-
박찬범 교수팀, 펩타이드 자기조립기술을 이용하여 전도성고분자 나노선/나노튜브 개발
- 화학분야 저명 국제학술지 안게완테 케미지 최근호 게재
우리대학 신소재공학과 박찬범(40) 교수와 유정기(28) 연구원이 자연계의 펩타이드 자기조립기술을 이용, 전도성고분자 나노선과 나노튜브 소재를 개발했다. 관련 논문은 독일에서 발간되는 세계적인 학술지인 안게완테 케미(Angewandte Chemie)지 최근호 (6월 15일자)에 게재됐으며, 나노기술과 생명과학분야의 창의적인 융합을 통해 새로운 나노소재를 개발하는데 크게 기여했다는 평가를 받았다.
펩타이드나 단백질은 20여가지 아미노산의 조합을 통해 다양한 3차원 구조를 형성할 수 있으며, 이들은 기존의 재료에서는 볼 수 없었던 매우 우수한 물성과 다양한 기능을 가지는 장점이 있다.
朴 교수 연구팀은 두 개의 아미노산으로 구성된 매우 단순한 펩타이드 (peptide)를 수만 개 이상 스스로 조립시켜 머리카락의 약 천분의 일 정도 두께를 가진 긴 나노선을 형성하고, 여기에 대표적인 전도성 고분자 물질인 폴리아닐린 (polyaniline)을 얇게 코팅하여 누드김밥처럼 코어(Core)/쉘(Shell) 구조를 가진 전도성 나노선을 제조했다. 코어/쉘 형태의 나노선은 일반 전선과는 반대로, 바깥쪽으로만 전류가 흐르는 특성을 가지고 있다. 朴 교수팀은 이렇게 형성된 전도성 나노선의 펩타이드 코어부분을 선택적으로 제거하여 폴리아닐린으로만 구성된 전도성 나노튜브 (채널직경 약 1/5000 mm)를 제조하는 데 성공했다.
화학물질들이 레고(Lego) 장난감처럼 스스로 조립하여 3차원 구조체를 만드는 것은 모든 생명현상의 근간이 될 뿐만 아니라, 최근 들어서는 나노소재를 개발하는 주요기술들 중의 하나로 각광받고 있다. 특히 朴 교수팀의 연구에서 사용한 펩타이드는 알츠하이머병 등 각종 퇴행성 신경질환의 발병과도 밀접한 연관성을 가진 섬유상 구조의 아밀로이드 플라크(amyloid plaque)로부터 유래되어 펩타이드의 자기조립 현상에 관한 연구는 의학적 측면에서도 중요성이 매우 크다.
전도성 고분자를 나노크기의 구조로 제조할 경우 그 전기적 특성이 대폭 향상되기 때문에 이번에 개발된 전도성 고분자 나노선/나노튜브 소재는 차세대 태양전지, 각종 센서/칩 개발 등에 응용이 가능할 것으로 예상되며, 향후 나노-바이오 융합분야에서 국가 과학기술 경쟁력 제고에 기여할 것으로 기대된다.
朴 교수팀은 2008년도부터 교육과학기술부의 ‘국가지정연구실사업’으로부터 지원을 받아 다양한 형광색상(RGB)을 가진 나노튜브, 연잎처럼 물에 젖지 않는 펩타이드 소재, 식물의 광합성을 모방한 인공광합성 재료 등 새로운 기능을 가진 바이오소재를 개발하기 위한 연구를 수행해 왔으며, 해외 저명학술지들로부터 크게 주목받는 연구 성과들을 발표하고 있다 (http://biomaterials.kaist.ac.kr).
2009.06.16
조회수 19450
-
김상욱교수팀, 분자조립 나노기술을 이용한 나노선(Nanowire)제작기술 개발
- 관련논문 5월7일(목)자 나노레터스지 온라인판 게재
- 세계를 변화시킬 10대 기술 중 하나인 나노선 제작의 새로운 기술
신소재공학과 김상욱(金尙郁, 37) 연구팀은 스스로 나노패턴를 형성하는 고분자를 대면적에서 원하는 형태로 배열하는 새로운 방법을 개발하고 이를 이용하여 나노선(Nanowire)을 원하는 위치에 손쉽게 만들 수 있는 방법을 개발했다고 밝혔다.
김 교수팀은 스스로 나노패턴를 형성하는 고분자를 마이크로패턴 안에 채워 넣어 다양한 크기와 형태를 가진 스스로 정렬된 나노구조를 만들고, 이를 틀(template)로 사용하여 알루미늄 금속나노선과 실리콘 반도체 나노선을 대면적에서 만들 수 있음을 보여 주었으며, 실제로 이 과정을 통해 만들어진 알루미늄 나노선의 전기적 특성을 측정하는데 성공했다.
이 연구결과는 나노기술 분야의 세계적 권위지인 "나노 레터스(Nano Letters)" 온라인 판(5.7, 목)에 게재됐으며, 관련기술은 국내특허 출원중이다.
나노선은 트랜지스터, 메모리, 화학감지용 센서등 첨단 전지전자 소자개발을 위한 가장 핵심적인 요소로 미래를 변화시킬 10대 기술중의 하나이다. 그러나, 기존공정으로는 나노크기의 틀을 만드는 비용이 비싸고 많은 시간이 소요되어 새로운 제작 기술이 요구되었다.
연구팀 관계자는 “이번에 개발한 신기술은 여러 층으로 구성된 나노트랜지스터 제작 및 바이오센서 제작 등에 폭넓게 적용될 것으로 전망된다.”고 말했다.
이번 연구는 국가지정 연구실사업 (NRL)의 지원하에 신소재공학과 박사과정 정성준(鄭盛駿, 33세)연구원이 주도적으로 진행했다.
2009.05.12
조회수 13815
-
김상욱,이원종,이덕현 연구팀, 질소가 도핑된 전도성 탄소나노튜브의 고효율 제조공정 개발
- 세계적 학술지 나노 레터스지 3.13(금)일자 온라인판 발표
신소재공학과 김상욱(金尙郁, 37, 교신저자), 이원종(李元鐘, 52, 교신저자) 교수와 박사과정 이덕현(李德睍, 29, 제1저자) 연구팀이 분자조립(molecular self-assembly) 나노기술을 이용하여 질소가 도핑(doping)된 높은 전기전도성의 탄소나노튜브(Carbon Nanotube : CNT)를 탄소벽의 개수를 원하는 대로 조절하며 매우 빠른 속도로 합성할 수 있는 새로운 공정을 개발했다.
이 연구결과는 나노기술분야의 세계적 학술지인 나노 레터스(Nano Latters)지 최신호(3.13, 금) 온라인 판에 게재됐다.
탄소나노튜브는 전기적, 물리적 성질이 매우 우수하여 플렉서블 전자소자 등 다양한 미래기술에 적용될 것으로 예상된다. 그러나 탄소나노튜브를 이용한 나노소자를 실용화하기 위해서는 탄소나노튜브의 전기 전도도를 높이고, 물리적 특성을 결정짓는 탄소나노튜브의 직경과 탄소벽의 개수를 원하는 대로 조절할 수 있는 기술의 개발이 필요하다. 일반적으로 탄소나노튜브의 전기 전도도를 향상시키기 위해서는 실리콘 등의 반도체 물질에 이용되는 방법과 같이 붕소(B)나 질소(N) 등의 소량의 불순물을 첨가시키는 도핑 기술이 필요하다. 또한 탄소나노튜브의 직경 및 탄소벽의 개수는 합성에 이용되는 금속 촉매의 크기에 의해 결정되므로 형태가 균일한 나노튜브를 대량으로 성장시키기 위해서는 균일한 크기의 촉매입자를 기판위에 대면적으로 제조할 수 있는 나노패턴 공정이 필요하다.
金 교수 연구팀은 고분자의 분자조립 나노패턴기술을 통해 탄소나노튜브의 성장에 필요한 금속 촉매의 크기를 대면적에서 수 옹스트롱 수준으로 균일하게 조절하고 이를 이용하여 탄소나노튜브의 직경 및 탄소벽의 개수를 원하는 대로 조절하는데 성공하였다. 또한, 질소가 도핑되어 높은 전기 전도도를 보이며, 화학적인 기능화가 용이한 탄소나노튜브를 분당 50마이크로미터의 높은 속도로 성장시키는데 성공하였다.
金 교수 연구팀은 그동안 ‘고분자 자기조립 나노기술’에 관련된 일련의 연구 결과들을 네이처지와 사이언스지 그리고 어드밴스드 머티리얼스지 등에 발표해 왔다. 이번 연구 결과로 고분자소재뿐만 아니라 유/무기 혼성소재공정 분야에서도 우수한 역량을 보여주게 됐다. 이번 연구는 金 교수와 李 교수의 공동 지도하에 박사과정 이덕현 씨가 진행했다.
<용어설명>
- 탄소나노튜브(carbon nanotube): 나노미터 수준의 직경을 가지는 일차원적 구조의 탄소소재로 높은 전하이동도와 전하 축척도를 가지며, 전 세계적으로 초미세/고효율 소자의 부품으로 활용하기 위한 연구가 활발하게 진행되고 있다.
- 분자조립(molecular self-assembly): 분자들이 외부의 도움 없이 스스로 정렬되어 정형화된 구조를 형성하는 현상을 의미하며, 초미세 나노패턴구조를 형성시킬 수 있는 원리로 많은 관심을 모으고 있다.
2009.03.17
조회수 19931
-
이도헌교수팀, 생물정보학적 연구를 통한 천식 발병 후보 유전자 발견
바이오및뇌공학과 이도헌 교수와 박사과정 황소현씨가 생물정보학 기법을 이용해 기존의 분자생물학적 연구 및 실험 결과에 나타난 천식 관련 단백질들의 상호작용을 분석, 천식 유발에 관여하는 후보 유전자군을 발굴했다.
이 연구결과는 국제학술지 "이론생물학저널(Journal of Theoretical Biology)"에 발표됐으며 기존 연구자료를 새로운 생물정보학 기법으로 분석해 신약 표적유전자를 발굴한 것이어서 신약연구 효율성 향상에 기여할 것으로 전망된다.
연구진은 세계 각국의 분자생물학적 연구자료가 담겨 있는 데이터베이스(OMIM, GEO)에서 천식과 관련 있는 단백질 606개를 찾아내고 이를 시스템 수준에서 연구하기 위해 생물정보학 기술을 이용해 단백질 상호작용 네트워크를 구성했다.
이는 단백질 사이의 상호작용을 연결선으로 표현한 것으로 여러 개의 단백질과 동시에 상호작용을 하는 단백질이 천식유발 단백질 네트워크에서 중요한 역할을 하는 "허브"로 간주된다.
질병과 관련된 질병유전자를 찾기 위해서 기존의 분자생물학적 연구를 통해 몇 가지 유전자들이 밝혀졌지만, 여러 가지 유전적인 요인과 환경적인 요인의 복합적인 작용으로 인해 나타나는 대부분의 복합 질병의 경우는 기존의 분자생물학적인 연구만으로 관련 유전자들을 찾아내기가 어렵다.
이도헌 교수는 "이런 복합적인 질병에서 중요한 역할을 하는 유전자를 찾아내려면 한 두 유전자와 질병의 관계를 조사하기 보다는 그 질병과 관련된 여러 유전자들의 연관성을 살펴보는 시스템 수준의 연구가 필요하다"고 말했다.
2008.07.01
조회수 19457
-
최성민 교수팀의 탄소나노튜브에 대한 연구성과 미국 화학학회의 Research Highlight 로 선정
최성민 교수팀의 탄소나노튜브에 대한 연구성과
미국 화학학회의 Research Highlight 로 선정
KAIST 원자력 및 양자공학과 최성민 교수팀은 탄소나노튜브의 산업적 응용에 필수적인 수용액 및 유기용매에의 안정적인 분산기술을 개발하였으며, 중성자 산란기법을 이용하여 그 분산특성을 규명하였다. 이 연구결과는 재료과학 분야 최고권위지인 Advanced Materials (19, 929, 2007)에 게제되었으며, 미국 화학학회의 Research Highlight로 선정되어 ‘Heart Cut" 5월 7일자에 소개되었다.
탄소나노튜브의 산업기술적 응용을 위한 다양한 프로세싱을 위해서는 탄소나노튜브를 수용액 또는 유기용매에 분산할 필요가 있다. 이를 위하여 그간 계면활성분자, DNA 등을 이용한 탄소나노튜브 분산기술이 사용되어 왔으나, 건조 등 프로세싱 과정에서 분산이 쉽게 파괴되는 단점이 있었다. 최성민 교수팀은 이를 극복하기 위하여 계면활성분자를 이용한 탄소나노튜브 수용액 분산을 얻은 후 탄소나노튜브 표면에 흡착된 계면활성분자를 in-situ 상태에서 중합반응시킴으로써 친수성의 안정된 표면 분자막을 갖는 탄소나노튜브를 개발하였다. 이렇게 얻어진 기능성 탄소나노튜브는 냉동건조 등 프로세싱 이후에도 수용액 및 유기용매에 아주 쉽게 분산되는 특성을 갖고 있어 탄소나노튜브 응용기술 개발에 크게 기여할 것으로 기대된다. 과학기술부 원자력연구개발사업의 지원으로 수행된 이 연구에는 박사과정 김태환씨와 도창우씨가 중추적으로 참여하였으며, 관련기술을 특허출원 하였다.
탄소나노튜브의 수용액 분산 및 흡착된 계면활성분자의 in-situ 중합과정과 냉동건조 후의 수용액 재분산 특성 비교 (사진: 중합하지 않은 탄소나노튜브(좌), 계면활성분자를 중합한 탄소나노튜브(우))
2007.05.09
조회수 21933
-
이상엽 교수팀, 美 미생물 분자생물학 리뷰지 논문 게재
대장균 단백체 연구, 국내 연구진이 총정리
과학기술부 시스템생물학 연구개발 사업 결실
생명화학공학과 이상엽 LG화학 석좌교수(李相燁, 42세)와 그의 제자인 한미정(韓美正, 31세)박사(현재 미국 위스타 연구소 및 펜실베니아대학 소속 연구원)의 대장균 단백체 논문이 『대장균 단백체 : 과거, 현재, 미래전망(The Escherichia coli Proteome: Past, Present, and Future Prospects)』이라는 제목으로 한국에서는 처음으로 미국 미생물 분자생물학리뷰(MMBR, Microbiology and Molecular Biology Reviews)誌 6월호에 게재됐다고 밝혔다.
MMBR은 미국미생물학회(American Society for Microbiology)에서 발행하는 70년 전통의 리뷰학술지로서 미생물학 및 미생물 유전학, 분자생물학 등에 관한 바이블과 같은 잡지다. 연간 4회 발행되며 한해 평균 30편 정도의 논문만이 게재된다. 미생물분야 학술지 중에서 영향지수(impact factor)가 17이상으로 가장 높다. 분야 최고의 전문가들의 리뷰논문들이 실리며, 게재되는 논문들의 영향력도 매우 큰 것으로 알려졌다.
이번 논문에서는 지난 1975년도부터 시작된 단백체 기술 발전사, 대장균 단백체에 이용되고 있는 방대한 기술, 현재 대장균 단백체의 연구현황 및 향후 연구방향 등을 총정리했다. 총 335개의 핵심 참고문헌 내용을 포함한 78페이지 분량의 논문으로서 앞으로 대장균 단백체연구의 핵심 참고자료로 활용될 것으로 기대되고 있다. 단백체 기술은 시대 순으로 세부분으로 나눠 자세히 언급했다: (1)이차원 전기영동 젤을 이용한 방법(gel based approaches), (2)비전기영동 젤을 이용한 방법(non-gel based approaches) 및 (3)컴퓨터를 이용한 방법(predictive proteomics). 이러한 방법들을 통해 현재까지 밝혀진 1,627 단백질(~38% of 대장균 게놈의 4,237 유전자)에 대한 단백질 정보가 제공되었으며, 대장균 단백체 실험을 위한 최적의 전략 및 방법을 아주 상세히 언급했다. 또한 대장균 단백체의 연구 현황에서는 학문적, 산업적 측면으로 나눠서 그 중요성을 부각시켰다. 학문적으로는 대장균 단백체의 외부 환경요소의 자극(온도, pH, 산소, 영양부족 등)에 따른 세포내의 반응 및 그 유전자의 조절 메카니즘에 대한 정보가 제공되었으며, 산업적으로는 대장균 단백체 정보를 바탕으로 하여 대사공학 및 맞춤형 유전자 조작을 통한 유용 단백질의 생산성 증대 및 개선에 응용한 성공사례를 자세히 언급했다. 마지막으로 단백체 기술의 한계점을 제시함과 동시에 향후 연구방향도 제시했다.
특히, 심사과정에서 이 논문을 접한 외국 전문가들은 이 논문을 표준(standard)으로 하여 인터넷상에서 대장균 단백체 정보를 총 정리한 웹사이트 운영을 요청해 왔으며, 현재 李 교수팀은 관련 웹사이트를 준비 중에 있다.
韓 박사는 “본 논문은 대장균 단백체의 바이블로서 방대한 자료를 체계적으로 깊이있게 잘 정리했기 때문에 단백체 연구를 처음 시작하는 분들께 많은 도움이 될 것으로 본다”며, “우리나라의 단백체 연구는 세계적 수준이라는 점을 강조하고 싶다.”고 밝혔다.
李 교수는 “우리나라는 미생물 단백체 분야에서 경쟁력이 있을 뿐 아니라, 동식물 대상 단백체 연구도 한국프로테옴기구 등의 왕성한 활동등에서 볼 수 있듯이 국제적으로도 아주 우수한 수준이다. 앞으로 단백체연구를 기반으로 우리나라 생명공학 분야의 학술적 산업적 성과들이 쏟아져 나올 것으로 믿는다.” 라고 말했다.
■ 용어 설명
1) 단백체(proteome): 생명체의 전체 유전자, 즉 유전체(genome)에 의해 발현되는 모든 단백질들의 총합을 말한다. 어떤 단백질이, 얼마의 양으로, 어떤 환경에서 발현되는 가를 파악하는 것을 목적으로 한다. 생명체의 genome이 모든 세포에서 동일한 형태로 존재하며, 생명체가 수행하는 기능의 이론적인 면만을 제시할 수 있음에 반해, 단백체는 세포가 처해 있는 환경에 따라, 그리고 고등 생명체의 경우에는 각 조직 별로 유동적으로 존재하며, 세포의 실제적인 기능을 표현해 준다. 이러한 이유로 급속도로 밝혀지고 있는 미지의 유전자들의 기능을 밝혀 내고자 하는 functional genomics의 한 부분으로 새롭게 부각되고 있고, 세포 내에서 일어나는 실제적인 현상들을 전체 단백질 단계에서 통합적으로 파악하는 수단을 제공한다.
2) 전기영동(electrophoresis): 전기장의 영향을 받아 하전된 물질이 유동성 매체내에서 이동하는 것을 말한다. 특히 단백질 분리용으로 사용되고 있는 이차원 전기영동법(two-dimensional gel electrophoresis)은 먼저 전하량에 따라 단백질을 분리한 후 아크릴 아마이드 젤상에서 단백질 크기에 따라 분리하는 법이다.
3) 게놈: 생물체를 구성하고 기능을 발휘하게 하는 모든 유전정보를 보유한 유전자의 집합체로서, 부모로부터 자손에 전해지는 유전물질의 단위체를 뜻하기도 한다. 이때 게놈에서 유전정보는 DNA라는 분자구조로 존재하며 4가지 화학적 암호인 A·G·T·C 등의 염기서열로 표기되어 있다.
4) 대사공학: 유전자 재조합 기술과 관련 분자생물학 및 화학공학적 기술을 이용하여 새로운 대사회로를 도입하거나 기존의 대사회로를 증폭/제거/변형시켜 세포나 균주의 대사특성을 우리가 원하는 방향으로 바꾸는(directed modification) 일련의 기술을 말한다.
■ 이상엽 교수 프로필
이상엽 교수는 1986년 서울대학교 화학공학과를 졸업하고, 1991년 미국 노스웨스턴대학교 화학공학과에서 석박사를 마쳤다. KAIST에서 약 12년 동안 대사공학에 관한 연구를 집중적으로 수행하여 그간 국내외 학술지논문 208편, proceedings논문 144편, 국내외 학술대회에서 748편의 논문을 발표하였고, 기조연설이나 초청 강연을 200여회 한 바 있으며, Metabolic Engineering(Marcel Dekker 사 발간) 등 다수의 저서가 있다. 그간 202건의 특허를 국내외에 등록 혹은 출원하였는데, 미국 엘머 게이든상과 특허청의 세종대왕상을 받는 등 기술의 우수성이 입증된 바 있다. 생분해성고분자, 광학적으로 순수한 정밀화학물질, DNA chip, Protein chip 등의 기술 개발에서 탁월한 연구 업적을 쌓았고, 최근에는 소위 omics와 정량적 시스템 분석기술을 통합하여 생명체 및 세포를 연구하는 시스템 생명공학분야 연구와 게놈정보 이용 생물공정기술 개발에 매진하고 있다. 李 교수는 그간 제 1회 젊은 과학자상(대통령, 1998), 미국화학회에서 엘머 게이든(Elmer Gaden)상(2000), 싸이테이션 클래식 어워드(미국 ISI, 2000), 대한민국 특허기술 대상(2001), 닮고 싶고 되고 싶은 과학기술인(2003), KAIST 연구대상(2004), 한국공학한림원 젊은 공학인상(2005) 등을 수상하였고, 2002년에는 세계경제포럼으로부터 아시아 차세대 리더로 선정되어 활동 중이다.
2006.06.12
조회수 22665
-
초고감도 나노바이오센서 원천기술 개발
KAIST 바이오시스템학과 박제균(朴濟均, 42) 교수팀이 나노자성입자를 이용 단백질, DNA 등의 생체분자(生體分子)를 초고감도로 검출할 수 있는 바이오센서 기술 개발에 성공했다.
이 기술은 나노(10억분의 일)그램 이하 수준으로 존재하는 극미량 물질을 검출할 수 있는 새로운 센서기술로 특정 자기장(磁氣場)하에서 생체분자의 정량적 및 고감도 분석이 가능하다.
황사 알레르기 등 많은 질환의 표지가 되는 생체분자들은 일반적으로 극미량 만으로도 인체에 심각한 영향을 미치기 때문에 이를 검출할 수 있는 센서기술은 차세대 나노바이오기술의 핵심분야에 속한다.
기존의 바이오센서 기술은 극미량 검출에는 본질적인 한계가 있는데 이번에 개발된 나노입자를 이용한 극미량 검출기술은 그러한 한계를 뛰어넘은 새로운 원천기술로서 향후 바이오센서, 랩온어칩(Lab on a chip, 손톱만한 크기의 칩으로 실험실에서 할 수 있는 연구를 수행할 수 있도록 만든 장치)개발 등에 크게 기여할 것으로 보인다.
이 연구결과는 최근 나노바이오분야의 세계적인 학술지인“랩온어칩”誌 인터넷 판에 발표되었고, 관련기술은 현재 특허 출원중에 있다.
2005.05.20
조회수 21133
-
얼음입자내 수소저장메커니즘 세계최초 규명
미래 수소에너지 개발에 획기적 전기마련
이흔 교수팀, 네이처(Nature)誌 7일자에 발표
섭씨 0℃ 부근의 온도에서 수소 분자가 얼음 입자 내에 만들어진 나노 크기의 수많은 빈 공간으로 저장될 수 있다는 사실이 世界最初로 규명됐다.
KAIST(한국과학기술원)는 생명화학공학과 이흔(李琿, 54) 교수팀이 이와 같은 자연 현상적 수소저장 메커니즘을 규명했으며, 관련 연구결과 논문이 세계적 과학전문저널인 네이처誌 7일자에서 가장 주목해야 할 논문으로 선정돼 해설 및 전망기사와 함께 발표되었다고 밝혔다.
미래의 거의 유일한 청정에너지인 수소에너지를 얼마나 잘 활용할 수 있느냐의 성공여부는 효과적인 저장 기술의 확보 여부에 달렸다. 그동안은 영하 252 ℃ 극저온의 수소 끓는점에서 수소 기체를 액화시켜 특별히 제작된 단열이 완벽한 용기에 저장하거나, 350 기압 정도의 매우 높은 압력에서 기체 수소를 저장하는 방법을 널리 사용해 왔다. 하지만 수소는 제일 작고 가벼운 원소여서 어떤 용기의 재질이건 속으로 침투하는 성질 때문에 이 방법들은 경제성이나 효율성이 떨어지게 되고 극저온이나 높은 압력의 사용으로 인한 여러 가지 기술적 난제들을 가질 수밖에 없었다.
이러한 문제점들을 극복하기 위해 그동안 전 세계적으로 수소저장합금, 탄소나노튜브 등을 이용한 차세대 수소저장 기술연구가 활발히 이뤄지고 있지만 이러한 특수 물질들의 저장 재료로서의 한계성 때문에 현실적으로 적용하기가 어려웠다.
그러나 이번에 발표된 李 교수의 연구결과는 수소를 저장하기 위한 기본 물질로 물을 이용하기 때문에 매우 경제적이며 또한 친환경적인 수소 저장 방법이라 할 수 있다. 순수 물로만 형성된 얼음 입자에는 수소를 저장할 수 있는 빈 공간이 존재하지 않는다. 그러나 순수한 물에 미량의 유기물을 첨가하여 얼음 입자를 만들 경우 내부에 수많은 나노 공간을 만들게 되며, 바로 이 나노 공간에 수소가 안정적으로 저장되는 특이한 현상이 나타난다.
특히, 주목할 만한 사실은 우리가 쉽게 다룰 수 있는 영상의 온도에서 수소가 저장되고, 수소를 포함하고 있는 얼음 입자가 상온에서 물로 변할 때 저장된 수소가 자연적으로 방출된다는 것이다. 이러한 수소의 저장과 방출이 짧은 시간 내에 단순한 과정으로 진행되며, 더욱이 수소를 저장하는 물질에 물을 사용함으로써 지금까지 알려진 저장합금이나 탄소나노튜브 등의 수소저장 재료와는 달리 거의 무한대로 얼음 입자를 반복해 활용할 수 있을 뿐만 아니라 필요시 방대한 얼음 입자로 이뤄진 공간에 수소의 대규모 저장이 가능하게 된다.
궁극적으로 물로부터 수소를 생산하고, 생산된 수소를 얼음 입자에 저장한 후 이를 최종 에너지원으로 이용하여 수소를 연소시키거나 연료전지에 사용하면 다시 수증기가 만들어지게 된다. 李 교수는 이렇게 물, 얼음, 수증기로 이루어지는 수소의 순환 시나리오를 제시할 수 있으며, 앞으로 이를 완성하기 위한 체계적이고 과학적인 접근이 필요할 것으로 판단된다.고 말했다.
지구상에서 가장 보편적이고 풍부한 물질인 물로 이루어진 얼음 입자에 수소를 직접 저장할 수 있는 메커니즘이 밝혀짐에 따라 앞으로 미래 수소 에너지를 이용하는 수소자동차, 연료전지 개발에 획기적인 전기를 마련한 것으로 보인다.
2005.04.07
조회수 21751