스 검출기, 호흡기반 질병진단 센서 등 다양한 분야에서 활용 가능하다.
또한 나노입자 촉매 및 금속유기구조체의 종류만 바꿔주면 톨루엔 외의 다른 특정 가스에 선택적으로 반응하는 고성능 소재를 대량으로 합성할 수 있다. 향후 다양한 센서 소재 라이브러리 구축이 가능할 것으로 기대된다.
김 교수는 “다종 감지 소재를 활용해 수많은 유해가스를 보다 정확히 감지할 수 있는 초고성능 감지소재로 적용 가능하다”며 “대기 환경 속의 유해 기체들을 손쉽게 검출해 각종 질환의 예방이 가능하고 지속적인 건강 관리에 큰 도움을 줄 것이다”고 말했다.
신소재공학과 구원태 박사 과정이 1저자로 참여한 이번 연구는 한국과 미국에 특허 출원됐다. 이번 연구는 미래창조과학부 X-프로젝트와 한국이산화탄소포집 및 처리연구개발센터의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 나노섬유 감지소재가 코팅된 개별 가스센서 및 가스센서가 장착된 스마트 시계
그림2. 저널 JACS에 게재된 논문 대표 이미지
그림3. 나노섬유사진
그림4. 1 ppm의 극미량 톨루엔 가스에 대한 우수한 선택성 및 반응성을 보여주는 표
2016.10.10
조회수 11820
-
최민기 교수, 상용화 가능한 이산화탄소 흡착제 개발
〈 최 민 기 교수 〉
우리 대학 생명화학공학과 최민기 교수 연구팀이 고성능의 새로운 이산화탄소 흡착제를 개발해 약 20kg의 중규모 합성에 성공했다.
이 기술을 통해 화력발전소에서 배출되는 이산화탄소의 흡, 탈착을 상용화가 가능한 수준까지 발전시키는 데 큰 역할을 할 것으로 기대된다.
이번 연구 결과는 네이처 자매지인 ‘네이처 커뮤니케이션즈(Nature Communications)’ 8월 30일자 온라인 판에 게재됐다.
기존 연구들에서는 이산화탄소 제거용 흡착제를 개발하기 위해 아민이라는 유기화합물이 담긴 다양한 고체 물질들이 연구됐다.
하지만 현재까지 개발된 아민 기반의 흡착제는 이산화탄소를 흡착하는 성능은 뛰어나지만 탈착이 어려워 재생 안정성이 떨어지고, 반복적으로 사용하면 화학적 변질이 생겨 성능이 떨어지는 장기 안정성 문제가 있었다.
또한 대부분의 소재들이 실제 발전소 이산화탄소 포집에 응용될 정도의 대량생산이 불가능해 유의미한 결과로 이어지지 않았다.
연구팀이 문제 해결을 위해 개발한 이산화탄소 흡착제는 기존의 아민 기반 흡착제를 에폭사이드와 간단히 반응시켜 탈착 성능, 반응 속도, 재생 안정성 등을 비약적으로 증진시켰다.
연구팀은 대량생산에 용이하고 경제적인 범용 물질인 실리카, 폴리에틸렌이민, 에폭사이드 등을 원재료로 이용했다. 실리카를 지지체로 놓고 폴리에틸렌이민과 에폭사이드를 반응시킨 아민 기반의 흡착제를 만들었다. 이는 기존 흡착제가 갖고 있던 비활성화 문제를 해결하고 재생 안정성을 현격히 높였다.
연구팀은 우수하고 신속한 이산화탄소 흡, 탈착 특성(10wt% : weight percentage), 높은 재생 안정성, 대량생산성을 모두 확보했기 때문에 현재까지 발표된 다른 고체 흡착제보다 상용화에 가깝다고 밝혔다.
실제 ‘한국이산화탄소포집 및 처리연구개발센터(KCRC)’ 연구진과의 협업을 통해 20kg의 중규모 합성에 성공 후 20 Nm3/h의 벤치 스케일 유동층 반응기에서 가동에 성공했다.
1저자인 최우성 학생은 “이번 연구는 항상 가능성만 언급됐던 고체 이산화탄소 흡착제의 문제점을 단순하지만 창의적인 화학 반응을 통해 획기적으로 개선했다”며 “이산화탄소 포집 공정을 상용화 단계까지 발전시켰다는 점에서 큰 의미가 있다”고 말했다.
최민기 교수는 “이제 상용화 단계의 초입에 들어섰고 앞으로도 개선할 부분이 많지만 추후 흡착제를 더 발전시켜 세계 최고의 실용화 가능한 이산화탄소 포집 흡착제를 개발하겠다”고 말했다.
이번 연구는 미래창조과학부의 ‘Korea CCS 2020’ 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 신규 흡착제의 이산화탄소 포집 공정 개념도
그림2. 본 연구에서 개발한 신규 흡착제와 기존 흡착제의 이산화탄소 흡착능 비교
2016.09.08
조회수 11601
-
전기자동차용 차세대 전지의 성능 극대화
〈 김 일 두 교수〉
우리 대학 신소재공학과 김일두 연구팀이 리튬-공기전지의 핵심 구성요소인 촉매를 대량생산할 수 있는 기술을 개발했다.
리튬-공기전지는 전기자동차에 쓰이는 리튬-이온전지를 대체할 차세대 전지로 주목받고 있으며, 이번에 연구팀이 개발한 원천기술을 통해 리튬-공기전지의 상용화에 한 발짝 다가갈 것으로 기대된다.
연구팀은 촉매활성이 뛰어난 두 소재인 루테늄산화물(RuO2)과 망간산화물(Mn2O3)이 균일하게 분포된 이중 나노튜브 구조를 손쉽게 대량 제조하는 원천기술을 확보했고, 이를 리튬-공기전지에 적용하는데 성공했다.
이번 연구는 나노재료 분야의 국제 학술지 ‘나노 레터스(Nano Letters)’ 3일자 온라인 판에 게재됐다. (논문명: One-Dimensional RuO2/Mn2O3 Hollow Architectures as Efficient Bifunctional Catalysts for Lithium-Oxygen Batteries)
리튬-공기전지는 리튬-이온전지에 비해 용량이 10배 이상 높고 대기 중의 산소를 연료로 활용하기 때문에 전기자동차를 위한 에너지 저장장치로 큰 주목을 받고 있다.
그러나 방전 시 생성되는 고체 리튬산화물(Li2O2)이 충전 과정에서 원활히 분해되지 않아 전지의 효율 및 수명특성이 저하돼 상용화에 어려움을 겪었다. 따라서 탄소재 양극 내의 리튬산화물의 형성 및 분해를 안정적으로 도와주는 촉매 개발이 필수적으로 요구됐다.
리튬-공기전지용 촉매는 가벼우면서 내구성이 우수하고 촉매의 표면적을 최대한 넓히는 것이 중요하다. 현재 상용화 수준으로 대량생산이 가능하고 우수한 촉매 활성을 갖는 소재는 아직 개발되지 않았었다.
연구팀은 위의 문제 해결을 위해 루테늄과 망간 전구체가 녹아 있는 고분자 용액을 전기 방사했다. 이는 누에가 실을 뽑듯이 고분자 용액을 재료로 삼은 실을 뽑아내 루테늄-망간 전구체를 기반으로 한 고분자 복합 섬유를 합성해내는 기술이다.
이후 이 섬유를 고온 열처리하면 거푸집 역할을 하는 고분자 템플릿(Template)이 타서 없어지고, 루테늄산화물 및 망간산화물의 이종 물질이 함께 복합체를 이루는 이중튜브 구조의 촉매가 완성된다.
연구팀이 개발한 이중 튜브는 직경 220 나노미터의 외부튜브와 80 나노미터의 내부튜브로 이뤄져 안쪽 및 바깥쪽 벽이 동시에 촉매 반응에 참여 가능하고, 비어있는 공간이 많아 가볍다는 장점을 갖는다.
연구팀은 초기 충전, 방전 시의 과전압 차이가 약 0.8V 이내로 감소하는 효과를 얻었다. 기존 탄소재 사용시 과전압은 약 2.0V 이상이다. 또한 용량제한 1000 mAh/g 하에서 100사이클 이상의 안정적인 리튬-공기전지 특성을 확인했다.
위의 기술 향상이 가능한 이유는 리튬산화물의 생성반응(산소환원 반응)을 도와주는 망간산화물 촉매와 분해반응(산소발생 반응)을 돕는 루테늄산화물 촉매가 내, 외부 튜브에서 나노단위로 균일하게 존재하기 때문이다.
김 교수 연구팀의 핵심 기술인 전기방사 기술은 고분자, 금속 전구체가 포함된 용액을 전기적 인력으로 연신시켜 수십에서 수백 나노 직경의 나노섬유를 얻을 수 있는 기술이다.
이 기술은 쉽게 기능성 나노섬유를 대량생산할 수 있어 수처리용 필터, 황사 마스크, 마스크팩 소재, 바이오 필터 등에 활발히 사용되고 있다.
연구팀은 “휘발점이 다른 두 용매의 온도 상승 속도를 조절하는 간단한 공정을 통해 리튬-공기전지의 충전 및 방전에 이상적인 촉매구조 디자인에 성공했다”고 밝혔다.
김 교수는 “생산 공정이 매우 손쉽고 대량생산이 가능한 기술이다”며 “촉매의 성능이 우수해 차세대 전지로 각광받는 리튬-공기전지의 상용화를 앞당기는 데 기여할 것이다”고 말했다.
신소재공학과 김상욱 교수와 공동 연구로 진행된 이번 연구는 윤기로 박사과정이 제1저자로 참여했고, ‘한국 이산화탄소 포집 및 처리 연구개발센터(Korea CCS R&D Center)’ 및 현대자동차의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 루테늄산화물-망간산화물 코어-쉘 나노튜브 및 이중 나노튜브 미세구조 사진
그림2. 나노튜브 촉매가 사용된 리튬-공기전지의 구성
그림3. 리튬-공기전지의 구동 원리
그림4. 루테늄산화물-망간산화물 코어-쉘 나노튜브 및 이중 나노튜브 형성원리
2016.02.16
조회수 16063
-
이산화탄소 포집 효율을 획기적으로 향상시킨 물질 개발
- 질소대비 CO2 선택성 300배 증가, 네이처 커뮤니케이션즈 게재 -
우리 학교 WS 대학원의 자페르 야부즈 교수, 알리 조스쿤 교수, 정유성 교수 공동연구팀이 질소대비 이산화탄소 선택성을 300배 높인 세계 최고 수준의 CO2흡수제를 개발했다.
최근 전 세계적으로 기후변화 대응을 위한 현실적 대안으로 이산화탄소를 포집하여 저장․처리하는 CCS*기술의 중요성이 부각되고 있다.
* CCS : Carbon Capture and sequestration
현재 이산화탄소를 포집하는 기술로는 액상흡수제를 이용한 습식포집기술, 고체 흡수제를 이용한 건식포집기술, 필름과 같은 얇은 막을 이용하는 분리막 포집기술이 있다.
발전소, 제철소와 같이 이산화탄소 대량 배출원에 적용하게 되는 동 기술은 고온과 다량의 수분이 존재하는 극한조건하에서도 포집효율이 낮아지지 않는 것이 연구개발의 핵심과제이다.
기존에 연구되었던 건식흡수제인 MOF(Metal Organic Framework)나 제올라이트의 경우는 수분 조건에서 불안정하거나 합성이 비싸다는 단점이 존재하였다.
연구팀이 이번에 개발한 흡수제는 건식흡수제로서 ‘아조-코프(Azo-COP)’라고 명명하였는데 값비싼 촉매 없이도 합성이 가능하여 제조비용이 매우 저렴하며, 고온 및 수분 조건에서도 안정한 특성을 나타내었다.
코프(COP)는 간단한 유기분자들을 다공성 고분자형태로 결합시킨 구조체로 동 연구팀이 처음으로 개발한 건식 이산화탄소포집물질이다.
연구팀은 이물질에 ‘아조(Azo)’라는 기능기를 추가로 도입함으로써 질소를 배제하고 혼합기체 중에서 이산화탄소만을 선택적으로 포집하도록 하였다.
‘아조(Azo)"기를 포함하는 아조-코프(Azo-COP)는 일반적 합성방법을 통해 쉽게 제조하였으며, 값비싼 촉매대신 물과 아세톤 등의 용매를 사용해 불순물도 쉽게 제거함으로써 제조비용을 대폭 낮출 수 있었다.
특히, 아조-코프(Azo-COP)는 이산화탄소와 화학적 결합이 아닌 약한 인력을 통해 결합함으로써 흡착제 재생 에너지 비용을 혁신적으로 낮출 수 있으며,
350℃ 정도의 극한 조건에서도 안정해 이산화탄소 포집제로서 활용은 물론 더욱 가혹한 환경의 다양한 분야에서 포집 물질로 활용될 것으로 기대된다.
해당성과는 교과부 산하 (재)한국이산화탄소포집및처리연구개발센터(센터장 박상도) 및 KAIST EEWS 기획단의 지원으로 이루어졌다.
자페르 야부즈 교수와 알리 조스쿤 교수는“Azo-COP를 CO2, N2 분리 실험에 적용한 결과 포집 효율이 수백배 향상됐다”며 “이 물질은 촉매가 필요 없고, 수분 안정성, 구조 다양성 등 우수한 화학적 특성으로 인해 앞으로 이산화탄소 포집을 비롯한 많은 분야에 활용될 것으로 기대한다”고 밝혔다.
한편, 이번 연구 결과는 세계적 학술지인 ‘네이처’ 자매지 ‘네이처 커뮤니케이션즈’ 1월 15일자로 게재됐다.
2013.02.01
조회수 17464
-
이산화탄소 포집저장기술 상용화 속도낸다
- 이산화탄소의 선박 수송 시 발생하는 증발가스 문제 해법 제시-- 원유값 등 다양한 상황에 따른 최적의 재액화율 이론 정립해 -
지구 온난화의 주범이 되는 이산화탄소를 포집한 후 땅속에 주입해 영구 저장하는 기술이 전 세계적으로 관심을 받고 있는 가운데, KAIST 연구진이 이산화탄소의 선박 수송을 위한 최적의 방법을 제시했다.
우리 학교는 해양시스템공학과 장대준 교수 연구팀이 포집된 이산화탄소의 선박 운송 중에 발생하는 증발가스의 최적화된 처리를 위한 해법을 제시했다.
이로써 이산화탄소를 포집하는 기술과 유전에 저장하는 기술 뿐 아니라 선박 수송에 대한 해법도 제시돼, 포집-수송-저장의 삼박자를 갖춰 이산화탄소 포집저장 기술이 곧 상용화될 것으로 전망된다.
최근 지구온난화에 의한 자연재해 문제가 심각해지면서 유럽을 중심으로 이산화탄소 배출을 줄이기 위한 연구가 확산되고 있다.
이를 해결하기 위해 발전소와 공장 등으로부터 발생하는 이산화탄소를 포집해 지중에 다시 영구적으로 저장하는 기술인 ‘이산화탄소 포집 및 저장(CCS, Carbon Capture and Storage)‘이 대안으로서 각광받고 있다.
우리나라는 2013년부터 포스트 교토의정서가 발효될 경우 이산화탄소 감축 의무를 면하기 어려울 전망이다. 정부는 이에 따라 오는 2030년까지 3200만 톤(전체 감축 전망치의 10%)의 이산화탄소를 감축한다는 목표를 세우고 있고 KAIST 등 국내 연구팀들도 이를 위한 기술 개발 및 실용화를 위한 연구에 속도를 내고 있다.
장대준 교수 연구팀은 지난 2009년 ‘이산화탄소 해상수송 및 주입터미널 프로젝트’를 통해 지중 저장 원천기술을 개발하는데 성공했고 이어, 이번에 액상 이산화탄소 운반선상에서 발생하는 증발가스의 위험성을 인식하고 이를 최적화하는 해법을 제시했다.
장 교수 연구팀은 선박을 이용해 액화 이산화탄소를 운송할 때 저온(-51℃)・고압(6.5bar)의 상태로 운반돼야 하는 점에 주목했다.
상온보다 낮은 온도로 운반되는 액화 이산화탄소 저장용기는 대기의 열 침투로 증발가스가 발생해 내부 압력이 높아져 용기가 파괴될 수 있기 때문이다.
연구팀은 이 같은 문제를 해결하기 위해 압력용기에서 기화된 이산화탄소 가스를 재 액화 처리해 다시 압력용기로 주입하는 방법을 제시하고 이론적으로 모델링했다.
또 원유값, 탄소세, 원유증진회수를 위한 탄소거래비용 등 CCS 기술 도입을 위해 핵심적으로 고려될 사항을 바탕으로, 선박의 증발 가스 재액화율 결정을 위한 최적화된 해법을 고안해 냈다.
장대준 교수는 “저장된 이산화탄소가 해양에서 누출되면 대형사고로 번지게 된다” 며 “저장된 이산화탄소의 압력 거동을 예측하고 발생한 증발가스의 적절한 처리방안을 만드는 것이 상용화를 위한 필수적인 과정”이라고 말했다.
아울러 “이번 연구에서 정립된 이론은 CCS 상용화를 위한 시스템의 최적화와 액상 이산화탄소 운반 선박의 개발에 활용될 것으로 기대 된다”고 강조했다.
한편, 이번 연구는 KAIST 해양시스템공학과 장대준 교수(제1저자 추봉식 박사과정 학생)가 교육과학기술부의 세계수준 연구중심대학(World Class University)과 국토해양부의 지원을 받아 수행했다.
장 교수 연구팀의 이 연구 성과는 환경 분야에서 세계적 학술지로 꼽히는 ‘국제 온실가스 제어(International Journal of Greenhouse Gas Control)지’ 6월 12일자 온라인 판에 실렸다.
그림 1. 저장된 액화 화물에서의 BOG 발생 및 그 영향
그림 2. 증발가스 생성으로 인한 저장용기 내부 압력 변화 및 열팽창으로 인한 액위 변화
그림 3. 누출 시 속도 및 온도 변화에 의한 주변 구조 및 선체에 미치는 영향
그림 4. 누출 시 이산화탄소의 거동 관측 실험
그림 5. CCS-EOR 병행 기술에서 증발가스 재액화가 미치는 영향
2012.06.27
조회수 18298