본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%9D%B4%EC%9A%A9%ED%9D%AC
최신순
조회순
조용훈 교수, 종이 위에서 빛나는 초소형 반도체 레이저 개발
우리 대학 물리학과 조용훈 교수 연구팀이 종이 위에서 작동하는 초소형 반도체 레이저를 개발했다. 나노 크기의 광결정 소자를 흡수성이 높은 종이와 결합함으로써 최첨단 반도체 센서를 저렴한 가격으로 다양한 질병 진단에 활용할 수 있을 것으로 기대된다. 이 연구 결과는 소재 분야 학술지 ‘어드밴스드 머티리얼즈(Advanced Materials)’ 11월 17일자에 게재됐다. 빛을 매개체로 사용하는 광소자는 높은 대역폭을 갖고 있어 대용량으로 정보 전송이 가능하고 낮은 전력으로도 구동할 수 있다. 일반적으로 반도체 광소자는 직접적으로 특정 기능을 수행하는 부분 외에 이들을 단순히 지탱하기 위한 반도체 기판이 필요하다. 반도체 기판의 부피는 전체 소자 부피의 대부분을 차지하고 자연적으로 부패하지 않는 물질이기 때문에 소자를 폐기할 때 환경 문제를 일으킨다. 연구팀은 문제 해결을 위해 두꺼운 반도체 기판을 제거했고 일상생활에서 쉽게 구할 수 있는 종이를 광소자의 기판으로 사용했다. 종이의 주원료는 나무이기 때문에 자연적으로 썩어 없어진다. 또한 일상생활에서 쉽게 찾아볼 수 있고 가격이 저렴하기 때문에 종이를 이용한 소자는 단가를 획기적으로 낮출 수 있다. 종이는 기계적으로도 우수한 특성들을 지닌다. 자유자재로 구부릴 수 있고 접었다 피는 것을 반복해도 끊어지지 않는다. 이러한 특성은 기존 플렉서블 기판들이 구현하고자 하는 우수한 특성이다. 연구팀은 반도체 광소자를 종이 위에 옮기기 위해 나노 광소자를 마이크로 스탬프로 떼어 내는 기술을 이용했다. 이를 통해 반도체 기판에 높은 집적도로 패터닝(특정 부분을 깎아내는 식각 과정을 통해 회로를 새겨 넣는 과정)한 나노 광소자를 새로운 종이 기판에 원하는 간격으로 재배열 할 수 있었다. 이번에 종이 위에 결합된 광소자는 폭 0.5 마이크로미터. 길이 6 마이크로미터, 높이 0.3 마이크로미터 크기로 머리카락(약 0.1 mm) 두께의 100분의 1 수준이다. 연구팀은 개발한 광소자를 유체 채널(Fluid channel)이 형성된 종이 위에 결합해 굴절률 센서로도 활용 가능함을 증명했다. 이미 상용화된 임신진단키트 등에서도 볼 수 있듯이 종이는 좋은 흡수성을 가지고 있고 광결정 소자는 높은 민감도를 가지고 있어 센서 응용에 매우 적합하다. 조 교수는 “이 기술은 종이를 광소자의 기판으로 사용함으로써 최근 화두인 친환경 광소자 플랫폼을 만드는데 크게 기여할 수 있다”며 “저렴한 종이와 고성능 광결정 센서를 결합해 전체 소자의 단가는 낮추면서 성능은 뛰어난 적정기술로 활용할 수 있다”고 말했다. 물리학과 김세정 박사가 1저자로 참여한 이번 연구는 서강대학교 신관우 교수, 우리 대학 이용희 교수가 참여했고, 한국연구재단 중견연구자지원사업과 KAIST 기후변화연구허브사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 종이 기판 위 광결정 레이저 모식도 그림2. 종이 기판위에서 동작하는 광결정 공진기 레이저 및 굴절률 센서
2016.11.25
조회수 18569
수 나노미터급으로 빛 모으는 3차원 광 장치 개발
우리 대학 물리학과 김명기, 이용희 교수 연구팀이 빛을 수 나노미터급 영역안으로 집속시킬 수 있는 초 고광밀도 삼차원 갭-플라즈몬 안테나(3D gap-plasmon antenna)를 개발했다. 이번 연구는 미국화학회의 나노분야 저널인 ‘나노 레터스(Nano Letters)’ 6월 10일자에 게재됐다. 빛을 한 점으로 집속시키는 연구는 최근까지도 활발하게 이뤄지고 있다. 빛을 고밀도로 집속시킬수록 다양한 분야에서 활용 가능하기 때문이다. 하지만 빛의 파장보다 작은 크기에서 발생하는 회절(回折, diffraction) 현상은 집속을 방해한다. 이를 극복하기 위해 학자들은 금속에서는 회절한계를 뛰어넘어 빛이 가둬지는 플라즈모닉 현상을 이용해 연구를 진행 중이다. 학자들은 2차원 형태의 플라즈모닉 안테나 개발에 집중했고 연구를 통해 5나노미터 이하로 빛을 집속하기도 했다. 하지만 2차원 안테나로는 아무리 작게 모아도 나머지 한 쪽 방향으로 빛이 퍼지는 한계가 있다. 즉, 빛을 3차원 방향으로 집속시킬 수 있어야 빛의 밀도를 최대로 끌어올릴 수 있는 것이다. 연구팀은 집속 이온빔 근접 식각 (Proximal Focused-Ion-Beam Milling) 기술을 도입해 3차원 구조의 4나노미터급 갭-플라즈몬 안테나를 제작했다. 이를 통해 삼차원 나노 공간(~4 x 10 x 10 nm3)안으로 빛을 집속시켜 입사파와 비교해 40만 배 이상의 빛의 세기를 만들었다. 또한 제작된 안테나 내 높은 광밀도를 이용해 금속에서 발생하는 이차조화파 세기의 극대화에 성공했고, 음극선 발광 측정(Cathodoluminescence)장치를 이용해 빛이 나노 갭 안으로 강하게 집속됨을 확인했다. 연구팀은 이 기술이 데이터 통신과 정보 처리 속도를 테라헤르츠(THz, 1초당 1조번) 수준으로 높이고, 하드디스크 면적당 용량을 현재의 100배로 늘릴 수 있을 것이라고 밝혔다. 더불어 전자 현미경 대신 직접 빛을 이용해 분자 이하 크기의 고해상도 이미지를 추출하거나 반도체 공정을 수 나노미터 수준으로 발전시키는 기술이 가능할 것이라고 말했다. 김명기 교수는 “간단하고 새로운 아이디어가 기존 2차원 플라즈모닉 안테나 중심 연구를 3차원 공간으로 확대시켰다”며 “정보통신, 데이터 저장, 영상의학, 반도체 공정 등 다양한 분야에 응용될 수 있을 것이다"고 말했다. 이번 연구는 한국연구재단의 일반연구자지원사업과 중견연구자지원사업, 첨단융합기술개발사업 프로그램 지원을 받아 수행됐다. □ 그림 설명 그림 1. 제작된 3차원 갭-플라즈몬 안테나 그림 2. 3차원 갭-플라즈몬 안테나 구조 및 시뮬레이션 결과 그림 3. 증폭된 이차조화파 발생과 나노갭 안으로 빛이 집속된 모습
2015.06.15
조회수 13294
고효율의 단일광자원 소자 핵심기술 개발
조 용 훈 교수 우리 대학 물리학과 조용훈 교수 연구팀이 양자정보기술에 기여할 수 있는 고효율의 단일광자원(양자광원) 의 방출 효율과 공정 수율을 높일 수 있는 기술을 개발했다. 이번 연구 결과는 자연과학분야 학술지인 미국국립과학원회보(PNAS: Proceedings of the National Academy of Sciences) 4월 13일자 온라인 판에 게재됐다. 빛은 보통 파동의 성질을 갖는 동시에 입자의 성질도 가지고 있는데, 이 입자를 광자라고 한다. 단일광자원 혹은 양자광원은 광자가 뭉쳐서 나오는 고전적인 광원과는 달리 한 번에 한 개의 광자만 방출하는 소자이다. 반도체 양자점을 이용한 단일광자 방출 소자는 안정성 및 전기구동 가능성이 높아 상용화에 적합한 소자로 각광받고 있다. 하지만 빛의 파장은 양자점보다 수십~수백 배 정도 크기 때문에 상호 작용하기 어려워서 단일광자의 방출 효율이 매우 작다는 한계점이 있다. 따라서 고효율 단일광자원를 만들기 위해서는 양자점과 빛을 집속시키는 구조(광공진기)를 공간적으로 정확히 결합시키는 것이 필수적이다. 하지만 양자점은 불규칙하게 분포되어 있고 위치를 정확히 확인할 수 없어 우연성에 의존한 결합을 기대할 수밖에 없었다. 따라서 긴 공정시간에도 불구하고 소수의 단일광자소자를 제작하는 수준에 머물러 있었다. 연구팀은 문제 해결을 위해 피라미드 모양의 나노 구조체를 활용했다. 반도체 나노피라미드 구조에서는 양자점이 피라미드의 꼭지점에 자발적으로 형성된다. 그리고 그 위에 금속 필름을 얇게 증착하면 빛 역시 뾰족한 금속 끝에 모이는 성질 때문에 양자점과 동일한 위치에 집속되는 것이다. 특히 금속에서는 빛이 본래 가진 파장보다 작게 뭉칠 수 있다. 즉, 빛이 가진 파장보다 더 소형화를 시킬 수 있기 때문에 양자점과의 크기 차이로 인한 문제를 극복할 수 있게 되는데, 이 방법으로 단일광자 방출 효율이 기존의 방식보다 20배 정도 증가되었다. 단일광자 방출소자는 양자광컴퓨터 및 양자암호기술 구현의 가장 기본적인 구성 요소이다. 이번 연구를 통해 기존의 까다로운 과정들 없이 단순한 방식으로 효율과 수율을 모두 높일 수 있으므로, 단일광자방출원 혹은 양자광원 관련 기술의 상용화 가능성이 높아질 것으로 기대된다. 조 교수는 “이 기술은 높은 공정 수율을 갖고 있기 때문에 상용 양자광원 소자 제작 한계를 해결하고, 양자정보통신 분야 구현에 중요 기술이 될 것”이라고 말했다. 조용훈 교수의 지도를 받아 공수현(1저자)·김제형(2저자) 박사가 수행한 이번 연구는 우리 대학 신종화·이용희 교수, 프랑스 CNRS의 레시당 박사, 미국 UC 버클리의 샹장 교수가 참여했으며, 한국연구재단의 중견연구자 지원사업과 KAIST 기후변화연구 허브사업의 지원을 받아 수행됐다. 그림 1. 단일 광자가 높은 효율로 방출되는 모습의 개념도
2015.04.23
조회수 14002
민범기 교수, 높은 굴절률의 메타물질 구현
- 세계 최고 권위 『네이처』지 발표, “전자기파나 광파의 경로를 마음대로 제어하는 초소형 광학소자 개발 가능”- 국내 연구진이 자연계에 존재하지 않는 높은 굴절률*을 갖는 메타물질을 이론적으로 검증하고 이를 실험적으로 구현하는데 성공하였다. * 굴절률(index of refraction) : 서로 다른 매질의 경계면을 통과하는 파동이 굴절되는 정도 또는 투명한 매질로 빛이 진행할 때, 빛의 속도(광속) 이 줄어드는 비율 우리학교 민범기 교수(교신저자, 37세), 최무한 박사(제1저자, 39세) 및 이승훈 박사과정생(제1저자, 29세)의 주도 하에, 한국전자통신연구원(ETRI) 강광용 박사팀, KAIST 이용희 교수팀, 서울대 박남규 교수팀이 참여한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 오세정)이 추진하는 일반연구자지원사업(신진연구)의 지원을 받아 수행되었다. 이번 연구결과는 세계 최고 권위의 과학 전문지인 ‘네이처(Nature)’지 2월 17일자에 게재되었는데, 특히 순수 국내연구진만으로 구성된 연구팀이 단독으로 발표한 이례적인 값진 연구성과로서 그 의미가 매우 크다. 또한 이 논문은 그 주에 발표된 논문 중에서 우수한 연구결과를 해당분야 전문가가 해설하는 ‘뉴스 앤드 뷰즈(News and Views)’에 선정되는 영예를 얻었다. 메타물질이란 기존에 물질의 정의를 완전히 뛰어넘는 혁신적인 개념으로서, 자연계에는 존재하지 않는 물성을 갖도록 고안된 물질의 통칭이다. 원자나 분자로 이루어진 자연계의 물질과는 달리, 메타물질의 단위 인공원자는 파장보다 훨씬 작은 인위적인 구조체로 이루어진다. 이러한 메타물질은 전자기파나 광파에 대한 물질의 물성을 인위적으로 마음대로 조절할 수 있다는 점에서 최근 전 세계 연구자들의 주목을 받고 있다. 일례로 광학투명망토 기술이나 음굴절률의 구현 등이 메타물질의 주된 연구 분야였으나, 이번 연구를 통하여 극한 고굴절률 메타물질이라는 새로운 영역을 개척하였다. 민범기 교수 연구팀은 분극율(分極率)이 매우 크면서도 반자성(反磁性)이 매우 약한 금속이면서 유전체(誘電體)인 메타물질을 독자적으로 설계․제작하여, 인위적인 값으로는 가장 높은 38.6에 달하는 굴절률을 세계 최초로 실증하였다. 이러한 연구결과는 음굴절률 메타물질의 영역을 넘어서 자연계에 존재하지 않는 매우 높은 굴절률(38.6)을 메타물질의 새로운 영역으로 포함시켰다는 점에서 의미가 크다. 민범기 교수는 “이번 연구는 향후 파장이하의 높은 해상도를 지닌 이미징 시스템이나, 전자기파 혹은 광파의 경로를 임의로 제어할 수 있는 전자기파나 광학소자 및 파장이하 규모의 초소형 광학소자를 개발하는데 크게 기여할 수 있을 것으로 기대한다”고 연구의의를 밝혔다.
2011.02.16
조회수 21614
생명화학공학과 양승만교수 광자유체 신기술개발
생명화학공학과 양승만(梁承萬, 58세, 교육과학기술부 지정 광자유체집적소자 창의연구단 단장) 교수 연구팀이 다양한 기능을 갖는 나노입자를 제조하고 이들 입자들이 스스로 조립되는 ‘자기조립원리’를 규명하는 연구를 수행하여, 방대한 량의 정보를 처리할 수 있는 프로토타입(prototype)의 광․바이오 기능성 광자결정(photonic crystal)구조체를 개발했다. 자연계에 존재하는 대표적인 광자결정은 오팔보석, 나비의 날개, 공작새의 깃털 등이 있다. 이들 광자결정 물질들이 발산하는 아름다운 색깔은 색소에 의한 것이 아니라 이 물질들을 이루는 구조 자체가 규칙적인 나노구조로 되어 있기 때문이다. 즉, 광자결정은 굴절률이 다른 물질들이 규칙적으로 쌓여 조립된 3차원 구조체로 특정한 영역의 파장에 해당하는 빛만 완전히 반사시킨다. 이 성질을 이용하면 반도체가 전자의 흐름을 제어하듯 빛의 흐름을 제어할 수 있다. 이러한 광자결정의 특수한 기능 때문에 나노레이저, 다중파장의 광 정보를 처리할 수 있는 슈퍼프리즘(superprism), 빛을 원하는 위치로 가이드 할 수 있는 광도파로(waveguide) 등 차세대 광통신 소자와 현재의 컴퓨터 속도를 획기적으로 높일 수 있는 수십 테라급 초고속 정보처리능력을 갖춘 광자컴퓨터의 개발 등에 필요한 소재로 주목 받아왔다. 광자결정은 광자(빛)가 정보를 처리하는 미래에 오늘날의 반도체와 같은 역할을 할 것이므로 ‘빛의 반도체’라 불린다. 지난 20여 년 동안 자연 상태에 존재하는 광자결정의 나노구조를 인공적으로 제조하기 위한 연구가 많은 과학자들에 의하여 시도되어 왔지만 실용적인 구조를 얻는 데에는 한계가 있었다. 梁 교수팀은 2006년부터 교육과학기술부와 한국과학재단의 ‘창의적연구진흥사업’으로부터 지원을 받아 광자결정소재의 실용성을 확보하기 위한 연구를 수행하여 최근 해외 저명학술지로부터 크게 주목 받는 일련의 연구 성과를 거뒀다. 첫 번째 연구 성과로 굴절률 조절이 가능한 미세입자 대량 생산기술을 개발했다. 지금까지 구현된 3차원 광자결정은 결정을 이루는 물질의 굴절률이 1.5-2.0 정도로 낮고, 굴절률을 다양하게 조절할 수 있는 입자를 제조할 수 없어서 광자결정의 실용성에 한계가 있었다. 최근 梁 교수 연구팀은 굴절률을 1.4-2.8까지 마음대로 조절할 수 있는 입자를 대량으로 제조할 수 있는 실용적 방법을 개발했다. 제조된 고 굴절률 입자는 나노레이저, 광 공명기, 마이크로렌즈, 디스플레이 등 각종 광학소자와 광촉매 등으로 활용될 수 있다. 이 연구결과는 최근 어드밴스드 머티리얼스 인터넷판(6. 19)과 제 17호(2008. 9)의 표지논문으로 게재 예정이다. 특히, 이 논문은 저명 학술지인 네이처 포토닉스(Nature Photonics)誌 8월호(8. 1)에 리서치 하이라이트(Research Highlights)로 선정되어 연구의 중요성과 응용성에 대하여 특별기사로 조명했다. 그림 1. 초고굴절률 타이타니아 입자의 전자 현미경 사진 두 번째 연구 성과로 광자유체 기술을 이용한 광결정구 연속생산 기술을 개발했다. 균일한 크기와 모양을 갖는 광자결정구를 빛을 매개로 반응시킴으로써 종래에 수십 시간이 소요되는 공정을 불과 수십 초 만에 연속적으로 제조할 수 있는 기술을 확보했다. 이들 광자결정구는 차세대 반사형디스플레이 색소나, 나노바코드, 생물감지소자 등으로 활용될 수 있다. 특히 주목할 것은 몇 개의 다른 색을 반사하는 야누스 광자결정구슬을 제조하였는데 이들은 전자종이와 같은 접거나 말 수 있는 차세대 디스플레이 소자에 활용될 수 도 있다. 이러한 광자결정 표시소재는 세계굴지의 화학회사인 독일 머크(Merck)社 등에서도 개발 중이며 이번 연구 결과는 이 분야의 국제경쟁에서 우위를 확보하는데 필요한 핵심요소이다. 주요 연구결과는 국제적저명학술지인 미국화학회지(JACS)와 어드밴스드 머티리얼스(Advanced Materials)誌에 6편의 논문을 최근 4개월(5~8월) 동안 연속 게재하여 광자결정의 실용성을 구현하는데 크게 기여했다고 인정받았다. 특히, 이들 논문들은 해당 학술지 편집인(Editor)과 심사위원들에 의하여 가장 앞선 연구결과로서 주목해야 할 논문(Advances in Advance)으로 선정됐으며, 9호(5. 5) 표지논문에 게재됐다. 그림 2. 3원광 광자결정구와 다색상 야누스 광자결정구의 현미경사진과 휘어지는 기판 위에 픽셀화된 3원광 광자결정. 세 번째 연구 성과로 광자유체 기술을 이용한 광결정 나노레이저를 개발했다. 현재까지 개발된 나노레이저는 발생하는 고열로 인하여 발진하는 레이저의 파장을 변화시키기 어려운 단점이 있었다. 梁 교수 연구팀은 KAIST 물리학과의 이용희 교수 연구팀과 공동으로 연속가변파장 나노레이저를 최초로 개발했다. 레이저를 발진하는 광자결정과 매우 미세한 유량을 도입할 수 있는 미세유체소자를 결합한 후 물과 같은 액체를 흘려줌으로써 온도를 낮추어 연속파 레이저 발진을 가능케 하였다. 또한 굴절률이 다른 액체를 흘려주어 광밴드갭을 조절함으로써 레이저의 파장을 조절 할 수 있었다. 가변파장 나노레이저는 신약개발 등 생명공학에서 요구되는 극미량의 시료로부터 방대한 량의 바이오정보를 광학적으로 신속하게 처리하는데 필요한 광원으로 사용될 수 있다. 이 연구 결과는 광물리 분야의 저명학술지인 옵틱스 익스프레스(Optics Express)에 게재(4. 9) 됐으며 이 논문의 독창성과 실용성은 영국왕립화학회(Royal Society of Chemistry)에서 발간하는 저명학술지 랩온어칩(Lab on a Chip) 8월호(8. 1)에 해설과 함께 “리서치 하이라이트”로 소개됐다. 그림 3. 나노레이저 발진모드
2008.08.19
조회수 22785
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1