본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%95%A1%ED%8B%B0%EB%B8%8C+%EC%9E%AC%EB%A3%8C+%EB%B0%8F+%EB%8F%99%EC%A0%81+%EC%8B%9C%EC%8A%A4%ED%85%9C+%EC%97%B0%EA%B5%AC%EC%8B%A4
최신순
조회순
그래핀 이용한 인공근육형 작동장치(actuator) 개발
〈 오 일 권 교수〉 우리 대학 기계공학과 오일권(43) 교수 연구팀이 화학적 도핑된 그래핀을 이용해 고성능의 인공근육형 작동장치(actuator)를 개발했다. 이번에 개발된 인공근육 작동장치는 기존 기술보다 3배 이상의 굽힘 변형을 보이고, 5시간 이상 구동해도 성능을 유지할 수 있다. 이번 연구는 어드밴스드 머터리얼스(Advanced Materials) 12월 15일자 온라인 판에 게재됐다. 최근 플렉서블, 웨어러블 소자에 대한 연구가 활발해지며 인간과 기계 사이의 햅틱(촉각 효과) 기능을 위한 능동형 유연 작동기(soft actuator)가 핵심 부품으로 각광받고 있다. 특히 유연성이 떨어져 첨단 전자제품에 적용이 어려운 기존의 기계식 작동기를 대신해 인간의 근육을 모방한 전기에 반응하는 인공근육형 작동기가 관심을 받고 있다. 그러나 기존의 백금이나 금을 기반으로 제작한 인공근육형 작동기는 제작 기간이 일주일 가까이 소요되고 실용성이 떨어지는 한계를 갖는다. 연구팀은 문제 해결을 위해 그래핀과 화학물질, 전도성 고분자를 이용했다. 황과 질소를 그래핑에 도핑하고 전도성 고분자와 함께 섞어 부드럽고 전도성이 탁월한 유연 전극을 제작했다. 그리고 이를 바탕으로 고성능 인공근육형 작동기를 개발했다. 기존의 금속 기반 작동기가 일주일 이상의 제작 기간이 소요되는데 반해 연구팀이 개발한 그래핀-전도성 고분자 전극 적층 방식의 유연 작동기는 2시간 이내 제작할 수 있는 장점을 갖는다. 또한 황과 질소 등 화학물질을 도핑하는 작업으로 기존 그래핀에 비해 1.5~2배 이상 전기화학 성능이 향상됨을 삼전극 전기화학 테스트를 통해 확인했다. 연구팀은 이번에 개발한 작동기는 0.5V와 1V의 낮은 인가전압에서도 대 변형 구동이 가능하고, 기존 대비 3배 이상의 변형을 보이면서도 장시간 성능 지속이 가능하다고 밝혔다. 이 원천기술은 향후 ▲소프트 로보틱스(soft robotics)▲3D 프린팅 된 작동기▲부드러운 햅틱 디바이스▲웨어러블 전자소자▲유연 디스플레이전자소자▲생체 의료기기 등 각광받는 차세대 기전소자로 응용될 것으로 기대된다. 오 교수는 “고성능 인공근육형 작동기 기술은 향후 첨단 기전소자의 핵심 요소가 될 것이다”며 “특히 3D프린팅 기술과 함께 발전하면 차세대 웨어러블 소자로 상용화 가능성이 높을 것이다”고 말했다. 이번 연구는 미래창조과학부 리더연구자지원사업의 지원을 받아 KAIST 김재환 박사과정, Kotal 박사가 공동 1저자로 참여했고, 네바다 주립대학 라스베가스(UNLV) 기계공학과 김광진 교수팀과의 공동연구를 통해 진행됐다. □ 그림 설명 그림1. 도핑된 그래핀 기반 인공근육형 작동기의 단면 이미지 그림2. 인공근육형 작동기 구동 사진 그림3. 황과 질소가 동시에 도핑된 그래핀의 원소 매핑 이미지 그림4. (a) 도핑된 그래핀의 굽힘 성능 및 (b) 성능 지속성 평가
2016.01.07
조회수 11917
물에 뜨고 오래가는 인공근육 개발
내구성이 뛰어나면서도 물에 뜨는 인공근육이 개발됐다. 모터 없이도 로봇을 움직이는데 활용될 수 있으며 향후 인간의 근육도 대체가능할 것으로 기대된다. 우리 학교 해양시스템공학전공 오일권 교수와 김재환 박사과정 학생은 한국기계연구원 임현의 박사와 공동으로 그래핀을 이용해 기존보다 10배 이상 오랫동안 작동할 수 있으면서도 물에 뜨는 인공근육을 개발했다. 연구결과는 나노 분야 세계적 학술지 ‘ACS Nano’ 최근호에 게재됐다. 인간의 근육을 모방한 이온성 고분자 인공근육은 소음이 없고 구조가 간단한 것은 물론 단위 부피당 출력이 높아 기계식 모터와 유압식 작동기를 대체할 수 있어 많은 관심을 받아왔다. 그러나 백금 전극 표면에 존재하는 균열을 통해 내부 전해액이 빠져나가 내구성이 부족해 상용화가 어려웠다. 오 교수 연구팀은 귀금속인 백금과 비슷한 전기전도성을 가지면서도 그래핀 입자간 거리가 좁은 그래핀 종이를 전극으로 활용했다. 연구팀은 환원된 그래핀 산화물 입자를 두껍게 쌓아 5㎛(마이크로미터, 100만분의 1미터) 두께로 제작한 종이형태의 전극을 제작해 액체투과성 실험을 한 결과 전해액이 거의 빠져나가지 않았다. 내부 전해액 이온의 크기보다 그래핀의 입자간 공간이 좁기 때문이다. 연구팀은 그래핀 전극이 이온성 고분자와 맞닿는 부분엔 레이저 처리를 통해 표면적을 늘려 접착성을 높였다. 이에 따라 인공근육의 움직임에 대한 내구성도 확보했다. 기존 백금전극으로 만들어진 인공근육은 4.5V(볼트), 1Hz(헤르츠) 조건으로 6시간 동안 실험한 결과, 30분이 지난 후 움직임이 절반 이하로 떨어졌다. 반면 오 교수 연구팀이 개발한 인공근육은 동일 조건에서 성능이 지속적으로 유지되며 안정적으로 작동이 가능했다. 이와 함께 전극으로 사용된 그래핀은 물을 밀어내는 성질이 있어 개발된 인공근육 역시 물어 잘 뜨고 쉽게 구할 수 있어 저렴한 가격으로도 제작가능하다고 연구팀은 전했다. 이처럼 물에 뜨고 내구성이 향상된 인공근육의 원천기술은 향후 △생체로봇 △유연 전자소자 △부드러운 햅틱 디바이스 △생체 의료기기 등 최근 각광 받고 있는 차세대 핵심 분야에 응용될 수 있을 것으로 기대된다. 이번 연구를 주도한 오일권 교수는 “이번에 개발한 그래핀 기반 인공근육은 간단히 전극만을 교체해 기존에 알려졌던 작동기의 근본적인 문제를 해결했다”며 “수년 내 응용전자소자를 개발할 수 있을 것”이라고 말했다. 그림1. 연구팀이 개발한 그래핀 기반 인공근육(사진) 그림1-1. 연구팀이 개발한 그래핀 기반 인공근육(그래픽) 그림2. 인공근육이 6V 전압을 인가했을 시 작동하는 모습 그림3. (a)기존 무전해 도금으로 제작된 이온성 고분자-금속 복합체 작동기 (b)연구팀이 개발한 환원된 그래핀 산화물 페이퍼 전극 기반의 이온성 고분자-그래핀 복합체 작동기. 그림4. 레이저 처리된 환원된 그래핀 산화물 페이퍼 전극의 제작 과정. 그림5. (a) 물이 전해액일 때의 IPMC 작동기와 IPGC 작동기의 성능 지속성 실험 결과와 (b) 60℃의 오븐에서 12시간 이상 건조 후 실험 결과. (c),(d)이온성 액체가 전해액일 때의 IPMC 작동기와 IPGC 작동기의 성능 지속성 실험 결과. (e),(f) IPGC 작동기의 굽힘 거동 성능과 곡률.
2014.05.08
조회수 17264
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1