본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%ED%94%8C%EB%9D%BC%EC%A6%88%EB%A7%88
최신순
조회순
플라즈마 제트 기초 기술 개발
우리 대학 원자력및양자공학과 최원호 교수 연구팀이 기체를 이온화시킨 *플라즈마가 기체와 액체 사이 경계면의 유체역학적 안정성을 증가시키는 것을 최초로 발견하고 이를 규명하는 데 성공했다고 2일 밝혔다. ☞ 플라즈마(Plasma): 기체가 높은 에너지로 가열돼 전하를 띄는 전자와 이온으로 분리된 상태를 말한다. 반도체와 디스플레이 제조공정에 핵심적인 역할을 하며, 형광등 내부나 네온사인, 공기청정기 등에서 접할 수 있다. 최 교수 연구팀은 헬륨 기체 제트를 고전압으로 이온화시켜 얻은 플라즈마를 물 표면에 분사시켰을 때, 일반적인 기체와 액체 사이의 경계면에서보다 경계면이 훨씬 안정적으로 유지되는 것을 발견했다. 이는 자연에 존재하는 약하게 이온화된 기체와 액체 사이의 상호작용에 관한 이해를 넓히고, 플라즈마 제트를 활용하는 기초과학․응용 분야에 크게 도움이 될 것으로 기대된다. 한국핵융합에너지연구원 박상후 박사(우리 대학 물리학과 박사졸업)가 제1 저자로, 최 교수가 교신저자로 참여한 이번 연구 결과는 국제 학술지 `네이처(Nature)' 4월 1일 字에 게재됐다. (논문명: Stabilization of liquid instabilities with ionized gas jets) 가정에서 사용하는 샤워기의 물줄기, 와인의 눈물, 갯벌 바닥의 물결무늬 등 불규칙한 패턴들에서 우리는 유체 경계면에서 나타나는 유체역학적 불안정성을 흔히 볼 수 있다. 컵에 담긴 주스의 표면 위에 빨대를 두고 숨을 약하게 불면 주스 표면이 보조개 형태로 오목하게 들어가는데, 이때 빨대를 더 강하게 불면 주스에 거품이 일고 물방울이 튀어 오르는 현상도 공기와 주스 사이 경계면의 불안정성 때문이다. 한편 제트 형태의 기체를 액체 표면에 분사시키는 구조는 여러 과학 및 산업 기술에서 활발히 쓰이고 있으며, 여러 흥미로운 물리화학적 현상이 발생해 학문적으로도 지속적인 관심을 받고 있다. 그러나 앞서 예를 든 것과 같이, 기체 제트가 분사되는 액체 표면에서 유체역학적 불안정성이 증가하는 현상과 이를 안정화하는 방법에 대한 이해가 부족해, 관심은 높은데도 불구하고 활용성을 높이는 데 한계가 있었다. 최원호 교수 연구팀은 기체 제트를 강한 전기장으로 이온화시켜 만든 플라즈마의 특성을 이용하면 기체와 액체 사이 경계면의 안정성을 향상시킬 수 있다는 것을 실험과 이론으로 밝혀냈다. 일반적으로, 번개구름인 뇌운(雷雲) 속의 빗방울처럼 강한 전기장 환경에 놓인 액체에서는 표면의 불안정성이 증가한다. 불안정화의 대표적인 예로 전기방사(electrospinning)에서 전기 유체역학적 불안정성(electrohydrodynamic instability)의 결과로 나타나는 테일러 원뿔(Taylor cone) 현상이 있다. 최 교수 연구팀이 이번 실험에 활용한 플라즈마 제트에서는 `플라즈마 총알(plasma bullet)'로 불리는 고속의 이온화 파동과 전기바람(electric wind)이 발생하는데, 연구팀은 이들의 특성을 이용해 물 표면의 불안정성을 줄일 수 있었다. 기체 제트 내에 플라즈마를 발생시키면 생성되는 1초당 수십 미터 속력의 전기바람으로 인해 물 표면에 가해지는 힘이 증가해서 물 표면이 더 깊이 파이게 되고, 이에 따라 물 표면이 불안정해져야 하는 조건임에도 불구하고 안정적으로 유지되는 것을 연구팀은 실험적으로 확인했다. 연구팀은 플라즈마-물 이론 모델을 정립해, 물의 표면을 따라 1초당 수십 킬로미터 속력으로 이동하는 플라즈마 총알이 물 표면에 나란한 방향으로 일으키는 강한 전기장으로 인해 물 표면이 안정적으로 유지됨을 최초로 규명했다. 연구팀이 활용한 플라즈마 제트는 최근 여러 학제간 연구 분야에 다양한 목적으로 활용되고 있다. 최원호 교수는 "이번 연구의 결과는 플라즈마에 대한 과학적 이해를 높이는 동시에, 경제적이고 산업적 활용이 가능한 플라즈마 유체 제어 분야를 확대할 것ˮ이라며, "플라즈마 의료, 생명, 농업, 식품, 화학 등 여러 분야의 기술 개발에 크게 기여할 것이다ˮ 라고 말했다. 한편 이번 연구는 한국연구재단 개인연구지원사업(우수신진연구)과 KAIST High-Risk and High-Return 프로젝트의 지원을 받아 수행됐다. 또한, 우리 대학 기계공학과 김형수 교수와 배충식 교수의 학술적인 지원을 받아 진행됐다.
2021.04.02
조회수 89422
인공신경망 기반 핵융합플라즈마 자기장 재구성 기술 개발
우리 대학 원자력및양자공학과 김영철 교수 연구팀(핵융합및플라즈마연구실)이 국가핵융합연구소, ㈜모비스 연구진과 공동으로 인공신경망 기반 핵융합플라즈마 자기장의 재구성 기법을 개발했다. 김 교수 연구팀은 비실시간으로 엄밀히 계산된 자기장 구조와의 오차를 최소화함과 동시에 실시간으로 해당 정보를 제공할 수 있는 인공신경망을 개발해 핵융합플라즈마 제어 성능을 높이는 데 기여할 것으로 기대된다. 정세민 박사과정이 1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘뉴클리어 퓨전(Nuclear Fusion)’ 2019년 12월 3일 자에 게재됐다. (논문명: Deep neural network Grad-Shafranov solver constrained with measured magnetic signals) 핵융합 연구에 널리 사용되는 토카막은 실시간으로 재구성된 자기장 구조를 바탕으로 초고온(약 1억도) 핵융합 플라즈마의 운전과 제어를 가능하게 만든다. 따라서 재구성된 자기장 구조의 정확도는 토카막 운전 성능과 밀접한 관계가 있다. 2계 비선형 미분방정식을 따르는 토카막의 내부 자기장은 일반적으로 수치해석 기법과 외부에서 측정된 자기장 값을 이용하여 재구성된다. 실시간과 비실시간 재구성 기법이 존재하며, 비실시간 기법의 정확도가 실시간보다 높다고 알려졌지만 이름에서도 확인할 수 있듯 실시간 운전에 활용하기 어렵다는 아쉬움이 있다. 연구팀은 비실시간 기법의 정확도를 유지하되 실시간으로 해당 정보를 확보할 수 있는 알고리즘을 인공신경망을 활용해 개발했다. 측정된 외부 자기장과 토카막 내부 공간 정보를 입력값으로 하고 비실시간 기법을 활용해 재구성된 자기장을 출력값으로 신경망을 훈련했다. 또한, 신경망의 출력값은 앞서 언급된 2계 비선형 미분방정식을 만족해야 하므로 이 역시 신경망의 훈련 조건으로 둬 단순한 자기장 재구성을 넘어서 해당 문제의 지배방정식 역시 만족하도록 했다. 연구팀이 개발한 기법은 그 성능의 우수성과 더불어 토카막의 고성능 운전 달성에 큰 영향을 미칠 것을 인정받았다. 세계적으로 활발히 진행 중인 토카막 연구에 가장 기초적이며 중추적인 토카막 내부 자기장 정보를 최소화된 오차 내에서 실시간으로 제공할 수 있다는 점에서 토카막을 활용한 핵융합발전의 가능성을 제고할 수 있을 것으로 기대된다. 이번 연구는 과학기술정보통신부 한국연구재단의 핵융합기초연구사업과 개인연구사업(신진연구) 및 기관고유과제 KAI-NEET의 지원을 받아 수행됐다. 타기관 참여연구진 국가핵융합연구소(공저자순): 박준교, 이상곤, 한현선, 김현석 ㈜모비스(공저자순): 이근호, 권대호 □ 그림 설명 그림1. 토카막 내부 재구성된 자기장 구조
2020.02.05
조회수 10382
최원호 교수, 플라즈마에 의한 수산기(OH radical) 생성원리 규명
〈 박주영 박사, 최원호 교수, 박상후 박사 〉 우리 대학 원자력및양자공학과 최원호 교수 연구팀이 대기압 플라즈마에서 수산기(OH radical)가 생성되는 원리를 규명하는 데 성공했다. 박상후 박사, 박주영 박사과정 학생이 공동 1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘케미컬 엔지니어링 저널(Chemical Engineering Journal)’ 7월 8일 자 온라인판에 게재됐다 (논문명: Origin of Hydroxyl Radicals in a Weakly Ionized Plasma-Facing Liquid). 플라즈마란 강한 전기적 힘으로 인해 기체 분자가 이온과 전자로 나누어지는 상태를 말한다. 특히 대기압 플라즈마는 대기 중에 여러 형태로 플라즈마 효과 및 2차 생성물을 방출하는 장점이 있어 살균, 정화, 탈취 등 에너지 및 환경 분야부터 생의학 분야까지 다양한 연구 및 산업 분야에 활용되고 있다. 다양한 분야에서 시도되는 플라즈마는 물과 밀접한 관련이 있다. 물을 플라즈마로 처리한 방전수를 만들어 농업용수 및 살균수로 사용하기도 하고, 생의학 분야에서도 70%가 수분으로 구성된 인체에 활용하기 위해 플라즈마와 물의 반응에 대해 끊임없이 연구가 진행된다. 그중 수산기는 대표적인 활성 산소종으로, 물과 플라즈마의 반응에서 가장 중요한 역할을 하는 물질이다. 수산기는 산화력이 매우 커 여러 목적으로 활용이 시도되고 있으며, 박테리아 살균의 경우 기존의 살균법인 과산화수소나 오존을 사용할 때보다 수십에서 수백 배 효율이 높은 것으로 2018년 최원호 교수 연구팀에서 밝힌 바 있다. 수산기는 살균뿐 아니라, 수질 정화, 폐수 처리, 세척 등 환경 분야 및 멸균, 소독, 암세포 제거 등 의료 기술에서도 매우 높은 잠재력을 가지고 있다. 그러나 수산기는 대량으로 생성하기가 어렵고 생존 기간이 짧아 플라즈마 기술을 적극적으로 활용하는 데 한계가 있다. 연구팀은 문제 해결을 위해 플라즈마 내에서 기존에 알려진 수산기의 생성 방식 외에 산화질소의 광분해에 의한 생성원리를 규명했다. 더불어 광분해를 촉진시켜 수산기의 생성량을 높이면서 동시에 제어하는 방법을 개발했다. 광분해 방법이란 플라즈마로 생성된 산화질소가 존재하는 물과 플라즈마에 자외선을 추가로 노출해 산화질소가 수산기로 분해되는 과정을 말한다. 연구팀이 개발한 광분해방법은 수산기의 생성 위치를 국한하지 않고, 자외선 노출 위치에 따라 제어할 수 있어 생존 기간이 짧다는 단점을 극복할 수 있다. 최원호 교수는 “이번 연구를 통해 플라즈마 기술에 대한 과학적 이해를 넓히면서 효율적인 플라즈마 기술의 제어 방법을 제시함으로써 농업, 식품, 바이오 의학 등 다양한 분야에 플라즈마 기술이 적극적으로 접목될 수 있는 기반을 마련할 것이다”라고 말했다. 이번 연구는 국가핵융합연구소의 미래선도 플라즈마-농식품 융합기술 개발 사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 플라즈마 처리수(PTW)에서 pH와 과산화수소, 아질산염 비율에 따른 수산기 반응 경로 그림2. 대기압 플라즈마 사진 및 수산기 생성경로
2019.08.16
조회수 13829
최원호 교수, 플라즈마 내 전자의 가열 원리 규명
〈 최원호 교수, 박상후 연구교수〉 우리 대학 원자력및양자공학과 최원호 교수 연구팀이 약하게 이온화된 플라즈마(weakly ionized plasma)에서 전자가 가열되는 구조와 제어 원리를 규명하는데 성공했다. 플라즈마 내의 모든 반응이 전자로부터 시작된다는 점으로 볼 때 전자의 가열 원리를 규명함으로써 플라즈마를 더욱 자유롭고 다양하게 활용할 수 있을 것으로 예상된다. 이는 대기압 플라즈마 내에 존재하는 자유 전자에 대한 기초 연구 자료로 기존 플라즈마의 활용 및 응용 가능성을 높이는 등 플라즈마 물리학 및 응용기술 발전에 크게 기여할 것으로 기대된다. 박상후 연구교수가 1저자로 참여한 이번 연구는 국제 학술지 ‘사이언티픽 리포트(Scientific Reports)’5월 14일자와 7월 5일자 온라인 판에 연달아 게재됐다. (논문명 : Electron information in single- and dual-frequency capacitive discharges at atmospheric pressure, 단일 및 이중 주파수 대기압 플라즈마의 전자 정보 / Electron heating in rf capacitive discharges at atmospheric-to-subatmospheric pressures, 대기압과 대기압보다 낮은 압력에서 라디오 주파수 플라즈마 내의 전자 가열) 물질의 세 가지 상태인 고체, 액체, 기체와 더불어 ‘물질의 네 번째 상태’라 불리는 플라즈마는 표준 온도 및 압력(25 ℃, 1 기압)의 상태에서는 자연적으로 존재하지 않으나 인위적으로 기체에 에너지를 가하면 플라즈마 상태가 된다. 학계 및 산업계는 활용 목적과 조건에 맞춰 다양한 형태의 플라즈마 발생원을 개발해 사용하고 있다. 특히 대기압 플라즈마는 응용 가능 분야가 다양하고 활용도가 높아 학술적, 산업적 활용성 측면에서 많은 관심을 받고 있다. 일반적으로 플라즈마 내의 다양한 화학적, 물리적 반응은 전자로부터 시작되기 때문에 전자의 밀도와 온도의 시공간적 변화는 아주 중요한 정보이다. 플라즈마 및 가속기 물리학 분야에서 자유 전자의 가열 여부는 과학자들의 관심을 지속적으로 받은 연구 주제이다. 그러나 대기압 조건에서는 자유 전자와 중성기체의 충돌이 빈번하기 때문에 이온화된 플라즈마 내 자유 전자의 밀도와 온도를 측정하는 데에는 한계가 있어 자유 전자의 가열 구조 및 원리를 실험적으로 규명할 수 없었다. 또한 전자 가열의 제어 방법 및 주요 요인에 대한 정보가 부족해 플라즈마의 반응성과 활용성 개선이 제한적이었다. 연구팀은 문제 해결을 위해 전자-중성입자 제동복사(electron-neutral bremsstrahlung)란 기술을 이용해 플라즈마 내 자유 전자의 밀도, 온도를 정확히 진단하고 이를 2차원으로 영상화하는 기술을 개발했다. 연구팀은 개발한 진단 기술을 이용해 대기압 플라즈마에서 수 나노초(10억분의 1초) 단위로 자유 전자의 온도(에너지)를 측정해 전자가 에너지를 얻는 가열 과정의 시공간적 분포 및 근본 원리를 밝히는 데 성공했다. 0.25~1기압 압력구간에서의 전자 온도의 시공간적 분포의 변화를 실험적으로 최초로 확인해 대기압 및 대기압보다 낮은 압력에서 전자가 에너지를 얻는 가열의 기본 원리를 규명했다. 최 교수는 “이 연구 결과는 자유 전자와 중성입자의 충돌이 매우 빈번한 조건에서 발생하는 플라즈마에서의 전자 가열 원리를 학문적으로 이해하는 데 유용할 것이다”며 “이를 통해 경제적, 산업적 활용 가능한 대기압 플라즈마 발생원을 개발하고 다양하게 활용하는데 큰 역할을 하길 기대한다”고 말했다. 이번 연구는 국가핵융합연구소의 미래선도플라즈마-농식품융합기술개발사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 측정된 파장의 제동복사 및 전자 온도의 시공간적 변화 그림2. 단일 및 이중 주파수로 구동하는 플라즈마에서 측정된 제동복사 및 전자 온도의 시공간적 변화
2018.07.26
조회수 13647
최원호 교수, 전기바람 발생 원리 규명
우리 대학 물리학과 최원호 교수가 전북대 문세연 교수와의 공동 연구를 통해 전기 바람(Electric wind)이라 불리는 플라즈마 내 중성기체 흐름의 주요 원리를 규명했다. 이는 플라즈마 내 존재하는 전자나 이온과 중성입자 사이의 상호작용에 대한 기초 연구로 플라즈마를 이용하는 유체 제어기술 등 플라즈마 응용 기술의 발전에 기여할 것으로 기대된다. 박상후 박사가 1저자로 참여한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 1월 25일자 온라인 판에 게재됐다. 두 개의 서로 다른 입자 무리로 구성된 유체역학 문제는 수세기 동안 뉴턴을 포함한 많은 과학자들의 관심을 지속적으로 받아 온 연구주제이다. 전자나 이온과 중성입자 간의 충돌로 인한 상호작용은 지구나 금성의 대기에서도 일어나는 여러 자연현상의 기초 작용으로 흔히 알려져 있다. 플라즈마에서의 전기바람은 이 상호작용을 통해 나온 결과의 대표적인 예다. 전기바람이란 전하를 띈 전자나 이온이 가속 후 중성기체 입자와 충돌해 발생하는 중성기체의 흐름을 말한다. 선풍기 날개와 같이 기계적인 움직임 없이 공기의 움직임을 일으킬 수 있는 방법으로 기존의 팬을 대체할 수 있는 차세대 기술로 주목받고 있다. 최근에는 이와 같은 플라즈마 기술을 적용해 트럭 및 선박에서 발생하는 공기저항을 감소시켜 연료효율의 증가와 미세먼지 발생 감소, 풍력발전기 날개 표면의 유체 분리(flow separation)의 완화, 도로 터널 내 공기저항 및 미세먼지 축적 감소, 초고층 건물의 풍진동 감소와 같은 응용기술 개발이 여러 나라에서 활발히 시도되고 있다. 대기압 플라즈마 내에 전기장이 강하게 존재하는 공간에서 전자나 이온이 불균일하게 분포되면 전기바람이 발생한다. 전기바람의 주요 발생 원인은 현재까지도 명확하게 밝혀지지 않아 유체 제어와 관련한 여러 응용분야에 적용하는데 어려움이 있었다. 연구팀은 대기압 플라즈마를 이용해 전기바람 발생의 전기 유체역학적 원리를 밝히는데 성공했다. 전기 유체역학적 힘에 의한 스트리머 전파와 공간전하 이동의 효과를 정성적으로 비교하는 데 성공했다. 연구팀은 스트리머 전파는 전기바람 발생에 큰 영향을 주지 못하고 오히려 스트리머 전파 이후 발생하는 공간전하의 이동이 주요 원인임을 밝혔다. 특정 플라즈마에서는 음이온이 아닌 전자가 전기바람 발생의 핵심 요소임을 확인했다. 또한 헬륨 플라즈마에서 최고 초속 4m 속력의 전기바람이 발생했는데 이는 일반적인 태풍 속력의 4분의 1 정도이다. 이러한 결과를 통해 전기바람의 속력을 효율적으로 제어할 수 있는 기초 원리를 제공할 수 있을 것으로 보인다. 이번 연구는 하전입자와의 상호작용으로 인해 중성기체 흐름이 발생하는 원리를 실험을 통해 설명했고 정확한 분석법과 설득력을 갖췄다는 평을 받는다. 최 교수는 “이번 결과는 대기압 플라즈마와 같이 약하게 이온화된 플라즈마에서 나타나는 전자나 이온과 중성입자 사이의 상호작용을 학문적으로 이해하는데 유용한 기반이 될 것이다”며 “ 이를 통해 경제적이고 산업적 활용이 가능한 플라즈마 유체제어 분야를 확대하고 다양한 활용을 가속화하는데 큰 역할을 할 것으로 기대된다”고 말했다. 이번 연구는 국가핵융합연구소의 미래선도플라즈마-농식품융합기술개발사업과 산업통상자원부의 사업화연계기술개발사업(R&BD)의 지원을 받아 수행됐다. □ 그림 설명 그림1. 약전리 대기압 제트 플라즈마 사진 그림2. 대기압 헬륨 제트 플라즈마의 고전압 펄스 폭 및 높이에 따른 전기바람 속력의 변화
2018.02.19
조회수 17291
최원호 교수, 플라즈마로 바이오필름 제거 기술 개발
〈 박 주 영 박사과정, 최 원 호 교수, 박 상 후 박사 〉 우리 대학 물리학과 최원호 교수, 서울대 조철훈 교수 공동 연구팀이 대기압 저온 플라즈마를 통해 페트병 등 식품 보관 용기 표면에 존재하는 대장균, 박테리아 등 일명 바이오필름을 손쉽게 제거할 수 있는 기술을 개발했다. 이는 플라즈마를 물에 처리해 활성화시켜 발생하는 화학반응을 이용해 바이오필름을 제거하는 방식으로 기존 기술보다 안전하고 손쉬워 다양한 용도로 사용 가능할 것으로 기대된다. 박상후 박사, 박주영 박사과정이 공동 1저자로 참여한 이번 연구는 재료분야 국제 학술지 ‘미국화학회 어플라이드 머티리얼즈&인터페이시스(ACS Applied Materials & Interfaces)’ 2017년도 12월 20일자에 게재됐다. 대기압 플라즈마는 대기 중에서 여러 형태로 플라즈마 및 2차 생성물을 방출할 수 있는 장점을 갖는다. 번개도 플라즈마의 일종인데 번개를 통해 공기 중 질소가 질소화합물이 돼 땅 속에 스며들어 토양을 비옥하게 만드는 것이 대표적인 사례이다. 이런 장점을 활용해 플라즈마는 에너지 및 환경 분야부터 생의학 분야까지 다양한 연구와 산업분야에 응용되고 있으며 플라즈마의 반응성 및 활용성을 높이기 위한 연구들이 전 세계적으로 활발히 진행 중이다. 최근에는 의료기술, 식품, 농업 등 다양한 분야에 살균을 목적으로 한 활성화, 기능화 등 측면에서 대기압 플라즈마를 적용하고 있다. 그러나 대기압 플라즈마로부터 발생하는 활성종의 종류, 밀도, 역할 등은 현재까지도 명확하게 밝혀지지 않아 기술을 적용하는 데 큰 어려움이 있었다. 연구팀은 플라즈마를 물에 처리시켜 활성수로 만들어 대장균, 살모넬라, 리스테리아 등 유해한 미생물이 겹겹이 쌓여 막을 이룬 형태를 뜻하는 바이오필름을 제거하는 방법을 개발했다. 플라즈마를 처리할 때 발생하는 활성종은 수산기(하이드록시기, OH*), 오존, 과산화수소, 아질산이온, 활성산소 등이다. 연구팀은 그 중 수산기가 다른 활성종에 비해 100 배에서 1만 배 낮은 농도임에도 불구하고 산화력이 높아 바이오필름 제거에 큰 역할을 하는 것을 확인했다. 연구팀은 그 외에 발생된 오존, 과산화수소, 아질산 이온 등에 대해서도 바이오필름을 제거할 수 있는 기능이 있음을 정량적으로 증명했고 이를 통해 살균제로서 대기압 플라즈마의 역할을 규명했다. 연구팀은 향후 후속 연구를 통해 플라즈마로 수산기를 효율적으로 생산할 수 있는 기술을 개발할 예정이다. 최 교수는 2013년 플라즈마 발생이 가능한 포장재를 특허로 등록했고 지도학생 창업기업인 플라즈맵에 기술이전을 완료했다. 이번 연구를 통해 플라즈마 살균 기술의 상용화에 힘쓰는 중이다. 최 교수는 “이번 연구결과는 플라즈마 제어 기술과 플라즈마-미생물 간 물리화학적 상호작용을 이해하는데 유용한 기반이 될 것이다”며 “의학, 농업, 식품 분야에서의 플라즈마 기술의 활용이 가속화되는 계기가 될 것으로 기대한다”고 말했다. 이번 연구는 국가핵융합연구소의 미래선도 플라즈마-농식품 융합기술 개발 사업의 지원을 받아 수행됐다. □ 그림 설명 그림1.플라즈마 발생이 가능한 포장재 그림2.대기압 플라즈마를 이용한 바이오필름 저감 실험 개략도 그림3.대기압 플라즈마 적용 개념도 및 핵심요소 평가 결과 그림4.스타트업 기업인 플라즈맵(Plasmapp)에서 시판중인 STERPACK 제품
2018.01.23
조회수 17293
류호진 교수, 금속 칵테일로 핵융합에 사용가능한 신소재 개발
우리 대학 원자력 및 양자공학과 류호진 교수 연구팀이 칵테일처럼 여러 원소를 혼합하는 방식을 통해 핵융합 플라즈마의 대면재로 적용 가능한 신소재 합금을 개발했다. 이번 연구를 통해 핵융합 발전과 같은 극한적 환경에서 사용되는 금속의 범위가 다양하게 확장될 것으로 기대된다. 오와이스 왓심 박사과정이 1저자로 참여한 이번 연구는 온라인 국제 학술지 ‘사이언티픽 리포트(Scientific Report)’ 5월 16일자에 게재됐다. 미래 에너지원으로 여겨지는 핵융합 발전을 실현하기 위해서는 고온의 플라즈마를 가두고 있는 토카막(tokamak) 용기의 내구성이 중요하다. 도넛 모양의 토카막은 강력한 자기장을 통해 1억℃가 넘는 플라즈마를 안정적으로 유지시켜주는 역할을 한다. 그럼에도 불구하고 플라즈마의 고온에 따른 열부하, 플라즈마 이온, 중성자 등으로 인해 토카막 용기는 손상이 발생한다. 이 토카막 용기를 보호하기 위한 대면재로 텅스텐 등의 금속이 쓰이고 있으나 완벽한 핵융합 발전을 위해서는 고성능 신소재의 개발이 필수적이다. 류 교수 연구팀은 텅스텐에 소량의 금속을 첨가해 물성을 개량하는 기존 방법들보다 한 발 더 나아가 다량의 금속을 동시에 혼합하는 기술을 활용했다. 이는 마치 칵테일처럼 여러 금속 분말을 혼합한 후 소결하는 분말야금 기술로 이를 통해 텅스텐보다 경도와 강도가 2배 이상 향상된 신소재 합금을 제조하는 데 성공했다. 핵융합에서는 다양한 물질을 함께 혼합하는 위와 같은 방식이 역효과를 발생시키기도 한다. 몰리브덴, 니오븀 등은 핵융합을 하면서 발생하는 중성자와 반응을 해 방사성이 높은 원소로 탈바꿈하는 방사화 현상이 발생해 방사능을 발산하기도 한다. 류 교수 연구팀은 이러한 제약들을 고려해 크롬, 티타늄 등을 첨가했고 이는 경도 향상 뿐 아니라 제조 공정의 촉진, 방사화 방지 등의 효과도 얻어냈다. 연구팀은 고온 기계적 특성과 더불어 열전도도, 플라즈마 상호작용, 중성자 조사취화, 트리튬 흡수 억제, 고온 내산화 특성 등을 최적화하는 합금 조성을 찾기 위한 연구를 계속 진행할 예정이다. 류 교수는 “핵융합 플라즈마 대면재는 열 충격과 플라즈마 및 중성자로 인한 손상이 극심해 이를 견딜만한 금속이 없을 정도로 극한적 환경에 노출된다”며 “이번 연구결과로 핵융합 및 원자력용 고융점 저 방사화 금속을 개발하고자 하는 시도가 전 세계적으로 활발해질 것으로 예상된다”고 말했다. 이번 연구는 미래창조과학부와 한국연구재단의 핵융합기초연구사업과 전략구조소재 신공정설계 연구센터의 지원을 받아 수행됐다. □ 그림 설명 그림1. 연구를 통해 제조된 텅스텐 기반 고강도 신합금 그림2. 고융점 금속 혼합 공정을 통한 핵융합 플라즈마 대면재 개발 개요
2017.05.24
조회수 14333
5단 수직 적층 반도체 트랜지스터 개발
우리 대학 전기 및 전자공학부 이병현 연구원(지도교수 최양규)과 나노종합기술원(원장 이재영) 강민호 박사가 실리콘 기반의 5단 수직 적층 반도체 트랜지스터를 개발했다. 그리고 반도체 트랜지스터를 이용한 비휘발성 메모리 개발에 성공했다. 이번 연구는 나노 분야 학술지 ‘나노 레터스(Nano letters)’ 11월 6일자 온라인판에 게재됐다. 반도체 트랜지스터 분야는 모든 전자기기의 핵심 구성요소로 국내 산업과 경제 발전에 큰 영향을 끼쳤다. 세계적 추세에 따라 치열한 소형화를 통해 생산성과 성능의 향상을 거듭했으나 최근 10나노미터 시대에 접어들며 제작 공정의 한계 및 누설전류로 인한 전력소모 문제가 커지고 있다. 학계 및 산업계는 문제 해결을 위해 전면-게이트 실리콘 나노선 구조를 개발했다. 이는 누설전류 제어에 가장 효과적인 구조로 저전력 트랜지스터 개발에 이용됐다. 그러나 이 역시 소형화에 따른 나노선 면적 감소로 성능 저하의 한계가 있었다. 연구팀은 전면-게이트 실리콘 나노선을 수직으로 5단으로 쌓아 문제를 해결했다. 이 5단 적층 실리콘 나노선 채널을 보유한 반도체 트랜지스터는 단일 나노선 기반의 트랜지스터보다 5배의 향상된 성능을 보였다. 또한 수직 적층 나노선 구조는 말 그대로 위로 쌓기 때문에 단일 구조와 달리 면적이 증가되지 않아 집적도 향상에도 기여할 수 있다. 나노선 수직 적층은 개발된 ‘일괄 플라즈마 건식 식각 공정’ 방식을 통해 이뤄졌다. 이 공정은 고분자 중합체를 이용해 패턴이 형성될 영역에 미리 보호막을 친 뒤 등방성 건식 식각을 통해 나노선 구조를 형성하는 기술이다. 수직 적층 나노선 구조는 이 기술의 연속 작용을 통해 확보한 결과물이다. 이 기술은 지속적 소형화로 인해 기술적 한계에 부딪힌 반도체 트랜지스터 분야에 새로운 돌파구를 제시할 것으로 기대된다. 관련 연구가 이전부터 진행됐지만 더 간단한 공정기술을 이용해 가장 많은 나노선 채널의 적층에 성공했기 때문에 비용절감 및 제작 시간 단축, 반도체 트랜지스터의 성능 향상으로 인한 상용화 등에 크게 기여할 것으로 예상된다. 연구팀은 건식 식각 공정 기술이 기존 방법보다 간단하고 안정적으로 수직 적층 실리콘나노선 구조 제작을 가능하게 함으로써 고성능 트랜지스터 개발에 응용 가능할 것이라고 밝혔다. 이병현 연구원과 강민호 박사는 “이번 기술 개발은 미래창조 국가 나노기술 인프라 기관 나노종합기술원의 훌륭한 반도체 연구 기반과 김진수 부장 포함 관련 연구진들의 우수한 공정 능력이 뒷받침돼 가능했다”고 소감을 말했다. 이번 연구는 글로벌프론티어사업 스마트IT융합시스템 연구단의 지원을 받아 수행됐다. 연구를 주도한 이병현 연구원은 우리 대학 최양규 교수 지도하에 박사과정을 수행 중이며, 삼성전자 메모리 사업부의 책임 연구원으로 재직 중이다. □ 그림 설명 그림1. 일괄 플라즈마 건식 식각 공정 과정의 모식도. 그림2. 서로 다른 방향에서 단면을 관찰한 주사 전자 현미경 사진 및 투과 전자 현미경 사진
2015.11.24
조회수 12753
최경철 교수팀, 세계 최고 고효율 PDP 발광 핵심 원천기술 개발
- PDP 전력 소모 문제 해결할 수 있는 핵심 원천 기술 - 미국 정보 디스플레이 학회(5월) 초청 논문으로 발표 예정 PDP(Plasma Display Panel) 전력 소모를 대폭 개선할 수 있는 고효율 발광 핵심 원천기술이 국내 연구진에 의해 개발되었다. KAIST(총장 서남표) 전기및전자공학과 최경철(崔景喆, 43) 교수팀은 디지털 TV 대표격인 PDP의 새로운 셀 구조와 구동 방식을 개발했다. 이 기술은 PDP의 발광 효율을 현재보다 4배 이상 높일 수 있는 핵심 원천기술로 오는 5월 21일 미국 롱비치에서 개최되는 SID 2007(Society for Information Display 2007)에 초청논문으로 발표될 예정이다. SID는 세계 최대의 정보 디스플레이 학회다. 기존의 PDP의 발광 효율은 1.5 - 2 lm/W(루멘/와트; 풀 화이트 기준)이었지만, 崔 교수 팀이 개발한 원천 기술을 적용하면 PDP 발광 효율이 12 lm/W(그린 셀 기준; 풀 화이트로 환산하면 8.4 lm/W 이상)까지 얻을 수 있다. 崔 교수팀은 지난 2월 최대 발광 효율 8.7 lm/W(그린 셀 기준)를 달성한 논문을 IEEE 전자기기학회지(IEEE Transaction on Electron Devices)에 게재하여 주목을 받았다. 이후 새로운 구동 방식에 대한 지속적인 연구로 세계 최고인 12 lm/W의 발광 효율을 달성했다. PDP는 다른 디스플레이 소자에 비해 정격 소비 전력이 높은 디스플레이 소자로 인식되어 왔다. 그 이유는 PDP 셀 내의 에너지 효율이 떨어져 발광 효율이 낮기 때문이다. 발광 효율을 향상시키기 위해서는 PDP 셀 내의 마이크로 플라즈마를 효과적으로 제어하여 효율을 향상시켜야 한다. 국내 PDP 개발 업체들은 일본 후지쯔사가 개발한 3전극 셀 구조 및 구동 방식을 사용하고 있다. 崔 교수팀이 개발한 셀 구조는 4전극 형태로 된 새로운 구조다. PDP 셀 구조를 기존의 3전극 구조 대신 4전극 구조로(그림1 참조) 셀 내의 두 개의 유지 전극 사이에 보조 전극을 삽입했다. 이 보조 전극을 통해 PDP 셀 내의 마이크로 플라즈마 및 벽 전하를 제어함으로 효율을 향상시킬 수 있었다. 초고효율 셀 구조를 안정되게 구동, 디스플레이 할 수 있는 신구동 방식(그림2 참조)의 핵심 원천 기술도 함께 개발하였다. 崔 교수는 “이 핵심 원천 기술을 이용하면 국내 PDP 생산 기업들이 일본 및 미국의 PDP 원천 기술에 대한 사용료 없이 고효율의 디지털 PDP TV 생산이 가능하게 될 것이다. 풀(Full) HD 해상도를 갖는 PDP TV의 밝기가 감소하는 단점을 개선하면 타 디스플레이와의 상업적 경쟁력을 높일 수 있다.”고 말했다. 이 기술은 국내 특허 1건을 등록하고 국제 특허 1건과 국내 특허 2건을 출원중에 있다. 이 연구는 차세대정보디스플레이 기술 개발 사업 및 KAIST 기관고유 사업에 의해 이루어졌다.
2007.04.16
조회수 18543
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1