-
소량의 데이터로 딥러닝 정확도 향상기술 발표
최근 다양한 분야에서 심층 학습(딥러닝) 기술을 활용한 서비스가 급속히 증가하고 있다. 서비스 구축을 위해서는 심층 학습 모델을 훈련해야 하며, 이를 위해서는 충분한 훈련 데이터를 준비해야 한다. 특히 훈련 데이터에 정답지를 만드는 레이블링(labeling) 과정이 필요한데 (예를 들어, 낙타 사진에 `낙타'라고 정답을 적어줌), 이 과정은 일반적으로 수작업으로 진행되므로 엄청난 노동력과 시간이 소요된다. 따라서 훈련 데이터가 충분하지 않은 상황을 효과적으로 타개하는 방법이 요구되고 있다.
우리 대학 전산학부 이재길 교수 연구팀이 적은 양의 훈련 데이터가 존재할 때도 높은 예측 정확도를 달성할 수 있는 새로운 모델 훈련 기술을 개발했다고 27일 밝혔다.
심층 학습 모델의 훈련은 주어진 훈련 데이터에서 레이블과 관련성이 높은 특성을 찾아내는 과정으로 볼 수 있다. 예를 들어, `낙타'의 주요 특성이 등에 있는 `혹'이라는 것을 알아내는 것이다. 그런데 훈련 데이터가 불충분할 경우 바람직하지 않은 특성까지도 같이 추출될 수 있는 문제가 발생한다. 예를 들어, 낙타 사진의 배경으로 종종 사막이 등장하기에 낙타에 대한 특성으로 `사막'이 추출되는 것도 가능하다. 사막은 낙타의 고유한 특성이 아닐뿐더러, 이러한 바람직하지 않은 특성으로 인해 사막이 아닌 곳(예: 동물원)에 있는 낙타는 인식하지 못할 수 있다.
이 교수팀이 개발한 기술은 심층 학습 모델의 훈련에서 바람직하지 않은 특성을 억제해 충분하지 않은 훈련 데이터를 가지고도 높은 예측 정확도를 달성할 수 있게 해준다.
우리 대학 지식서비스공학대학원에 재학 중인 박동민 박사과정 학생이 제1 저자, 송환준 박사, 김민석 박사과정 학생이 제2, 제3 저자로 각각 참여한 이번 연구는 최고권위 국제학술대회 `신경정보처리시스템학회(NeurIPS) 2021'에서 올 12월 발표될 예정이다. (논문명 : Task-Agnostic Undesirable Feature Deactivation Using Out-of-Distribution Data)
바람직하지 않은 특성을 억제하기 위해서 분포 外(out-of-distribution) 데이터를 활용한다. 예를 들어, 낙타와 호랑이 사진의 분류를 위한 훈련 데이터에 대해 여우 사진은 분포 외 데이터가 된다. 이때 이 교수팀이 착안한 점은 훈련 데이터에 존재하는 바람직하지 않은 특성은 분포 외 데이터에도 존재할 수 있다는 점이다.
즉, 위의 예에서 여우 사진의 배경으로도 사막이 나올 수 있다. 따라서 다량의 분포 외 데이터를 추가로 활용해 여기에서 추출된 특성은 영(0) 벡터가 되도록 심층 학습 모델의 훈련 과정을 규제해 바람직하지 않은 특성의 효과를 억제한다. 훈련 과정을 규제한다는 측면에서 정규화 방법론의 일종이라 볼 수 있다. 분포 외 데이터는 쓸모없는 것이라 여겨지고 있었으나, 이번 기술에 의해 훈련 데이터 부족을 해소할 수 있는 유용한 보완재로 탈바꿈될 수 있다.
연구팀은 이 정규화 방법론을 `비선호(比選好) 특성 억제'라고 이름 붙이고 이미지 데이터 분석의 세 가지 주요 문제에 적용했다. 그 결과, 기존 최신 방법론과 비교했을 때, 이미지 분류 문제에서 최대 12% 예측 정확도를 향상했고, 객체 검출 문제에서 최대 3% 예측 정확도를 향상했으며, 객체 지역화 문제에서 최대 8% 예측 정확도를 향상했다.
제1 저자인 박동민 박사과정 학생은 "이번 기술은 훈련 데이터 부족 현상을 해결할 수 있는 새로운 방법ˮ 이라면서 "분류, 회귀 분석을 비롯한 다양한 기계 학습 문제에 폭넓게 적용될 수 있어, 심층 학습의 전반적인 성능 개선에 기여할 수 있다ˮ 고 밝혔다.
연구팀을 지도한 이재길 교수도 "이 기술이 텐서플로우(TensorFlow) 혹은 파이토치(PyTorch)와 같은 기존의 심층 학습 라이브러리에 추가되면 기계 학습 및 심층 학습 학계에 큰 파급효과를 낼 수 있을 것이다ˮ고 말했다.
한편, 이 기술은 과학기술정보통신부 재원으로 정보통신기획평가원의 지원을 받아 SW컴퓨팅산업원천기술개발사업 SW스타랩 과제로 개발한 연구성과 결과물(2020-0-00862, DB4DL: 딥러닝 지원 고사용성 및 고성능 분산 인메모리 DBMS 개발)이다. (끝).
2021.10.27
조회수 9940
-
정송 교수 연구팀, 아시아대학 최초 ACM MobiSys 2021 Best Paper Award 수상
우리 대학 AI대학원과 전기및전자공학부 소속 정송 교수 연구실의 김세연 박사과정생과 이경한 박사졸업생 (현 서울대 전기정보공학부 부교수)이 지난 주 COVID-19으로 인해 온라인으로 개최된 2021년도 ACM MobiSys 학회(https://www.sigmobile.org/mobisys/2021/)에서 Best Paper Award를 수상했다.
ACM MobiSys는 모바일시스템 분야의 최고 학회로서 올해 총 266편의 논문이 제출되어 36개의 논문이 억셉트되었으며 (논문게재율: 21.6%) 이번 정송 교수 연구팀의 Best Paper Award 수상은 19년의 MobiSys 역사상 첫 아시아권 대학의 수상이다. (제1저자 소속 대학 기준)
- 논문명: zTT: Learning-based DVFS with Zero Thermal Throttling for Mobile Devices
(모바일 기기의 열쓰로틀링 방지를 위한 강화 학습 기반의 동적 주파수 할당 기술)
- 논문 저자: 김세연 (KAIST), 빈경민 (서울대), 하상태 (U. of Colorado at Boulder), 이경한 (서울대), 정송 (KAIST)
- 논문 내용:
동적 전압/주파수 할당 기술(Dynamic Voltage and Frequency Scaling, DVFS)은 운영 체제(OS) 단에서 프로세서 성능을 보장하는 동시에 에너지 소모를 줄이기 위해 동적으로 프로세서의 전압과 주파수를 조절하는 기술이다. 하지만 모바일 기기의 동적 주파수 할당 기술은 두 가지 한계점을 가지고 있다. 첫째, OS 레벨에서 수행되기 때문에 어플리케이션의 성능을 보장하지 못한다. 둘째, 모바일 기기의 특성상 빈번하게 변하는 환경을 반영하지 못하여 과열을 일으켜 열쓰로틀링(Thermal Throttling)을 야기시켜 사용자 경험(QoE)를 크게 감소시킬 수 있다. 특히, 모바일 기기에서 발열 문제는 최신 스마트폰과 같은 고성능 기기의 성능을 크게 떨어뜨리는 고질적인 문제로 알려져 있다. 해당 연구에서는 이러한 기존 기술의 한계를 해결하기 위해 모바일 기기의 과열을 예방하고, 사용자 경험을 보장하는 동시에 에너지 소모를 최소화하기 위해 심층 강화 학습(Deep-Reinforcement Learning) 기반의 동적 주파수 할당 기술을 개발했다. 이는 실시간으로 수집되는 상태 정보를 바탕으로 어플리케이션과 모바일 기기의 동작 환경에 적응하여 안정된 성능을 보장하고, 전력 소모를 크게 줄일 수 있는 기술이다. 연구팀은 해당 연구 기술이 운영 체제나 어플리케이션이 보다 최적화된 성능으로 동작하기 위한 하나의 설정 옵션으로 패키징될 수 있을 것이라고 전망하고 있다.
위 상을 수상한 김세연 박사과정생은 논문에 대해 “5G 스마트폰과 같은 모바일 단말에서 과도한 발열로 인해 발생하는 열쓰로틀링에 따른 급격한 성능 저하 문제를 강화학습 기반의 동적 전압/주파수 스케일링을 통해 획기적으로 해결한 연구”라고 설명했다.
정송 교수는 “사용자 체감 성능을 높이면서 열쓰로틀링으로 인한 급격한 성능 저하를 방지하기 위해서는, 적정한 온도를 유지하기 위한 총전력 소모 범위 내에서 프로세서 컴포넌트 (CPU, GPU 등) 간 최적의 전력 분배를 수행하는 것이 관건이지만, 주변 환경 (주변 온도, 쿨링 상황 등)과 사용자 애플리케이션 특성에 따라 허용 가능한 총 전력 소모 범위와 최적의 전력 분배가 실시간으로 변화하기 때문에 전통적인 제어기법으로는 해결하기 매우 어려운 문제였다”고 부연 설명했다.
연구팀의 이러한 결과는 전력소모 문제로 인공지능 기법의 도입이 어려울 것으로 예상되었던 모바일 플랫폼에서 조차 강화학습 기반의 시스템 제어가 성능 개선에 크게 이바지 할 수 있음을 보임으로써, 차세대 운영체제에 AI/ML 기반 제어 기법들을 적극적으로 도입하기 위한 계기를 마련한 것으로 평가받았다.
2021.07.09
조회수 10608
-
딥러닝 생성모델의 오류 수정 기술 개발
우리 대학 AI대학원 최재식 교수(설명가능 인공지능연구센터장) 연구팀이 심층 학습(이하 딥러닝) 생성모델의 오류 수정 기술을 개발했다고 25일 밝혔다.
최근 딥러닝 생성모델(Deep Generative Models)은 이미지, 음성뿐만 아니라 문장 등 새로운 콘텐츠를 생성하는 데 널리 활용되고 있다. 이런 생성모델의 발전에도 불구하고 최근 개발된 생성모델도 여전히 결함이 있는 결과를 만드는 경우가 많아, 국방, 의료, 제조 등 중요한 작업 및 학습에 생성모델을 활용하기는 어려운 점이 있었다.
최 교수 연구팀은 딥러닝 내부를 해석하는 설명가능 인공지능 기법을 활용해, 생성모델 내부에서 이미지 생성과정에서 문제를 일으키는 유닛(뉴런)을 찾아 제거하는 알고리즘을 고안해 생성모델의 오류를 수리했다. 이러한 생성 오류 수리 기술은 신경망 모델의 재학습을 요구하지 않으며 모델 구조에 대한 의존성이 적어, 다양한 적대적 생성 신경망에 폭넓게 응용 및 적용될 수 있을 것으로 기대된다. 또한, 고안된 기술은 딥러닝 생성모델의 신뢰도를 향상해 생성모델이 중요 작업에도 적용될 수 있을 것으로 기대된다.
AI대학원의 알리 투씨(Ali Tousi), 정해동 연구원이 공동 제1 저자로 참여한 이번 연구는 `국제 컴퓨터 비전 및 패턴인식 학술대회 (IEEE Conference on Computer Vision and Pattern Recognition, CVPR)'에서 6월 23일 발표됐다. (논문명: Automatic Correction of Internal Units in Generative Neural Networks, CVPR 2021).
적대적 생성 신경망은 생성기와 구분기의 적대적 관계를 이용한 모델로서, 생성 이미지의 품질이 높고 다양성이 높아, 이미지 생성뿐만 아니라 다양한 분야(예, 시계열 데이터 생성)에서 주목받고 있다.
딥러닝 생성모델의 성능을 향상하기 위해서 적대적 생성기법 및 생성기의 새로운 구조 설계 혹은 학습 전략의 세분화와 같은 연구가 활발히 진행되고 있다. 그러나 최신 적대적 생성 신경망 모델은 여전히 시각적 결함이 포함된 이미지를 생성하고 있으며, 재학습을 통해서 이를 해결하기에는 오류 수리를 보장할 수 없으며, 많은 학습 시간과 비용을 요구하게 된다. 이렇게 규모가 큰 최신 적대적 생성 신경망 모델의 일부 오류를 해결하기 위해 모델 전체를 재학습하는 것은 적합하지 않다.
연구팀은 문제 해결을 위해 생성 오류를 유도하는 딥러닝 내부의 유닛(뉴런)을 찾아 제거하는 알고리즘을 개발했다. 알고리즘은 딥러닝 모델의 시각적 결함의 위치를 파악하고, 딥러닝 모델 내 여러 계층에 존재하는 오류를 유발한 유닛을 찾아서 활성화하지 못하도록 하여 결함이 발생하지 않도록 했다.
연구팀은 설명가능 인공지능 기술을 활용해 시각적 결함이 생성된 이미지의 어느 부분에 분포하는지, 또 딥러닝 내부의 어떤 유닛이 결함의 생성에 관여하는지 찾을 수 있었다. 개발된 기술은 딥러닝 생성모델의 오류를 수리할 수 있고, 생성모델의 구조에 상관없이 적용할 수 있다.
연구팀은 전통적인 구조를 가지는 `진행형 생성모델(Progressive GAN, PGGAN)'에서 개발 기술이 효과적으로 생성 오류를 수리할 수 있음을 확인했다. 수리 성능은 매사추세츠 공과대학(MIT)이 보유한 수리 기술 대비 FID 점수가 10점 정도 감소했으며, 사용자 평가에서 시험 이미지 그룹의 약 50%가 결함이 제거됐고, 약 90%에서 품질이 개선됐다는 결과를 얻었다. 나아가 특이 구조를 가지는 `StyleGAN2'와 `U-net GAN'에서도 생성 오류 수리가 가능함을 보임으로써 개발 기술의 일반성과 확장 가능성을 보였다.
연구팀이 개발한 생성모델의 오류 제거 기술은 다양한 이미지 외에도 다양한 생성모델에 적용돼 모델의 결과물에 대한 신뢰성을 높일 것으로 기대된다.
공동 제1 저자인 알리 투씨와 정해동 연구원은 "딥러닝 생성모델이 생성한 결과물에 있는 시각적 오류를 찾고, 이에 상응하는 활성화를 보이는 생성모델 내부의 유닛을 순차적으로 제거함으로써 생성 오류를 수리할 수 있음을 보였다ˮ라며 이는 "충분히 학습된 모델 내부에 미학습 혹은 잘못 학습된 내부요소가 있음을 보여주는 결과다ˮ라고 말했다.
한편 이번 연구는 2021년도 과학기술정보통신부의 재원으로 정보통신기획평가원의 지원을 받은 혁신성장동력프로젝트 설명가능인공지능 및 한국과학기술원 인공지능 대학원 프로그램과제를 통해서 수행됐다.
2021.06.25
조회수 18967
-
이상수 교수팀, iF 디자인 어워드 금상 포함 8개상 석권
우리 대학 이상수 산업디자인학과 교수가 이끄는 디자인팀이 세계 최고 권위의 디자인 공모전인 'iF 디자인 어워드 2021(International Forum Design Award 2021)'에서 최고상인 금상(Gold Award)을 비롯해 총 8개의 상을 받았다.
이 교수팀의 이번 성과는 우리 대학이 iF 디자인 어워드에서 금상을 받은 최초의 사례로 산학 연계 수업을 통해 수상작을 배출했다는 점에서 특히 주목할 만하다. 금상을 수상한 얼라인(ALINE, 정은희, 남서우, 박수연, 황영주, Edwin Truman, 이선옥, 최다솜 학생 참여)은 최근 화두로 떠오르고 있는 ESG 투자(사회적책임투자)를 기반으로 디자인됐다. 새로운 개념으로 투자할 수 있게 도와주는 모바일 애플리케이션 솔루션으로 수익률을 중심으로 판단하던 기존의 방식에서 벗어나 사용자의 가치관을 반영해 투자와 소비를 유도하는 서비스다. 심사위원단은 "정제된 사용자경험(UX) 디자인을 통해 투자 및 소비의 새로운 장을 열었다”고 평가했다.
이뿐만이 아니라 iF 디자인어워드 2021의 서비스디자인 부문 표지 작품으로 게재된 것과 동시에 iF가 지구의 날을 맞아 발행한 '2020-2021 지속 가능한(sustainable) 소비를 위한 디자인 10선'에도 선정되는 등 많은 관심을 받았다.
또한, 대학에서 구성된 디자인팀이 학생 부문이 아닌 일반 기업 경쟁 부문에 참가해 한 번에 8개의 상을 수상한 것 역시 국제적으로도 극히 이례적인 성과로 평가받고 있다. 이상수 교수팀은 52개국 1만여 개 작품이 출품된 올해 공모전에서 서비스 디자인 부문 3개, 사용자 인터페이스(UI) 부문 2개, 사용자 경험(UX) 부문 2개, 커뮤니케이션 부문 1개 등 4개 부문에 걸쳐 총 8개의 상을 받았다. 특히, 금상은 1만여 개의 경쟁 작품 중에서 75개의 출품작에만 주어지는 최고 등급의 상이라는 점에서 이 교수팀의 이번 성과는 더욱 큰 의미를 가진다. 그밖에, 서비스 디자인 부문에서는 부모와 자녀가 함께하는 투자 서비스 핀토(Pinto, 김영우, 김태륜, 조해나 학생 참여), UI부문에서는 멘탈 어카운팅을 반영한 인터페이스 디자인 아쿠아(Aqua, 정기항, 신동욱, 최성민, 임현승 학생 참여), 커뮤니케이션 부문에서는 주식 선물 모바일 애플리케이션 스톡박스(Stockbox, 김병재, 박찬형, 신준범, 이민하, 김우석 학생 참여) 등이 본상을 받았다.
이번 성과를 이끈 이상수 교수는 2020년 NH투자증권-KAIST UX디자인 연구센터를 개소해 새로운 투자 서비스 및 UX디자인을 목표로 연구해왔다. 이 교수(NH투자증권-KAIST UX디자인 연구센터장)는 "KAIST 산업디자인학과 학생들이 세계 최고 수준의 디자인 역량을 갖췄다는 것을 입증받아 기쁘다”라고 소감을 전했다. 이어, "디자인이 단순히 사용자를 즐겁게 만드는 것에 그치는 것이 아니라 더 좋은 사회를 만드는데 기여할 수 있도록 앞으로도 최선을 다할 것ˮ 이라고 수상 소감을 밝혔다.
이상수 교수는 매년 산학 연계 수업을 통해 산업 현장에서 쓰일 수 있는 실질적인 디자인 교육을 지향하고 있으며, 지난 2018년에도 네이버와의 협업을 통해 레드닷 디자인 어워드에서 본상 3개를 한 번에 수상하며 주목받은 바 있다. 한편, iF 디자인 어워드는 레드닷, IDEA 디자인상과 더불어 세계 3대 디자인상으로 손꼽히는 권위 있는 시상식이다. 제품·패키지·커뮤니케이션·서비스디자인·사용자 경험(UX)·사용자 인터페이스(UI)·콘셉트·인테리어·건축 등 총 9개 부문에서 디자인 차별성과 영향력 등을 종합적으로 평가해 수상작을 선정하고 있다.
2021.05.04
조회수 26739
-
남택진 교수팀, 레드닷 어워드 2021 대상 수상
우리 대학 남택진 산업디자인학과 교수팀이 세계 최대 규모의 디자인 공모전인 독일 ʻ레드닷 디자인 어워드(Red Dot Design Award) 2021ʼ 제품디자인 부문에서 대상(best of the best award)을 받았다. 수상작은 남 교수팀이 개발한 ʻ코로나 중증 환자 치료용 이동형 감염병동(mobile clinic module, MCM)ʼ이다. 올해 공모전에는 60여 개국에서 총 7천8백여 개의 작품이 출품돼 제품 디자인·커뮤니케이션 디자인·콘셉트 디자인 등 3개 분야에서 경쟁을 펼쳤다. 주최 측은 "수상작들이 자동차·로봇·의료 기술·포장에 이르기까지 디자인을 통해 현대 사회가 가진 문제를 해결하고 인류의 생활 수준을 향상하는 데 중요한 역할을 했다ˮ라고 밝혔다. 특히, 남 교수팀의 이동형 감염병동은 "제품 디자인이 감염병 확산을 방지하는 일에 얼마나 가치 있게 기여할 수 있는지를 보여줬다ˮ라고 평가했다.
이동형 감염병동의 쾌거는 이뿐만이 아니다. 레드닷 디자인 어워드(Red Dot Design Award)와 함께 세계 최고 권위의 디자인 공모전으로 손꼽히는 iF 디자인 어워드(International Forum Design Award) 2021에서도 제품·실내건축·사용자인터페이스·사용자경험 등 총 4개 분야에서 본상을 수상했다.
이로써, 남 교수팀의 이동형 음압병동은 국제 권위의 디자인 공모전을 연이어 석권하며 기능성·경제성·효용성뿐만 아니라 독창적 디자인과 심미성까지 갖춘 의료 시설로서 가치를 인정받게 됐다.
이동형 음압병동은 고급 의료 설비를 갖춘 음압 격리 시설로 신속하게 변형하거나 개조해 사용할 수 있도록 디자인됐다. 음압 프레임·에어 텐트·기능 패널 등의 각 모듈을 조합해 단시간 내에 음압 병동이나 선별진료소 등을 구축할 수 있다. 또한, 소규모의 장비와 인력으로도 관리·이송·설치가 가능해 기존의 조립식 병동 대비 경제적·시간적 효율을 높인 것이 가장 큰 특징이다. 남택진 교수팀은 작년 7월부터 KAIST 코로나 대응 과학기술 뉴딜사업(단장 배충식)의 일환으로 이동형 음압병동을 개발했다. 조스리 스튜디오·20Plus 등과 협력해 디자인을 진행했고 신성이엔지가 제작을 담당했다. 배상민(산업디자인학과)·이태식(산업및시스템 공학과)·김형수(기계공학과) 교수 등이 자문했으며, 석현정(산업디자인학과), 박해원·김성수(기계공학과), 한동수(전산학과) 교수 등이 감염병원 서비스 주제로 연구에 참여했다. 현재 한국 원자력의학원·제주도 백신 접종센터에 시제품이 설치돼 코로나 환자 및 백신 접종자들을 대상으로 시범 운영 중이다. 향후, 건양대 병원 등으로 적용 범위를 확대해나갈 예정이다. 디자인 총괄한 남택진 교수는 "현실 세계의 문제를 발견하고 해결하여 책임지는 디자이너가 더 많아지기를 바란다ˮ라고 수상 소감을 전했다. 이어, 남 교수는 "MCM의 생산 효율성과 안정된 운영을 위해 엔지니어링 디자인 측면을 개선하는 연구를 진행 중이며, 빠른 시일 내에 상용화와 수출이 이뤄질 수 있도록 박차를 가할 예정이다ˮ라고 전했다. KAIST 코로나 대응 과학기술 뉴딜사업단은 KAIST의 과학기술 역량을 기반으로 감염 예방·보호·진단·치료 등 감염병의 전 주기에 대응하는 치료 분야에서 산·학·연·병이 협력해 방역 요소기술 개발과 과학기술 기반의 방역 시스템을 구축하는 연구를 수행하고 있다.
2021.04.19
조회수 43844