-
차세대소형위성2호 초기 교신 성공
우리 대학 인공위성연구소(소장 한재흥)에서 개발한 차세대소형위성2호가 지난 5월 25일 18시 24분에 발사된 누리호에서 안전하게 분리되어 목표 궤도에 성공적으로 안착하였으며, 같은날 19시 58분 대전 KAIST 지상국과 최초 교신에 성공했다.
차세대소형위성2호의 최초 비콘 신호는 누리호 발사 후 약 40분 만인 25일 저녁 7시 4분경 항공우주연구원의 남극 세종기지 안테나를 통해 수신할 예정이었으며, 실제로는 7시 7분에 수신이 확인되었다. 위성 발사 후 약 94분 만인 25일 저녁 7시 58분경 대전 KAIST 지상국과 최초 교신에 성공했다.
이후, 남극 세종기지에서 비콘 신호를 2차례 더 확인했고, 스웨덴 보덴 지상국과 대전 KAIST 지상국에서 8차례 교신을 수행하면서 차세대소형위성2호의 통신시스템과 자세제어시스템, 전력시스템, 탑재 컴퓨터 등의 기능을 점검했다.
특히, 국내 우주핵심기술 연구개발 성과물로 차세대소형위성2호의 자세제어시스템에 처음 적용된 반작용휠과 광학자이로의 기능을 점검하고, 차세대소형위성2호 태양전지판이 태양을 바라보는 자세제어와 고속데이터 송신을 위해 안테나를 지상국으로 지향하는 자세제어 기능을 확인했다.
또한, 태양전지판과 태양전력조절기, 리튬이온 배터리 등 차세대소형위성2호의 전력시스템을 점검해, 태양전지판에서 안정적으로 생성된 약 256W의 전력을 통해 위성 배터리가 만충전 상태를 유지하고 있는 것을 확인했다.
차세대소형위성2호는 중점임무인 영상레이더 기술검증과 지구관측, 우주과학임무인 근지구궤도 우주방사선 관측, 그리고 4종의 국내 개발 핵심기술에 대한 우주검증을 수행할 예정이다.
영상레이더는 광학카메라와 달리 빛과 구름의 영향을 받지 않아, 주야간 및 악천후에도 지상 관측이 가능하다. 순수 국내 기술로 개발된 차세대소형위성2호의 X-대역 영상레이더는 해상도 5m, 관측폭 40km의 레이더 영상을 획득을 목표로 한다.
우주방사선 관측기는 근지구 궤도의 중성자·하전입자에 대한 정밀 선량 지도를 작성하고, 태양활동 상승 주기의 우주방사선 변화에 따른 우주환경 영향과 근지구 궤도의 중성자 가중치를 연구하는 데 활용된다.
아울러 산·학·연에서 국산화한 위성핵심기술 4종(①상변환 물질을 이용한 열제어장치, ②X-대역 GaN기반 전력증폭기, ③GPS·Galileo 복합항법수신기, ④태양전지배열기)에 대한 우주검증도 함께 수행된다.
차세대소형위성2호는 약 3개월의 초기 운영 기간 동안 위성 본체 및 탑재체에 대한 기능을 상세히 점검한 후, 계획된 영상레이더에 대한 기술검증•지구관측, 우주방사선 관측 및 핵심기술 검증의 정상적인 임무를 약 2년간 수행할 예정이다.
위성 발사 후 1주일 동안 위성 본체 및 탑재체에 대한 기초적인 상태 점검을 수행하고, 발사 후 1개월까지 위성 본체에 대한 세부 기능을 상세히 점검한 뒤, 발사 후 3개월까지 모든 탑재체에 대한 세부 기능점검을 완료함으로써 향후 정상 임무를 위한 위성 상태 최적화를 수행할 예정이다. 이광형 KAIST 총장은 "우리별 1호부터 30여 년간 축적해온 소형위성 개발과 운영 경험을 바탕으로 차세대소형위성2호의 임무를 성공적으로 완수하여 우리나라 소형위성 기술 수준을 한 단계 높일 수 있을 것으로 기대한다"라고 밝혔다.
2023.05.26
조회수 6763
-
전염병 바이러스 10분 내 현장 진단 가능한 PCR 개발
전염성 높은 바이러스의 빠른 확산을 방지하기 위해서는 의료 현장에서 빠르고 정확하게 바이러스를 검출해 신속하게 진단하는 것이 매우 중요하다. 현재 현장 진단 검사는 신속 항원 검사에 국한되어 진단의 정확성이 낮은 문제점이 있다. 감염병 확진을 위해선 실시간 역전사 중합효소연쇄반응(Real-time reverse-transcription Polymerase Chain reaction, RT-qPCR) 검사가 필요하지만, 기술적인 한계로 인해 현장 진단 검사에는 매우 부적합한 실정이다.
우리 대학 바이오및뇌공학과 정기훈 교수 연구팀이 나노종합기술원과 (주)오상헬스케어와의 공동연구로 개발하여 코로나-19 바이러스 검출 95% 정확도를 가진 현장 진단에 적합한 초고속 초소형 플라즈모닉 핵산 분석 시스템을 개발했다고 11일(화) 밝혔다.
연구팀이 개발한 시스템은 광열 나노소재 기반 초고속 플라즈모닉 열 순환기, 미세 유체 랩온어칩 기반 금속 박막 카트리지, 초박형 마이크로렌즈 어레이 형광 현미경 등 최첨단 마이크로 나노기술을 접목한 현장 진단형 플라즈모닉 핵산분석 시스템을 핸드헬드 크기로 개발했으며 코로나-19 RNA 바이러스를 10분 이내에 성공적으로 검출했다. 또한, 파일럿 제품의 성능평가를 위해 임상적 성능시험을 수행했으며, 임상 현장에서 정상인 시료로부터 코로나-19 환자의 시료를 95% 이상의 높은 정확도로 구분하는 데 성공했다.
`플라즈모닉 열 순환기'는 나노 및 마이크로공정기술을 통해 유리 나노 기둥 위 금나노섬 구조와 백금박막 저항 온도센서를 결합해 대면적으로 제작됐다. 해당 나노 구조는 가시광선 전 영역에서 광 흡수율이 매우 높아 백색광 다이오드(LED)의 빛을 빠르게 열로 치환해 온도 상승 속도를 대폭 향상했으며, 상단에 있는 박막 저항 온도 센서를 통해 실시간으로 표면 온도를 측정함으로써 초고속 열 순환 기능을 구현했다.
또한, 연구팀은 사출 성형된 플라스틱 미세 유체 칩과 알루미늄 박막을 결합해 `금속박막 카트리지'를 개발했으며, 이를 통해 값비싼 나노소재의 재사용률을 높이고 비용 효율을 극대화했다. 해당 금속 박막은 두께가 얇고 열전도율이 높으므로 열 순환기로부터 발생한 광열을 반응 용액에 효율적으로 전달해 온도상승 및 하강 속도를 개선했다. 또한, 금속 박막은 빛 반사율 또한 매우 높아 플라즈모닉 핵산 증폭 기술의 가장 큰 한계점인 광열 여기광원과 형광 검출 사이의 광학적 누화 현상을 완전히 해결했다.
연구팀은 미세 유체칩 내 실시간 정량화를 위해 마이크로공정기술을 활용해 곤충 눈을 모사한 `마이크로렌즈 어레이 형광 현미경'을 개발했다. 해당 기술은 초점거리의 한계를 극복해 10밀리미터(mm)의 초근접 거리에서 미세 유체 채널의 형광 이미지를 촬영할 수 있도록 제작됐고 전체 형광 시스템의 크기를 대폭 축소했다. 또한, 어레이 이미지의 병합 및 재구성을 통해 높은 동적범위 및 고대비 다중 형광 촬영이 가능하므로 플라즈모닉 핵산 증폭 동안 증가하는 유전자를 실시간으로 정량화할 수 있도록 개발했다.
정기훈 교수는 “플라즈모닉 핵산분석 시스템이 속도, 가격, 크기 측면에서 현장 진단에 매우 적합하여 진단 장비의 탈중앙화를 가능하게 할 뿐만 아니라 다중 이용 시설이나 지역 병원 등 방역 현장에서 바이러스 검출 목적으로 활용할 수 있을 것으로 기대된다” 라고 말했다.
우리 대학 바이오및뇌공학과 강병훈 박사과정이 주도한 이번 연구 결과는 국제 학술지 `에이씨에스 나노 (ACS Nano)'에 게재됐다. (논문명: 분자진단의 분산화를 위한 초고속 플라즈모닉 핵산 증폭 및 실시간 정량화, Ultrafast Plasmonic Nucleic Acid Amplification and Real-Time Quantification for Decentralized Molecular Diagnostics)
한편 이번 연구는 KAIST 코로나19대응 과학기술뉴딜사업과 과학기술정보통신부 나노소재기술개발사업으로 수행됐다.
2023.04.11
조회수 6448
-
새로운 세포핵 단백질의 이동 루트 발견
인간의 생명 정보를 담고 있는 DNA는 세포핵(nucleus) 내에 존재하며 이 정보는 전령 RNA(messenger RNA, mRNA)에 담겨 세포질로 이동 후 단백질 생성의 기초가 된다는 것이 소위 유전자 발현의 센트럴 도그마(central dogma of eukaryotic gene expression)다. 이 과정이 온전히 이루어지기 위해서는 유전자 발현의 최종 산물인 단백질 중 DNA 정보를 유지 및 활용하는 단백질들이 다시 세포핵으로 이동하여 작용하는 순환의 과정이 필요하다.
세포핵은 단백질의 투과가 불가능한 이중의 지질막(double-layered lipid membrane)으로 둘러싸인 구조이기 때문에 세포질에서 생성된 단백질이 핵으로 이동하기 위해서는 핵공(nuclear pore)라는 작은 구멍을 통과해야만 가능한 것으로 알려져 있다. 그리고, 핵공을 통해 세포핵으로 이동이 가능한 단백질들은 핵 이동 신호(nuclear localization signal, NLS)라는 부위를 포함하고 있는 것으로 잘 알려져 있다. 이 단백질 이동 신호 발견의 공로로 군터 블로벨 (Gunter Blobel)교수가 1999년에 노벨 생리의학상을 수상한 바도 있다.
다만, 세포핵은 특정한 크기로 유지가 되고 있기 때문에 세포질에서 생성된 단백질들이 지속적으로 핵으로 운송이 되기만 해서는 안 되고, 기능을 완수한 단백질들은 핵공을 통해 다시 세포질로 이동하거나 핵 내에서 분해되어 핵 내에 특정 농도 이상 단백질이 쌓이는 것을 방지해야 한다. 문제는 핵 이동 신호는 대부분 핵단백질들에 공통적으로 존재하지만 핵 탈출 신호(nuclear export signal)는 일부 핵단백질에만 존재하기 때문에 세포핵에서 세포질로 단백질 방출에 대해서는 명확한 설명이 어려운 상황이었다.
우리 대학 생명과학과 김진우 교수 연구실에서는 특정 DNA 정보를 인식해 유전자 발현을 유도 또는 억제하는 전사인자의 한 종류인 호메오단백질의 기능에 대한 연구를 수행하고 있다. 인간에 200여 종이나 있는 호메오단백질은 동물 배아의 특정한 부분에서만 집중적으로 작용하여 머리, 몸통, 팔, 다리 등 다양한 신체 기관과 조직들을 생성하는데 핵심적인 역할을 한다. 따라서 특정 호메오단백질이 정상적 기능을 하지 못하면 여러 신체 기관들이 정상적으로 만들어지지 못하는 심각한 발달 이상이 나타난다.
호메오단백질들은 세포핵 내에서 전형적 전사인자 기능을 하는 것 외에도 세포와 세포 사이를 이동하여 작용하는 세포 간 신호전달자의 기능도 있다는 것을 김진우 교수 연구실이 규명한 바 있다. 김 교수 연구팀은 호메오단백질들의 세포 외부로의 분비는 이들 단백질 생성되는 세포질이 아니라 기능을 수행하는 세포핵에서 시작된다는 점을 확인했다. 또, 이 과정은 핵공을 통한 세포핵-세포질 경로가 아니라 세포막 구조를 매개할 것이라는 간접 증거도 확인했다. 결국, OTX2라는 호메오단백질이 세포핵 내부에서 이중층 핵막 돌기(double-layered nuclear membrane bud)에 포집되는 모습을 전자현미경 분석을 통해 확인했다. 별첨한 모식도에서 설명되어 있듯이, OTX2가 핵막 돌기에 포집되는 과정은 여러 분자의 OTX2 단백질이 핵막 이중층의 내막에 있는 SUN1이라는 단백질에 직접 결합을 하는 것에서부터 시작이 되는데, SUN1은 핵막 외막의 SYNE2라는 단백질과 연결이 되어 있기 때문에 핵막의 변형이 이중층에 걸쳐 이루어지게 된다. 그 후 OTX2가 포집된 핵막 돌기의 내막을 TORSINA1(TOR1A)이라는 세포막 절단 단백질이 한번 자르고 DYNAMIN(DNM)이라는 또다른 세포막 절단 단백질이 외막을 잘라서 이중층의 세포 소낭(double-layered membrane vesicle)으로 만들어 세포질에 방출하는 새로운 방식의 핵단백질의 세포질 운송 방식을 증명하였다.
더 나아가 김 교수팀은 이렇게 만들어진 OTX2 포집 세포소낭의 외막은 세포의 물질 소각 공장이라고 할 수 있는 리소좀(lysosome) 막과 융합되어 리소좀 내부의 지질 분해효소와 단백질 분해효소가 남은 소낭의 내막과 OTX2 단백질을 순차적으로 분해하도록 하는 기존의 핵단백질 분해 과정과 완전히 다른 방식의 핵단백질 분해 루트를 증명했다. 이러한 일련의 세포핵 탈출 과정 중 일부에 문제가 생기면 핵 내부에 과도하게 쌓인 OTX2가 응집체를 만들어 해당 세포의 핵 내 기능에 문제를 일으키는 한편 주변 세포로 이동도 되지 않아 이를 필요로 하는 동물의 시각 기능 발달에 문제가 생기는 것을 증명했다.
이 연구를 통해 김 교수팀은 세포핵과 세포질 사이의 단백질 이동 과정이 기존 알려진 핵공을 통한 루트보다 훨씬 다양한 방식으로 이루어질 수 있음을 제시하였고, 이 논문에서 예시로 증명한 OTX2 이외에도 많은 핵단백질들이 핵막 소포를 통해 이동할 가능성이 있어 이에 대한 추가 연구를 진행할 예정이다. 특히 핵막 소포를 통한 핵단백질의 방출이 원활하지 않을 때 암이나 퇴행성질환 등이 유발될 수 있어서, 이와 관련된 질병 연구도 병행할 예정이다.
이번 연구는 국제학술지인 Nature Communcations(https://doi.org/10.1038/s41467-023-36697-5)에 2월 27일자로 발표됐다. KAIST 생명과학과 김진우 교수 연구팀 박준우 박사가 제1 저자로 연구를 주도하였고, 한국기초과학지원연구원 권희석 박사 연구팀과 가톨릭의과대학 김인범 교수 연구팀이 함께 참여했다. 본 연구는 과학기술정보통신부 중견연구자연구지원사업과 선도연구센터사업, 그리고 KAIST 국제공동연구지원사업의 지원을 받아 수행됐다.
2023.02.28
조회수 5788
-
뇌 속 자명종 신경회로 발견
우리 대학 생명과학과 김대수 교수 연구팀이 한국과학기술연구원(KIST) 김정진 박사팀과 공동연구를 통해 동물이 잠을 자는 동안에도 소리에 반응해 각성하는 원리를 규명했다고 20일 밝혔다.
수면은 뇌의 활동을 정비하고 건강을 유지하는 매우 중요한 생리작용이다. 잠을 자는 동안 감각신경의 작용이 차단되므로 주변의 위험을 감지하는 능력이 감소하게 된다. 그러나 많은 동물은 잠자는 동안에도 포식자의 접근을 감지하고 반응한다. 과학자들은 동물이 깊은 잠과 낮은 잠을 번갈아 자면서 언제 있을지 모를 위험에 대비한다고 생각했다.
김대수 교수 연구팀은 깊은 잠을 자는 동안에도 동물이 소리에 반응하는 신경회로가 있다는 사실을 발견했다. 깨어 있을 때는 청각 시상핵 (Medial geniculate thalamus)이 소리에 반응하지만 깊은 잠 즉 비 램수면 (Non-REM) 동안에는 배내측 시상핵(Mediodorsal thalamus)이 소리에 반응해 뇌를 깨운다는 사실을 밝혔다.
연구 결과 쥐가 깊은 잠에 빠졌을 때 청각 시상핵 신경도 잠을 자고 있었지만 배내측 시상핵 신경은 깨어 있어 소리를 들려주자 곧바로 반응했다. 또한 배내측 시상핵을 억제하면 소리를 들려줘도 쥐가 잠에서 깨어나지 못했으며 배내측 시상핵을 자극하면 소리 없이도 쥐가 수초 이내에 잠에서 깨어나는 것을 관찰할 수 있었다.
이것은 수면상태와 각성상태가 서로 다른 신경회로를 통해 청각신호를 전달 할 수 있다는 최초의 연구로서 국제 학술지 ‘커런트 바이올로지 (Current Biology)’에 2월 7일자로 보고됐으며 (https://www.nature.com/articles/d41586-023-00354-0) 국제학술지 네이처에 하이라이트 되었다. ( https://www.nature.com/articles/d41586-023-00354-0)
김대수 교수는 “이번 연구를 통해 수면 질환 등 다양한 뇌 질환에서 보이는 각성 및 감각장애에 대한 이해를 증진하고 향후 감각을 조절할 수 있는 디지털 헬스케어 개발 등 다양한 분야로 활용이 가능하다”라고 설명했다.
한편 이번 연구는 한국연구재단 중견연구재단 과제로 지원됐다.
2023.02.20
조회수 5551
-
유전자 가위를 이용한 RNA 분해효소 검출 신기술 개발
우리 대학 생명화학공학과 박현규 교수 연구팀이 *크리스퍼 카스12a (CRISPR-Cas12a) 시스템의 *부수적 절단 활성을 활용해 RNA 분해효소를 민감하게 검출해내는 신기술을 개발했다고 14일 밝혔다.
☞ 크리스퍼 카스 시스템 (유전자 가위 기술)
- 크리스퍼 카스 시스템은 박테리아가 바이러스 감염으로부터 자신을 보호하기 위해 진화시킨 적응 면역 시스템이다. 이는 외래 유전자의 정보를 담고있는 가이드RNA와 직접 핵산을 절단하는 카스 단백질로 이루어져 있다. 2020년 제니퍼 다우드나 교수의 연구팀이 크리스퍼 카스9 유전자 가위 시스템을 개발한 공로로 노벨화학상을 수상해 널리 알려졌으며, 높은 표적 특이성과 빠른 역학 덕분에 최근에는 유전체 편집을 넘어 생체물질 검출 및 분자진단 분야에 광범위하게 적용되고 있다.
☞ 부수적 절단 활성
- 카스9 이외에도 Cas12, Cas13 등의 다양한 카스 단백질이 발굴되고 활용되고 있다. 카스12a는 표적 DNA 서열을 인식해 이를 절단하며, 이에 더해 주변의 비표적 단일 가닥 DNA를 무작위하게 절단하는 부수적 절단 활성을 가지고 있다. 이러한 성질은 분자진단 분야에서 활발하게 사용되고 있다.
우리 대학 생명화학공학과 김한솔 박사가 제1 저자로 참여한 이번 연구는 영국왕립화학회가 발행하는 국제 학술지 `케미컬 커뮤니케이션스 (Chemical Communications)'에 2022년도 16호 표지(Back cover) 논문으로 지난달 24일 선정됐다. (논문명: CRISPR/Cas12a collateral cleavage activity for an ultrasensitive assay of RNase H)
RNA 분해효소의 일종인 `리보핵산가수분해효소 H'는 후천성면역결핍증(에이즈)을 일으키는 바이러스인 인간 면역결핍 바이러스(HIV-1) 및 B형 간염 바이러스를 포함한 역전사 바이러스의 역전사효소에서 필수적인 영역으로, 역전사 바이러스의 증식에 관여한다. 따라서 리보핵산가수분해효소 H는 항바이러스제 개발의 중요한 표적으로 알려져 있다. 일반적으로 리보핵산가수분해효소 H의 활성을 검출하기 위해서는 전기영동 또는 고성능 액체크로마토그래피 등의 방식을 사용하고 있지만, 이와 같은 기술들은 낮은 특이도와 민감도, 복잡한 검출 과정, 긴 검출 시간 등의 단점이 있다.
연구팀은 이러한 현행 기술의 한계를 극복하기 위해, 크리스퍼 카스12a (CRISPR-Cas12a) 시스템을 활용해 검출의 민감도를 크게 향상하고 리보핵산가수분해효소 H를 현재 보고된 기술 중 가장 높은 민감도로(검출한계: 0.24 U/L) 1시간 이내에 검출하는 데 성공했다.
연구팀은 리보핵산가수분해효소 H의 기질로 짧은 DNA/RNA 키메라 복합체를 이용해 리보핵산가수분해효소 H의 활성 하에 활성제 DNA (Activator DNA, AD)가 방출되도록 설계했다. Cas12a/crRNA 복합체가 방출된 활성제 DNA를 인식할 시 Cas12a의 부수적 절단 활성을 가동해 주변의 리포터 DNA를 절단해 형광 신호가 발생하도록 설계함으로써, 표적 유전자 돌연변이를 고감도로 매우 정확하게 검출했다. 연구팀은 이 기술을 통해서 암세포의 리보핵산가수분해효소 H 활성도 성공적으로 검출할 수 있었다.
특히 리보핵산가수분해효소 H가 인간 면역결핍 바이러스 증식에 관여한다는 점을 고려할 때, 이번 연구 성과는 에이즈 치료제 개발에 기여할 수 있을 것으로도 기대된다.
박현규 교수는 “이번 기술은 크리스퍼 카스12a (CRISPR-Cas12a) 시스템의 부수적 절단 활성을 활용해 리보핵산가수분해효소 H를 고도로 민감하게 검출함으로써, 항바이러스제의 표적 발굴에 활용될 수 있다”라고 연구의 의의를 설명했다.
한편 이번 연구는 경찰청의 치안과학기술연구개발사업 및 한국연구재단의 중견연구자지원사업과 바이오·의료기술개발사업의 일환으로 수행됐다.
2022.03.14
조회수 9476
-
RNA 바이러스 초고감도 검출 기술 개발
우리 대학 생명화학공학과 박현규 교수 연구팀이 핵산의 절단 및 중합 연쇄반응 시스템을 활용해 RNA 바이러스의 표적 RNA를 초고감도로 검출하는 새로운 등온 핵산 증폭(NESBA, Nicking and Extension chain reaction System-Based Amplification) 기술을 개발했다고 15일 밝혔다.
생명화학공학과 주용 박사과정, 김효용 박사가 공동 제1 저자로 참여한 이번 연구는 영국 왕립화학회가 발행하는 국제학술지 `나노스케일 (Nanoscale)'에 2021년도 24호 표지(Front cover) 논문으로 지난달 16일 선정됐다. (논문명: Ultrasensitive version of nucleic acid sequence-based amplification (NASBA) utilizing nicking and extension chain reaction system)
현재 전 세계적으로 팬데믹 (Pandemic)을 일으키고 있는 코로나19 바이러스와 같은 RNA 바이러스를 검출하기 위한 표준 진단 방법은 역전사 중합효소 연쇄반응(qRT-PCR)이다. 이러한 표준 분자진단 방법은 면역진단 방법과 비교해 진단의 정확도는 매우 우수하지만 정교한 온도 조절 장치가 필요하고 진단에 드는 시간이 길어 장비의 소형화에 제약이 있으며 전문 진단 설비가 갖추어진 대형 병원 또는 전문 임상검사실에서만 제한적으로 사용된다는 단점이 있다.
연구팀은 이러한 현행 기술의 한계를 극복하기 위해 핵산의 절단 및 중합 연쇄반응 시스템에 의해 구동되는 초고감도의 신개념 등온 핵산 증폭 기술을 개발했으며, 이를 통해 별도의 온도 변환 과정 없이 동일 온도에서 표적 바이러스의 RNA를 초고감도로(검출 한계: 1 아토 몰 (aM)) 매우 신속하게(20분 이내) 검출하는 데 성공했다.
연구팀은 기존 나스바(NASBA, Nucleic Acid Sequence-Based Amplification) 등온 증폭 기술에 절단효소 인식 염기서열이 수식된 프라이머를 도입함으로써, 절단효소 및 DNA 중합효소 활성을 기반으로 T7 프로모터를 포함하는 이중가닥 DNA를 지수함수적으로 증폭할 수 있었고, 최종적으로 표적 RNA를 기존의 NASBA 기술에 비해 100배 이상 향상된 민감도로 검출할 수 있었다.
연구팀은 이 기술을 통해서, 호흡기 세포 융합 바이러스(RSV)의 유전 RNA(genomic RNA)를 별도의 전처리 없이 매우 신속하고 고감도로 검출함으로써, 기술의 실용성을 증명함과 동시에 현장 검사(POCT) 기술로서의 높은 활용 가능성을 입증했다.
박현규 교수는 "이번 신개념 등온 핵산 증폭 기술은 현재 대유행하고 있는 코로나19 바이러스와 같은 RNA 바이러스들을 신속하게 조기 진단 할 수 있는 분자진단 시스템에 활용될 가능성이 매우 큰 기술ˮ이라고 이번 연구의 의의를 설명했으며, 현재 코로나19의 임상 샘플 테스트에서도 매우 좋은 결과를 얻었다고 언급했다.
한편 이번 연구는 한국연구재단의 글로벌 프런티어사업과 경남제약(주)의 연구비 지원으로 수행됐다.
2021.07.15
조회수 11268
-
세계 최대 규모의 3차원 암 게놈 지도 구축
우리 대학 생명과학과 정인경 교수가 한국생명공학연구원 국가생명연구자원정보센터(KOBIC) 이병욱 박사 연구팀과 공동연구를 통해 전 세계 최대 규모의 3차원 암 게놈 지도 데이터베이스를 구축해 공개했다고 28일 밝혔다. (데이터베이스 주소: 3div.kr)
공동연구팀은 인체 정상 조직과 암 조직, 그리고 다양한 세포주 대상 3차원 게놈 지도를 분석 및 데이터베이스화 해, 약 400여 종 이상의 3차원 인간 게놈 지도를 구축했으며, 이를 통해 암세포에서 빈번하게 발생하는 대규모 유전체 구조 변이(structural variation)의 기능을 해독할 수 있는 신규 전략을 제시했다.
정인경 교수, 이병욱 박사가 공동 교신 저자로 참여한 이번 연구 결과는 국제 학술지 `핵산 연구(Nucleic Acid Research)' 저널 11월 27일 字 온라인판에 게재됐다. (논문명 : 3DIV update for 2021: a comprehensive resource of 3D genome and 3D cancer genome)
현재까지 많은 연구를 통해 암세포 유전체에서 발생하는 돌연변이를 규명해 암의 발병 기전을 이해하려는 시도가 있었다. 최근에는 유전자에서 발생하는 점 돌연변이뿐 아니라 대규모 구조 변이에 관한 연구가 활발하게 이루어지고 있으며, 이들을 활용한 신규 암세포의 특이적 유전자 발현 조절 기전 규명의 중요성이 제시되고 있다.
하지만, 대다수의 구조 변이는 DNA가 단백질을 생성하지 않는 비 전사 지역에 존재해, 1차원적 게놈 서열 분석만으로 이들의 기능을 규명하는 데는 한계가 있었다.
한편 지난 10년간 비약적으로 발전한 3차원 게놈 구조 연구는 비 전사 지역에 존재하는 대규모 구조 변이로 인해 생성되거나 소실되는 염색질 고리 구조(chromatin loop)를 3차원 게놈 구조 해독을 통해 규명하면 유전자 조절 기능을 해독할 수 있다는 모델을 제시하고 있다.
이에 정인경 교수 연구팀은 지금까지 공개된 모든 암 유전체의 3차원 게놈 지도를 확보해 전 세계 최대 규모의 3차원 암 유전체 지도를 작성했다. 그리고 대규모 구조 변이와 3차원 게놈 지도를 연결할 수 있는 분석 도구들을 개발했다. 그 결과 연구팀은 대규모 암 유전체 구조 변이에 따른 3차원 게놈 구조의 변화 그리고 이들의 표적 유전자를 규명할 수 있었다.
공동 교신 저자 이병욱 박사는 "최근 세포 내 3차원 게놈 구조 변화가 다양한 질병, 특히 암의 원인이 된다는 것이 밝혀지고 있는데, 이번 연구를 통해 이를 연구할 수 있는 도구들을 세계 최초로 개발했다ˮ라며 "이번 연구 결과를 활용하면 암의 발병 원리를 이해하고 더 나아가 항암제 개발에도 중요한 정보를 제공할 것으로 기대된다ˮ라고 말했다.
정인경 교수는 "암에서 빈번하게 발생하는 대규모 구조 변이의 기능을 3차원 게놈 구조 해독을 통해 정밀하게 규명 가능함을 보여줬다ˮ라며 "이번 연구 결과는 아직 해독이 완벽하게 이루어지고 있지 않은 암 유전체를 정밀하게 해독하는 기술을 한 단계 더 발전시키는 계기가 될 것이다”라고 말했다.
이번 연구는 한국연구재단 기반산업화 인프라 그리고 서경배과학재단의 지원을 통해 수행됐다.
2020.12.28
조회수 49634
-
지하수 및 해수 환경에서 플루토늄의 이동을 촉진시키는 화학종 규명
원자력 발전을 통해 발생하는 방사성폐기물의 안전한 관리와 처분은 전 세계 원자력 이용 국가들이 해결하고자 하는 오래된 현안이다. 특히, 방사성폐기물의 처분 안전 기술은 심부 지하 매질에서 방사성 핵종의 이동이나 지연 등에 미치는 다양한 지구화학적 열역학 데이터와 화학적 거동에 대한 이해에 기반한다.
우리 대학 원자력 및 양자공학과 윤종일 교수 연구팀(방사화학 및 레이저 분광연구실)은 산화수 6가의 플루토늄이 탄산 이온 및 알칼리토금속과 결합해 삼성분 칼슘/마그네슘 플루토닐 카보네이트 화합물(CaPuO2(CO3)32-, MgPuO2(CO3)32-)이 형성됨을 최초로 규명했다. 이번 연구에서 새로이 규명된 플루토늄 화학종의 형성으로 방사성 오염부지에서 플루토늄의 이동이 기존의 이해했던 것보다 더 촉진될 수 있을 것으로 예측됐다.
플루토늄은 우라늄 광석에 자연적으로 존재하는 극미량의 Pu-239를 제외하고는 원자력 발전 및 핵무기 개발 프로그램과 같은 인위적 활동으로 발생한다. 미국, 러시아, 프랑스, 영국 등 핵무기보유국의 경우, 핵무기 제조와 관련된 시설에서 플루토늄이 지하수 및 해수를 통해 이동하여 인근 지역의 방사능 오염을 초래했고 이렇게 오염된 부지의 제염은 막대한 비용으로 수십 년간 지속되고 있다. 우리나라도 원자력 발전의 부산물로 사용후핵연료가 발생하고 있고 그 중 약 1%가 플루토늄이다.
방사성폐기물의 형태 및 처리방식은 각국의 관리정책에 따라 상이하지만, 전 세계적으로 인간의 침입이 제한되고 지질학적으로 안정하며 공학적 방벽시스템을 갖춘 심지층(500m 이하)에 사용후핵연료 및 고준위방사성폐기물을 처분하는 방식이 가장 유력하다. 현재 세계 최초의 사용후핵연료 처분장이 2020년대 운영을 목표로 핀란드에 건설중이다.
플루토늄은 수용액 환경에서 3가부터 6가까지 다양한 산화수를 동시에 가질 수 있어 매우 복잡한 화학 특성을 가진다. 또한, 플루토늄을 활용한 연구는 국제기구 및 국내 원자력규제기관의 엄격한 관리 감독을 받고 있어 핵물질 및 방사선 안전기준을 만족하는 시설에서만 제한적으로 수행될 수 있다. 이번 연구의 모든 실험은 플루토늄 등의 핵원료물질을 취급할 수 있는 한국원자력연구원의 안전시설 내에서 수행됐다.
이번 연구에서는 pH 8 – 10의 수용액 환경에서 6가 플루토늄이 자연에 풍부하게 존재하는 탄산 이온과 알칼리토금속과 결합해 CaPuO2(CO3)32- 및 MgPuO2(CO3)32- 삼성분 화합물이 형성된다는 것을 최초로 규명했고, 깁스 자유에너지 분석을 통해 자연환경에서 이동성이 높은 6가 산화상태의 플루토늄이 기존에 알려진 것보다 더 안정적으로 수용액 내에 존재할 수 있음을 보고했다. 아울러 새로 규명된 플루토늄 삼성분 화학종이 지하수 및 해수 환경에서 가장 주요한 플루토늄 6가 화학종임을 밝혔다.
이번 연구를 통해 확보한 열역학 데이터는 플루토늄의 화학적 거동을 예측하고 사용후핵연료 심지층 처분장의 안전성을 평가하는 데 주요 입력자료로 활용될 것으로 기대된다.
지난 8월 우리 대학에서 박사학위를 마친 조용흠 박사(독일 Karlsruhe Institute of Technology 박사후연구원으로 근무)가 제1저자로 참여하고, 한국원자력연구원 방사화학연구실의 조혜륜 박사와 공동 수행한 이번 연구는 영국왕립화학회(Royal Society of Chemistry)가 발간하는 국제학술지 ‘Dalton Transactions’ 9월호에 최신 게재됐고 무기화학 분야 연구의 중요성과 우수성을 인정받아 'Dalton Transactions HOT Article'로 선정돼 주목을 받았다(논문명: Visible-NIR absorption spectroscopy study of the formation of ternary plutonyl(VI) carbonate complexes, https://doi.org/10.1039/D0DT01982H). 현재 조용흠 박사는 Karlsruhe Institute of Technology에서 방사광가속기 기반 엑스선 분광법을 활용하여 새로 규명된 플루토늄 화학종의 구조 규명 연구를 이어가고 있다.
한편 이번 연구는 한국연구재단 미래원자력연구센터 사업의 지원을 받아 수행됐다.
2020.10.12
조회수 23700
-
인공신경망 기반 핵융합플라즈마 자기장 재구성 기술 개발
우리 대학 원자력및양자공학과 김영철 교수 연구팀(핵융합및플라즈마연구실)이 국가핵융합연구소, ㈜모비스 연구진과 공동으로 인공신경망 기반 핵융합플라즈마 자기장의 재구성 기법을 개발했다.
김 교수 연구팀은 비실시간으로 엄밀히 계산된 자기장 구조와의 오차를 최소화함과 동시에 실시간으로 해당 정보를 제공할 수 있는 인공신경망을 개발해 핵융합플라즈마 제어 성능을 높이는 데 기여할 것으로 기대된다.
정세민 박사과정이 1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘뉴클리어 퓨전(Nuclear Fusion)’ 2019년 12월 3일 자에 게재됐다. (논문명: Deep neural network Grad-Shafranov solver constrained with measured magnetic signals)
핵융합 연구에 널리 사용되는 토카막은 실시간으로 재구성된 자기장 구조를 바탕으로 초고온(약 1억도) 핵융합 플라즈마의 운전과 제어를 가능하게 만든다. 따라서 재구성된 자기장 구조의 정확도는 토카막 운전 성능과 밀접한 관계가 있다.
2계 비선형 미분방정식을 따르는 토카막의 내부 자기장은 일반적으로 수치해석 기법과 외부에서 측정된 자기장 값을 이용하여 재구성된다. 실시간과 비실시간 재구성 기법이 존재하며, 비실시간 기법의 정확도가 실시간보다 높다고 알려졌지만 이름에서도 확인할 수 있듯 실시간 운전에 활용하기 어렵다는 아쉬움이 있다.
연구팀은 비실시간 기법의 정확도를 유지하되 실시간으로 해당 정보를 확보할 수 있는 알고리즘을 인공신경망을 활용해 개발했다. 측정된 외부 자기장과 토카막 내부 공간 정보를 입력값으로 하고 비실시간 기법을 활용해 재구성된 자기장을 출력값으로 신경망을 훈련했다.
또한, 신경망의 출력값은 앞서 언급된 2계 비선형 미분방정식을 만족해야 하므로 이 역시 신경망의 훈련 조건으로 둬 단순한 자기장 재구성을 넘어서 해당 문제의 지배방정식 역시 만족하도록 했다.
연구팀이 개발한 기법은 그 성능의 우수성과 더불어 토카막의 고성능 운전 달성에 큰 영향을 미칠 것을 인정받았다. 세계적으로 활발히 진행 중인 토카막 연구에 가장 기초적이며 중추적인 토카막 내부 자기장 정보를 최소화된 오차 내에서 실시간으로 제공할 수 있다는 점에서 토카막을 활용한 핵융합발전의 가능성을 제고할 수 있을 것으로 기대된다.
이번 연구는 과학기술정보통신부 한국연구재단의 핵융합기초연구사업과 개인연구사업(신진연구) 및 기관고유과제 KAI-NEET의 지원을 받아 수행됐다.
타기관 참여연구진
국가핵융합연구소(공저자순): 박준교, 이상곤, 한현선, 김현석 ㈜모비스(공저자순): 이근호, 권대호
□ 그림 설명
그림1. 토카막 내부 재구성된 자기장 구조
2020.02.05
조회수 10460
-
김현우 교수, 알코올 화합물의 광학활성 분석기술 개발
〈 김현우 교수 〉
우리 대학 화학과 김현우 교수 연구팀이 핵자기공명(NMR) 분광분석기를 통해 알코올 화합물의 광학활성을 간단히 분석할 수 있는 기술을 개발했다.
이 기술은 빠르고 간편한 분석 방법을 가지고 있어 다양한 알코올 화합물의 광학활성뿐만 아니라 비대칭 합성반응의 모니터링까지 폭넓게 응용 및 적용할 수 있을 것으로 기대된다.
장수민 박사과정이 1 저자로 참여한 이번 연구 결과는 국제 학술지 셀의 자매지 ‘아이 사이언스 (iScience)’ 9월 27일 자 온라인판에 게재됐다. (논문명 : A Gallium-Based Chiral Solvating Agent Enables the Use of 1H NMR Spectroscopy to Differentiate Chiral Alcohols)
광학이성질체는 오른손과 왼손의 관계처럼 서로 같은 물질로 이뤄져 있으나 거울상 대칭이 되는 화합물을 말한다. 우리 몸의 필수 구성요소인 아미노산과 당은 하나의 광학이성질체로 이뤄져 있어, 새 화합물이 생체 내에 들어가면 그 화합물의 광학활성에 따라 서로 다른 생리학적 특징을 나타내기 때문에 신약개발에서 광학활성을 조절하고 분석하는 연구가 필수적이다.
광학활성을 분석하는 방법으로 고성능 액체크로마토그래피(HPLC)가 주로 사용되며, 이를 통한 광학활성 분석 시장은 일본이 전체의 50% 이상을 차지하고 있다. 하지만 고성능 액체크로마토그래피는 분석에 30분에서 1시간이 소요되고 분석물이 발색단(發色團)을 가져야 분석 가능하다는 단점이 있다.
이에 비해 화합물의 분자 구조를 분석하는 데 많이 활용되는 핵자기공명(NMR) 분광분석기는 1~5분의 분석시간을 가지고 있으나, 광학활성 화합물의 신호를 분리하는 효과적인 방법이 규명되지 않았다.
김 교수 연구팀은 갈륨금속 중심의 음전하를 띤 금속 화합물을 합성하고 핵자기공명(NMR) 분광분석기를 활용해 효과적인 광학활성의 분석 방법을 개발했다.
연구팀은 금속 화합물과 광학활성 알코올 화합물 간 비공유 상호작용을 통해 핵자기공명 분광분석기의 신호가 구별돼 광학활성을 분석할 수 있는 원리를 이용했다. 기존 핵자기공명(NMR) 분광분석기를 통한 광학활성 분석은 알코올의 상온 분석 방법은 보고되지 않았다.
이번 연구는 다양한 작용기를 포함하고 있는 알코올 화합물의 상온 광학활성을 규명했다는 의의를 갖는다.
이번 연구에서 개발된 방법은 많은 신약 및 신약후보 물질의 광학활성 분석에 활용될 수 있으며, 특히 일본의 의존도가 높은 고성능 액체크로마토그래피(HPLC)를 이용한 광학활성 분석 방법을 대체할 수 있을 것으로 기대된다.
김 교수는 “핵자기공명 분광기를 활용한 광학활성 분석 관련 최고 수준의 기술이며, 신약개발에 필요한 광학활성 분석에 활용될 것으로 기대한다”라고 말했다.
이번 연구는 삼성미래기술육성재단의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 김현우 교수 연구성과 개념도
2019.10.10
조회수 9803
-
최원호 교수, 플라즈마에 의한 수산기(OH radical) 생성원리 규명
〈 박주영 박사, 최원호 교수, 박상후 박사 〉
우리 대학 원자력및양자공학과 최원호 교수 연구팀이 대기압 플라즈마에서 수산기(OH radical)가 생성되는 원리를 규명하는 데 성공했다.
박상후 박사, 박주영 박사과정 학생이 공동 1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘케미컬 엔지니어링 저널(Chemical Engineering Journal)’ 7월 8일 자 온라인판에 게재됐다 (논문명: Origin of Hydroxyl Radicals in a Weakly Ionized Plasma-Facing Liquid).
플라즈마란 강한 전기적 힘으로 인해 기체 분자가 이온과 전자로 나누어지는 상태를 말한다. 특히 대기압 플라즈마는 대기 중에 여러 형태로 플라즈마 효과 및 2차 생성물을 방출하는 장점이 있어 살균, 정화, 탈취 등 에너지 및 환경 분야부터 생의학 분야까지 다양한 연구 및 산업 분야에 활용되고 있다.
다양한 분야에서 시도되는 플라즈마는 물과 밀접한 관련이 있다. 물을 플라즈마로 처리한 방전수를 만들어 농업용수 및 살균수로 사용하기도 하고, 생의학 분야에서도 70%가 수분으로 구성된 인체에 활용하기 위해 플라즈마와 물의 반응에 대해 끊임없이 연구가 진행된다.
그중 수산기는 대표적인 활성 산소종으로, 물과 플라즈마의 반응에서 가장 중요한 역할을 하는 물질이다.
수산기는 산화력이 매우 커 여러 목적으로 활용이 시도되고 있으며, 박테리아 살균의 경우 기존의 살균법인 과산화수소나 오존을 사용할 때보다 수십에서 수백 배 효율이 높은 것으로 2018년 최원호 교수 연구팀에서 밝힌 바 있다.
수산기는 살균뿐 아니라, 수질 정화, 폐수 처리, 세척 등 환경 분야 및 멸균, 소독, 암세포 제거 등 의료 기술에서도 매우 높은 잠재력을 가지고 있다.
그러나 수산기는 대량으로 생성하기가 어렵고 생존 기간이 짧아 플라즈마 기술을 적극적으로 활용하는 데 한계가 있다.
연구팀은 문제 해결을 위해 플라즈마 내에서 기존에 알려진 수산기의 생성 방식 외에 산화질소의 광분해에 의한 생성원리를 규명했다. 더불어 광분해를 촉진시켜 수산기의 생성량을 높이면서 동시에 제어하는 방법을 개발했다.
광분해 방법이란 플라즈마로 생성된 산화질소가 존재하는 물과 플라즈마에 자외선을 추가로 노출해 산화질소가 수산기로 분해되는 과정을 말한다. 연구팀이 개발한 광분해방법은 수산기의 생성 위치를 국한하지 않고, 자외선 노출 위치에 따라 제어할 수 있어 생존 기간이 짧다는 단점을 극복할 수 있다.
최원호 교수는 “이번 연구를 통해 플라즈마 기술에 대한 과학적 이해를 넓히면서 효율적인 플라즈마 기술의 제어 방법을 제시함으로써 농업, 식품, 바이오 의학 등 다양한 분야에 플라즈마 기술이 적극적으로 접목될 수 있는 기반을 마련할 것이다”라고 말했다.
이번 연구는 국가핵융합연구소의 미래선도 플라즈마-농식품 융합기술 개발 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 플라즈마 처리수(PTW)에서 pH와 과산화수소, 아질산염 비율에 따른 수산기 반응 경로
그림2. 대기압 플라즈마 사진 및 수산기 생성경로
2019.08.16
조회수 13906
-
최원호 교수, 플라즈마 내 전자의 가열 원리 규명
〈 최원호 교수, 박상후 연구교수〉
우리 대학 원자력및양자공학과 최원호 교수 연구팀이 약하게 이온화된 플라즈마(weakly ionized plasma)에서 전자가 가열되는 구조와 제어 원리를 규명하는데 성공했다.
플라즈마 내의 모든 반응이 전자로부터 시작된다는 점으로 볼 때 전자의 가열 원리를 규명함으로써 플라즈마를 더욱 자유롭고 다양하게 활용할 수 있을 것으로 예상된다.
이는 대기압 플라즈마 내에 존재하는 자유 전자에 대한 기초 연구 자료로 기존 플라즈마의 활용 및 응용 가능성을 높이는 등 플라즈마 물리학 및 응용기술 발전에 크게 기여할 것으로 기대된다.
박상후 연구교수가 1저자로 참여한 이번 연구는 국제 학술지 ‘사이언티픽 리포트(Scientific Reports)’5월 14일자와 7월 5일자 온라인 판에 연달아 게재됐다. (논문명 : Electron information in single- and dual-frequency capacitive discharges at atmospheric pressure, 단일 및 이중 주파수 대기압 플라즈마의 전자 정보 / Electron heating in rf capacitive discharges at atmospheric-to-subatmospheric pressures, 대기압과 대기압보다 낮은 압력에서 라디오 주파수 플라즈마 내의 전자 가열)
물질의 세 가지 상태인 고체, 액체, 기체와 더불어 ‘물질의 네 번째 상태’라 불리는 플라즈마는 표준 온도 및 압력(25 ℃, 1 기압)의 상태에서는 자연적으로 존재하지 않으나 인위적으로 기체에 에너지를 가하면 플라즈마 상태가 된다.
학계 및 산업계는 활용 목적과 조건에 맞춰 다양한 형태의 플라즈마 발생원을 개발해 사용하고 있다. 특히 대기압 플라즈마는 응용 가능 분야가 다양하고 활용도가 높아 학술적, 산업적 활용성 측면에서 많은 관심을 받고 있다.
일반적으로 플라즈마 내의 다양한 화학적, 물리적 반응은 전자로부터 시작되기 때문에 전자의 밀도와 온도의 시공간적 변화는 아주 중요한 정보이다. 플라즈마 및 가속기 물리학 분야에서 자유 전자의 가열 여부는 과학자들의 관심을 지속적으로 받은 연구 주제이다.
그러나 대기압 조건에서는 자유 전자와 중성기체의 충돌이 빈번하기 때문에 이온화된 플라즈마 내 자유 전자의 밀도와 온도를 측정하는 데에는 한계가 있어 자유 전자의 가열 구조 및 원리를 실험적으로 규명할 수 없었다.
또한 전자 가열의 제어 방법 및 주요 요인에 대한 정보가 부족해 플라즈마의 반응성과 활용성 개선이 제한적이었다.
연구팀은 문제 해결을 위해 전자-중성입자 제동복사(electron-neutral bremsstrahlung)란 기술을 이용해 플라즈마 내 자유 전자의 밀도, 온도를 정확히 진단하고 이를 2차원으로 영상화하는 기술을 개발했다.
연구팀은 개발한 진단 기술을 이용해 대기압 플라즈마에서 수 나노초(10억분의 1초) 단위로 자유 전자의 온도(에너지)를 측정해 전자가 에너지를 얻는 가열 과정의 시공간적 분포 및 근본 원리를 밝히는 데 성공했다.
0.25~1기압 압력구간에서의 전자 온도의 시공간적 분포의 변화를 실험적으로 최초로 확인해 대기압 및 대기압보다 낮은 압력에서 전자가 에너지를 얻는 가열의 기본 원리를 규명했다.
최 교수는 “이 연구 결과는 자유 전자와 중성입자의 충돌이 매우 빈번한 조건에서 발생하는 플라즈마에서의 전자 가열 원리를 학문적으로 이해하는 데 유용할 것이다”며 “이를 통해 경제적, 산업적 활용 가능한 대기압 플라즈마 발생원을 개발하고 다양하게 활용하는데 큰 역할을 하길 기대한다”고 말했다.
이번 연구는 국가핵융합연구소의 미래선도플라즈마-농식품융합기술개발사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 측정된 파장의 제동복사 및 전자 온도의 시공간적 변화
그림2. 단일 및 이중 주파수로 구동하는 플라즈마에서 측정된 제동복사 및 전자 온도의 시공간적 변화
2018.07.26
조회수 13708