-
김정, 박인규 교수, 로봇의 피부 역할 할 수 있는 촉각센서 개발
우리 대학 기계공학과 김정, 박인규 교수 공동 연구팀이 실리콘과 탄소 소재를 활용한 로봇의 피부 역할을 할 수 있는 촉각 센서를 개발했다.
이 기술은 충격 흡수가 가능하면서 다양한 형태의 촉감을 구분할 수 있어 향후 로봇의 외피로 이용 가능할 것으로 기대된다.
이효상 박사과정이 1저자로 참여한 이번 연구결과는 네이처 자매지인 ‘사이언티픽 리포트(Scientific Report)’ 1월 25일자 온라인 판에 게재됐다.
피부는 인체에서 가장 많은 부분을 차지하는 기관이며 주요 장기를 외부 충격으로부터 보호하는 동시에 섬세한 촉각 정보를 측정 및 구분해 신경계에 전달하는 역할을 한다.
현재 로봇 감각 기술은 시각, 청각 부분에서는 인간의 능력에 근접하고 있으나 촉각의 경우는 환경의 변화를 온몸으로 감지하는 피부 능력에 비해 많이 부족한 것이 사실이다
인간과 비슷한 기능의 피부를 로봇에게 적용시키기 위해선 높은 신축성을 갖고 충격을 잘 흡수하는 피부 센서 기술의 개발이 필수이다. 전기 배선을 통해 몸 전체에 분포된 많은 센서를 연결하는 기술 또한 해결해야 할 문제이다.
연구팀은 문제 해결을 위해 실리콘과 탄소나노튜브(CNT)를 혼합해 복합재를 만들었고 이를 전기임피던스영상법(EIT)라는 의료 영상 기법과 결합했다. 이를 통해 넓은 영역에 가해지는 다양한 형태의 힘을 전기 배선 없이도 구분할 수 있는 기술을 개발했다.
이를 통해 개발된 로봇 피부는 망치로 내려치는 수준의 강한 충격도 견딜 수 있으며 센서의 일부가 파손돼도 파손 부위에 복합재를 채운 뒤 경화시키면 재사용이 가능하다.
또한 3D 프린터 등으로 만들어진 3차원 형상 틀에 실리콘-나노튜브 복합재를 채워 넣는 방식으로 제작할 수 있다. 기존 2차원 평판 뿐 아니라 다양한 3차원 곡면으로 제작이 가능해 새로운 형태의 컴퓨터 인터페이스도 개발할 수 있다.
이 기술은 다른 형태의 위치나 크기 등을 촉각적으로 구분할 수 있고 충격 흡수가 가능한 로봇의 피부, 3차원 컴퓨터 인터페이스, 촉각 센서 등에 적용 가능할 것으로 예상된다.
특히 이번 연구는 나노 구조체 및 센서 분야의 전문가인 박인규 교수와 바이오 로봇 분야 전문가인 김정 교수가 공동으로 진행해 실제 제품 적용 가능성이 높다.
김정 교수는 “신축성 촉각 센서는 인체에 바로 부착 가능할 뿐 아니라 다차원 변형상태에 대한 정보를 제공할 수 있다”며 “로봇 피부를 포함한 소프트 로봇 산업 및 착용형 의료기기 분야에 기여할 것이다”고 말했다.
박인규 교수는 “기능성 나노 복합소재와 컴퓨터단층법의 융합을 이용해 차세대 유저인터페이스를 구현한 것이다”고 말했다.
이번 연구는 1저자 이효상 박사과정 외 권동욱, 조지승 연구원과의 공동연구로 진행됐고, 미래창조과학부 이공분야 기초연구사업(중견연구자 지원사업)과 초정밀 광기계기술 연구센터(선도연구센터지원사업)의 지원으로 수행됐다.
□ 그림 설명
그림1. 제작한 촉각 센서와 연결돼 저항에 반응하는 로봇 손
그림2. 실리콘 고무와 카본나노튜브를 이용한 압저항 복합재 제작 과정
그림3. 압저항 복합재를 활용한 컴퓨터 인터페이스
2017.02.02
조회수 18684
-
최양규 교수, 10초 내 물에 녹는 보안용 메모리 소자 개발
우리 대학 전기및전자공학부 최양규 교수 연구팀이 물에 녹여 빠르게 폐기할 수 있는 보안용 메모리 소자를 개발했다.
연구팀이 개발한 보안용 비휘발성 저항변화메모리(Resistive Random Access Memory : RRAM)는 물에 쉽게 녹는 종이비누(Solid Sodium Glycerine : SSG) 위에 잉크젯 인쇄 기법을 통해 제작하는 방식이다. 소량의 물로 약 10초 이내에 용해시켜 저장된 정보를 파기시킬 수 있다.
배학열 박사과정이 1저자로 참여한 이번 연구는 네이처 자매지 ‘사이언티픽 리포트(Scientific Reports)’ 12월 6일자 온라인 판에 게재됐다. (논문명 : Physically transient memory on a rapidly dissoluble paper for security application)
과거에는 저장된 정보를 안정적으로 오랫동안 유지하는 능력이 비휘발성 메모리 소자의 성능을 가늠하는 주요 지표였다. 하지만 최근 사물인터넷 시대로 접어들며 언제 어디서든 정보를 쉽게 공유할 수 있게 돼 정보 저장 뿐 아니라 정보 유출을 원천적으로 차단할 수 있는 보안용 반도체 개발이 요구되고 있다.
이를 위해 용해 가능한 메모리 소자, 종이 기판을 이용해 불에 태우는 보안용 소자 등이 개발되고 있다. 그러나 기존의 용해 가능한 소자는 파기에 시간이 매우 오래 걸리고 불에 태우는 기술은 점화 장치와 고온의 열이 필요하다는 한계가 있다.
연구팀은 문제 해결을 위해 물에 매우 빠르게 반응해 녹는 SSG 기판 위에 메모리 소자를 제작해 용해 시간을 수 초 내로 줄이는데 성공했다.
이 메모리 소자는 알칼리 금속 원소인 소듐(Sodium)과 글리세린(Glycerine)을 주성분으로 하고 친수성기를 가져 소량의 물에 반응해 분해된다.
용해 가능한 전자소자는 열과 수분에 취약할 수 있어 공정 조건이 매우 중요하다. 연구팀은 이 과정을 잉크젯 인쇄 기법을 통해 최적화된 점성과 열처리 조건으로 금속 전극을 상온 및 상압에서 증착했다.
또한 메모리 소자의 특성을 결정하는 저항변화층(Resistive Switching Layer)인 산화하프늄(HfO2)도 우수한 메모리 특성을 얻도록 150도 이하의 저온에서 증착했다. 이를 통해 평상시 습도에서는 안정적이면서도 소량의 물에서만 반응하는 소자를 제작했다.
연구팀은 휘어지는 종이비누 형태의 SSG 기판을 이용하고, 잉크젯 인쇄기법을 이용해 ‘금속-절연막-금속’ 구조의 2단자 저항 변화메모리를 제작하기 때문에 다른 보안용 소자보다 비용 절감 효과가 매우 크다고 밝혔다.
1저자인 배학열 박사과정은 “이 기술은 저항변화메모리 소자를 이용해 기존 실리콘 기판 기반의 기술 대비 10분의 1 수준의 저비용으로 제작 가능하다”며 “소량의 물로 빠르게 폐기할 수 있어 향후 보안용 소자로 응용 가능할 것이다”고 말했다.
이번 연구는 미래창조과학부 한국연구재단과 나노종합기술원의 지원을 통해 수행됐고, 배학열 박사과정은 한국연구재단의 글로벌박사펠로우십에 선정돼 지원을 받고 있다.
□ 그림 설명
그림1. 메모리 소자가 물에 용해되는 과정
그림2. 최양규 교수팀이 개발한 보안용 메모리 소자
그림3. 보안용 메모리 소자 모식도
2016.12.22
조회수 17230
-
최민기 교수, 고성능의 이산화탄소 흡착제 개발
〈 최 민 기 교수 〉
우리 대학 생명화학공학과 최민기 교수 연구팀이 이산화탄소를 효율적이고 안정적으로 포집할 수 있는 흡착제를 개발했다.
이번에 개발된 이산화탄소 흡착제는 제올라이트와 아민 고분자를 기반으로 해 값싸고 대량 생산이 가능할 뿐 아니라 효율적인 성능과 뛰어난 재생 안정성을 갖는다.
연구 결과는 에너지 및 환경 분야 학술지인 ‘에너지&인바이러먼털 사이언스(Energy & Environmental Science)’ 3월 16일자 온라인 판에 게재됐다.
지구 온난화의 주요 원인인 이산화탄소의 포집을 위한 흡착제 연구가 활발히 진행 중이다. 특히 에너지 효율이 높고 환경에 무해한 고체 흡착제 중심으로 연구가 이뤄지고 있는데 제올라이트와 아민 고분자 기반의 흡착제가 가장 대표적이다.
그러나 제올라이트 기반 흡착제는 이산화탄소와 수분이 동시에 존재하는 경우 수분을 우선적으로 흡착하는 한계를 갖는다. 아민 고분자 기반 흡착제는 수분이 존재해도 효율적인 이산화탄소 흡착이 가능하지만 재생을 위해 130oC 이상 열을 가했을 때 요소가 생성돼 심각한 비활성화를 겪는 문제가 있다.
연구팀은 문제 해결을 위해 아민 고분자와 제올라이트의 장점을 모두 갖는 ‘아민-제올라이트 복합체’를 개발했다.
암모늄(NH4+)을 골격 외 양이온으로 갖는 제올라이트를 고온 열처리하면 암모니아(NH3)가 제거되고 수소 양이온이 남아 산성 제올라이트가 만들어진다. 이 제올라이트에 염기성을 갖는 에틸렌다이아민 증기를 처리하면 산-염기 반응에 의해 제올라이트 기공 내부에 아민이 기능화되는 원리이다.
이를 통해 이산화탄소 포집 공정에서 효율적으로 이산화탄소를 흡착하는 것을 확인했고, 매우 우수한 재생 안정성을 확인했다. 새로 개발한 흡착제는 제올라이트 내부에서 흡착된 물이 아민의 비활성화를 억제하는 상쇄효과를 보여 안정성을 더욱 높였다.
기존 연구들은 이산화탄소 흡착 성능 향상에만 집중됐지만 이번 연구는 우수한 흡착 성능 뿐 아니라 재생 안정성을 비약적으로 상승시켰다.
최 교수는 “값싸고 대량 생산이 가능한 제올라이트 기반의 흡착제로 실용화가 가능할 것으로 기대된다”며 “합성 방법의 최적화를 통해 더 높은 이산화탄소 흡착 성능을 갖는 흡착제 개발에도 힘쓸 것이다”고 말했다.
전남대학교 응용화학공학과 조성준 교수 연구팀과 공동으로 진행한 이번 연구는 미래창조과학부의 ‘Korea CCS 2020’ 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 아민-제올라이트 복합체를 이용한 이산화탄소 포집 공정의 개념도
그림2. 연속적인 온도교대흡착 공정에서 흡착제들의 이산화탄소의 흡착능 비교
2016.04.25
조회수 14894
-
박인규 교수, 공기오염 측정 센서 원천기술 개발
<박인규 교수>
우리 대학 기계공학과 박인규(38) 교수팀이 스마트폰 등 모바일 기기에 탑재 가능한 초소형, 초절전 공기오염 측정 센서의 원천기술 개발에 성공했다고 밝혔다.
연구 결과는 네이처(Nature)의 자매지인 사이언티픽 리포트(Scientific Reports) 1월 30일 자 온라인 판에 게재됐다.
각종 공기오염 물질이 증가하고 사람들의 건강관리에 대한 관심이 높아지면서 개인의 주변 공기오염도에 대한 측정 기술의 필요성이 커지고 있다.
하지만 기존의 공기오염 측정 센서는 소모 전력과 부피가 크고, 여러 유해가스를 동시에 측정할 때의 정확도가 낮았다. 이는 기존에 개발된 반도체 제작공정을 사용해도 해결이 쉽지 않았다.
박인규 교수팀은 수백 마이크로미터 폭의 미세유동과 초소형 가열장치로 수 마이크로미터만을 국소적으로 가열하는 극소영역 온도장 제어기술을 이용해 여러 종류의 기능성 나노소재를 하나의 전자칩에 쉽고 빠르게 집적하는 기술을 개발했다.
대표적으로 공기오염 측정에 사용되는 센서 소재인 반도체성 금속산화물 나노소재 기반의 전자칩을 제작하였다.
박 교수팀의 기술은 다종의 센서용 나노소재를 적은 양으로도 동시제작 할 수 있어 모바일 기기에 탑재할 초소형, 초절전 가스 센서를 만들 수 있다.
이 기술은 고밀도 전자회로, 바이오센서, 에너지 발전소자 등 다양한 분야에 응용이 가능하고, 특히 소형화 및 소비전력 감소에 어려움을 겪는 휴대용 가스센서 분야에 혁신을 가져올 것으로 예상된다.
박 교수는 “모바일 기기용 공기오염 센서 뿐 아니라 바이오센서, 전자소자, 디스플레이 등의 다양한 융합기술 발전에 크게 기여할 수 있을 것”이라고 말했다.
이번 연구는 교육부의 글로벌프론티어 사업, 미래창조과학부의 나노소재 기술개발사업, BK21 사업의 지원을 받아 수행됐다.
이번 연구에는 박인규 교수를 비롯해 기계공학과 양대종 박사후 연구원, 강경남 박사과정 연구원, 한국전력공사 김동환 연구원, 미국 휴렛 팩커드(Hewlett Packard) 사의 지용 리 (Zhiyong Li) 박사가 참여했다.
□ 그림설명
그림1. 다종 나노소재 제작 원리 및 미세 유동 컴퓨터 시뮬레이션 결과
그림2. 초미세 영역에서 동시에 제작된 다종의 나노소재
2015.02.24
조회수 15592
-
최명철 교수팀 연구 성과, 사이언스지 퍼스펙티브에 소개
우리 학교 바이오및뇌공학과 최명철 교수팀이 최근 발표한 ‘마이크로튜불의 새로운 구조’에 관한 논문이 과학 분야 가장 권위 있는 학술지인 사이언스(Science) 퍼스펙티브(Perspective)에 지난달 28일 소개됐다.
퍼스펙티브는 전 세계의 학술지 중 가장 영향력 있는 논문을 선정해 재조명하는 섹션이다.
KAIST 송채연 박사와 최명철 교수, 미국 UC Santa Barbara의 Safinya교수와 Wilson교수, 이스라엘 Hebrew University의 Raviv교수로 구성된 국제 공동연구팀은 가속기 엑스선 산란장치(synchrotron x-ray scattering)와 전자현미경을 이용해 마이크로튜불의 초미세구조를 이해하고, 이를 제어하는 스위치를 발견해 새로운 단백질 나노튜브 구조를 최초로 밝힌 연구결과를 네이처 머티리얼즈(Nature Materials)에 발표한 바 있다.
튜불린(마이크로튜불의 기본 단위체)의 형태 변화가 마이크로튜불의 구조 형성에 결정적인 영향을 미친다.연구진은 이 형태 변화를 제어하는 스위치를 찾음으로써 마이크로튜불의 새로운 크기와 형태의 구조를 발견했다.
사이언스 홈페이지
2014.03.11
조회수 16138
-
SNS에서 떠도는 루머를 구분할 수 있을까?
권세정 박사과정 학생(좌)과 차미영 교수(우)
- “루머는 팔로워 수가 적은 사용자들을 중심으로 산발적으로 전파” -- 2006년 이후 발생한 100여개의 트위터 상 미국 루머 사례 조사 -
트위터, 페이스북 등 SNS상에서 떠도는 정보의 진위여부를 가릴 수 있을까?
우리 학교 문화기술대학원 차미영 교수 연구팀(제1저자 권세정 박사과정)은 서울대 정교민 교수 및 마이크로소프트 아시아 연구소의 Wei Chen, Yajun Wang 박사와 공동연구를 통해 트위터 내에서 광범위하게 전파되는 정보의 진위 여부를 90%까지 정확하게 구분해낼 수 있는 기술을 개발했다.
이번 연구를 통해 루머에 대해 SNS 데이터를 바탕으로 한 새로운 수리적 모델과 네트워크 구조 및 언어적 특징을 도출함은 물론, 향후 인터넷 루머의 특성과 규제에 도움이 되는 루머 구분 기술을 확보하는 계기가 될 것으로 기대된다.
SNS는 누구에게나 손쉽게 정보의 생산과 유통 및 전파 과정에 참여하는 긍정적인 기능을 한다. 하지만 역기능으로 검증되지 않은 정보가 빠르게 확산되어 개인·기업·국가에 해를 끼칠 수 있는 악성 루머의 발판을 마련하기도 한다. 따라서 인터넷 루머를 감지하고 확산을 방지하고자 하는 노력이 중요하다.
차 교수 연구팀은 2006년에서 2009년 사이 미국 트위터에서 광범위하게 전파된 100개 이상의 사례를 조사해 루머의 특성을 분석했다. 수집된 자료는 정치·IT·건강·연예인 등 다양한 분야를 포함하며, 이러한 분석을 통해 90%의 정확도로 루머 여부를 판단할 수 있었다. 특히 특정 인물이나 기관의 비방이나 욕설이 포함된 루머의 경우 더욱 높은 정확도로 루머 여부의 판단이 가능했다. 연구팀은 일반 정보의 전파와는 확연히 다른 루머 전파의 특징을 크게 세 가지로 분류했다.
첫째, 루머는 일반 정보와는 달리 지속적으로 전파되는 경향을 보인다. 뉴스와 같은 일반 정보의 경우 한 번의 광범위한 전파 이후 미디어 내에서 거의 언급되지 않지만, 루머는 수년간의 긴 기간 동안 지속적으로 언급된다.
둘째, 루머의 전파는 서로 연관이 없는 임의 사용자들의 산발적인 참여해 이뤄진다. 일반 정보는 온라인 내의 친구관계를 통해 전파의 경로가 유추되는 반면 루머는 연결되지 않은 개개인의 참여로 이루어지는 특징을 보였다. 아울러 루머는 인지도가 낮은 사용자들로부터 시작돼 유명인에게로 전파된다. 이 현상은 연예인이나 정치인과 관련된 루머에서 자주 관찰됐다.
셋째, 루머는 일반 정보와 다른 언어적 특성을 보인다. 루머는 정보의 진위 여부를 의심·부정·유추하는 심리학적 과정과 연관된 단어(아니다, 사실일지는 모르겠지만, 확실치는 않지만, 내 생각에는, 잘 기억나진 않지만) 사용이 월등히 높다.
연구팀이 루머로 구분한 사례 중에는 미국 대선 당시 버락 오바마 대통령 후보가 무슬림이며 반기독교적 성향이 있고 미국 시민권을 부당 취득했다는 내용 등 그를 음해하는 정치적 루머도 포함됐다. 또 영화배우 니콜 키드먼이 성전환 수술을 했으며 그녀가 양성애자라고 언급한 사례 역시 연구팀의 기술을 통해 루머로 명백히 구분됐다.
차 교수는 “이 연구는 통계·수학적 모델은 물론 사회·심리학 이론의 융합 연구로 사회적으로 주목을 받는 루머의 특성을 풍부한 데이터를 통해 도출했다”며 “루머 전파 극초기에 해당 정보의 진위여부를 판별하는 것은 아직 어렵지만, 일정시간 경과 혹은 정보확산이 이루어질 경우 해당 빅데이터를 기반으로 하여 진위여부를 판단하는 것이 가능하다"고 밝혔다.
이번 연구결과는 지난해 12월 미국 텍사스주에서 열린 데이터마이닝 분야의 최고 학술대회인 IEEE 데이터마이닝 국제 회의(IEEE International Conference on Data Mining)에서 발표됐다. 또 해외 유명 과학 잡지인 New Scientist에 Bigfoot found? AI tool sifts fact from myth on Twitter 라는 제목으로 소개됐으며 Washington Post에도 Korean scientists create a tool that can help separate fact from fiction on Twitter의 기사명으로 소개됐다.
그림1. 각 주제 별로 관련 내용을 트위터 내에서 언급한 수(x축: 관찰일, y축:트윗수). 루머의 경우 일반적인 정보가 한 번의 광범위한 전파 후 거의 퍼지지 않는 것과 달리 지속적으로 언급되고 있음을 보여준다.
그림2. 트위터 내 사용자들 간 정보 전파를 네트워크의 형식으로 표현한 확산 네트워크. 각 점은 사용자를 의미하며, 선은 사용자들 간의 관계를 통한 정보 확산이 있었음을 의미한다.
2014.01.09
조회수 20065
-
유방암 세포의 자살을 유도하는 최적의 약물조합 발견
조광현 교수
- Science 자매지 표지논문 발표,“IT와 BT의 융합연구로 세포내 분자조절네트워크 제어를 통해 가능”-
국내 연구진이 대다수 암 발생에 직접 관여하는 것으로 알려진 암억제 유전자(p53)의 분자조절네트워크를 제어하여 유방암 세포의 사멸을 유도하는 최적의 약물조합을 찾아내, 향후 신개념 암치료제 개발에 새로운 단초를 열었다. 특히 이번 연구는 IT와 BT의 융합연구인 시스템 생물학 연구로 가능했다는 점에서 의미가 크다.
우리 학교 바이오및뇌공학과 조광현 석좌교수가 주도하고 최민수 박사과정생, 주시 박사, 정성훈 교수 및 시첸 박사과정생이 참여한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 이승종)이 추진하는 중견연구자지원사업(도약/도전연구)과 기초연구실사업의 지원으로 수행되었다.
연구결과는 세계 최고 과학전문지인 ‘사이언스’의 첫 번째 자매지로서 세포신호전달분야의 권위지인 ‘Science Signaling’지 최신호(11월 20일자) 표지논문으로 선정되었고, 사이언스지의 ‘편집자의 선택(Editor"s Choice)’에 하이라이트 특집기사로 소개되는 영예를 얻었다. (논문명: Attractor Landscape Analysis Reveals Feedback Loops in the p53 Network That Control the Cellular Response to DNA Damage)
유방암은 미국이나 유럽 등 선진국에서 발병하는 여성암 중 가장 흔한 암으로, 40~55세 미국 여성의 사망원인 1위를 차지한다.
지난 10월 15일에는 영국 일간지 ‘데일리메일’이 2040년까지 유방암 환자 수가 현재의 3배가 넘는 168만 명으로 늘어나 일명 “유방암 대란”이 일어날 수도 있다는 충격적인 연구결과를 보도하기도 하였다.
우리나라 보건복지부 자료에 따르면, 국내에서도 미국 등과 같이 유방암 발병빈도가 매년 증가하는 추세인데, 이것은 서구식 식습관과 저출산, 모유수유 기피 등 생활패턴의 변화에 기인한 것으로 알려져 있다.
p53은 ‘유전자의 수호자’로도 잘 알려진 암 억제 단백질로서 33년 전 처음 발견된 후 지금까지 암 치료를 위해 집중적으로 연구되는 분자이다.
p53은 세포의 증식 조절과 사멸 촉진 등 세포의 운명을 결정하는데 중요한 역할을 한다. 우리 몸의 세포가 손상되거나 오작동하면, p53은 세포주기의 진행을 중단시켜 손상된 DNA의 복제를 억제하고, 손상된 세포의 복구를 시도한다. 이 때 만일 세포가 복구될 수 없다고 판단되면, p53은 세포가 스스로 자살하도록 유도한다.
그러나 암세포는 이러한 p53의 기능이 정상적으로 작동되지 않아 이를 인위적으로 조절하여 암 치료에 응용하려는 시도가 꾸준히 이어져왔다. 그러나 지금까지 임상실험에서는 기대와는 달리 효과가 미미하거나 부작용이 발생하는 등 여러 문제점들이 나타났다.
이는 p53이 단독으로 작동하는 것이 아니라 복잡한 신호전달 네트워크 속에서 다수의 양성과 음성 피드백(positive and negative feedbacks)에 의해 조절되고 있었으나, 지금까지 p53만을 단독으로 집중 연구했기 때문이다. 즉, 다양한 피드백 조절에 의해 p53의 동역학적(dynamics) 변화와 기능이 결정되므로, 네트워크 전체를 이해하고 제어하는 시스템 생물학적 접근이 반드시 필요하다.
조광현 교수가 이끈 융합 연구팀은 p53을 중심으로 관련된 모든 실험 데이터를 집대성하여 p53의 조절 네트워크에 대한 수학모형을 구축하였다.
또한 대규모 컴퓨터 시뮬레이션 분석을 통해 p53의 동역학적 변화 특성에 따른 세포의 운명(증식 또는 사멸) 조절과정을 밝혀내고 이를 효과적으로 제어할 수 있는 방법을 찾아냈다. 그리고 이 방법을 적용한 시뮬레이션 결과를 단일세포실험으로 검증하였다.
조광현 교수팀은 수많은 피드백으로 복잡하게 얽혀 있는 p53 조절 네트워크의 다양한 변이조건에 따른 컴퓨터 시뮬레이션 분석과 세포생물학실험으로, p53의 동역학적 특성과 기능을 결정하는 핵심 조절회로를 발견하고, 이와 같은 p53의 동역학적 특성 변화에 따라 세포의 운명이 달라질 수 있음을 규명하였다.
또한 유방암 세포의 네트워크 모형에서, 위의 분석결과로부터 찾아낸 핵심회로를 억제하는 표적약물(Wip1 억제제)과 기존의 표적항암약물(뉴트린, nutlin-3)을 조합하면 유방암 세포의 사멸을 매우 효율적으로 유도할 수 있음을 발견하였다. 그리고 실제 유방암 세포(MCF7)를 이용한 세포실험을 통해 직접 확인하였다.
조광현 교수는 “세포내 중요한 역할을 담당하는 분자들은 대부분 복잡한 조절관계 속에 놓여있기 때문에 기존의 직관적인 생물학 연구로 그 원리를 밝히는 것은 근본적인 한계가 있다. 이번 연구는 시스템 생물학으로 그 한계를 극복할 수 있음을 보여주는 대표적인 사례로, 특히 암세포의 조절과정을 네트워크 차원에서 분석하여 새로운 치료법을 개발할 수 있는 가능성을 제시하였다”고 연구의의를 밝혔다.
한편, 조 교수의 이번 연구 논문은 23일자 사이언스 편집자의 선택(Editors" Choice)으로 선정되는 영예를 얻기도 했다.
여러 양성 및 음성 피드백으로 복잡하게 구성된 p53 조절네트워크
2012.11.23
조회수 15483
-
80년 과학기술계 숙원 풀렸다
- KAIST 이정용 교수 연구팀, 세계 최초로 액체를 원자단위로 분석하는 원천기술 개발에 성공 -
- 사이언스(Science)지 4월호에 실려 -
지난 80년 간 과학계의 오랜 숙원으로 꼽히던 액체를 원자단위까지 관찰하고 분석하는 기술이 세계 최초로 국내 연구진에 의해 개발됐다.
KAIST(총장 서남표)는 신소재공학과 이정용 교수 연구팀이 그래핀을 이용해 액체 내에서 성장하는 결정을 원자단위로 분석하는 원천기술을 개발하는데 성공했다고 6일 밝혔다. 이번 연구 결과는 세계적 학술지 ‘사이언스(Science)’ 4월호(6일자)에 실렸다.
이번에 개발된 기술은 액체가 고체로 결정화되는 메카니즘을 확인할 수 있어 ▲나노 크기의 재료 제조 ▲전지 내에서 전해질과 전극 사이의 반응 ▲액체 내에서의 각종 촉매 반응 ▲혈액 속 바이러스 분석 ▲몸속 결석의 형성과정 등 다양한 분야에 폭넓게 활용될 수 있을 것으로 학계는 기대하고 있다.
이와 함께 냉동인간의 해동과정에서 얼음이 재결정화면서 세포가 파괴되는데 이때 진행되는 현상을 분석해 결빙현상을 막아주는 해동기술에 적용하면 앞으로 냉동인간의 부활에도 도움이 될 것으로 예상된다.
투과전자현미경은 0.004nm(나노미터) 정도로 아주 짧은 파장의 전자빔을 이용하기 때문에 가시광선을 이용하는 광학현미경 보다 약 1000배 높은 분해능을 갖고 있다.
따라서 계면의 결정구조와 격자결함 등 원자단위까지 분석이 가능해 최근 다양한 종류의 차세대 신소재 연구에 필수적인 장비로 사용되고 있다.
그러나 투과전자현미경은 10-2~10-4기압(atm)의 고진공상태에서 사용하기 때문에 액체는 고정이 되지 않고 즉시 공중으로 분해돼 관찰할 수 없었다. 게다가 투과전자현미경의 원리상 전자빔이 수백 나노미터(nm) 이하의 시편을 투과해야 되는데 액체를 그만큼 얇게 만드는 것은 매우 어려웠다.
그러나 이 교수 연구팀은 꿈의 신소재인 그래핀을 이용, 수백 나노미터 두께로 액체를 가두는 데 성공해 이러한 문제들을 해결했다.
탄소원자들이 육각 벌집모양의 한 층으로 이루어진 그래핀은 두께가 0.34nm로 지금까지 합성할 수 있는 물질 들 중 가장 얇은 물질로 알려져 있다.
그래핀으로 나노미터 크기의 결정이 담긴 액체를 감싸면 투과전자현미경 안에서 그래핀이 투명하게 보인다. 또한 액체를 감싸고 있는 그래핀은 강도가 매우 뛰어나 고진공 환경에서도 액체를 고정시킬 수 있다.
즉, 투명한 유리 어항에 담긴 물속의 물고기들을 눈으로 볼 수 있는 것처럼 투명한 그래핀을 이용해 액체를 담아 그 속에 있는 결정들을 원자단위에서 관찰 할 수 있는 것이다.
연구팀은 이를 이용해 세계 최초로 액체 안에서 원자단위로 백금 결정들이 초기 형성되는 것과 성장과정을 관찰하는 데 성공했다.
이정용 교수는 “이번 연구 결과는 그동안 베일에 싸여있던 액체 속에서 일어나는 많은 과학현상들을 원자단위로 규명할 수 있는 원천기술로 평가받고 있다”며 “사람의 혈액 속에서 일어나는 유기물이나 무기물의 반응들까지도 규명할 수 있을 것으로 기대된다”고 말했다.
한편, 이번 연구는 KAIST 신소재공학과 이정용 교수의 지도아래 육종민 박사(제1저자)가 박사학위 논문으로 미국 UC버클리대 알리비사토스 교수, 제틀 교수와 공동으로 수행했다.
그림 1. 그래핀 두 층으로 이루어진 그래핀 액체 용기를 보여주는 모식도이다. 회색으로 보여지는 그래핀이 위아래로 두층이 있고 그 사이에 백금 원자들을 포함한 유기 용액의 액체가 담겨있다.
그림 2. 가장 왼쪽의 녹색 모식도는 두 개의 백금 결정들이 서로 결합하는 것을 보여준다. 이것을 실제 투과전자현미경 안에서 두 개의 백금 결정들을 원자 단위에서 관찰한 것이 두 번째 사진이다. 화살표로 표시된 것이 두 개의 백금 결정들이다. 현재 백금 결정들은 액체 안에 담겨 있는 상태이다. 오른쪽으로 갈수록 시간이 지남에 따라 두 개의 백금 결정들이 하나로 합쳐지면서 그 모양이 육각형으로 변해가는 것을 볼 수 있다. 이 투과전자현미경 사진에서 백금들 안에 하얀 점들은 원자가 아니고 원자의 규칙을 보여주는 격자 사진이다. 이 격자 사진의 하얀 점들은 원자와 1대 1로 매칭할 수 있다. 즉, 이것은 원자 단위에서 관찰된 것이다.
그림 3. 그래핀 액체 용기 안에서 백금 원자들을 포함한 액체에 투과전자현미경을 이용해 전자 빔을 조사하였을 때 백금 결정들이 자라나는 것을 역동적인 모식도로 표현한 것이다.
2012.04.06
조회수 17347
-
꿈의 소재
- 초고성능의 차세대 전자소자 등에의 그래핀 응용가능성 높여 -
그간 개념상으로만 알려졌던 그래핀의 미세한 주름 구조와 도메인 구조, 그 구조들의 생성원리 및 열처리 공정을 통한 주름구조 제어 가능성이 우리 학교 연구진에 의해 최초로 규명되었다.
우리 학교 EEWS대학원 박정영 교수와 건국대 박배호 교수팀이 주도한 이번 연구 결과는 세계 3대 과학저널(네이처, 사이언스, 셀) 중 하나인 ‘사이언스(Science)’誌에 8월 중 게재될 예정이며, 이에 앞서 ‘사이언스 온라인 속보(Science Express)’에 7월 1일자(한국시간)로 소개되었다.
연구진은 기계적 박리법을 이용해 제작한 그래핀 박막을 원자힘 현미경을 이용하여 측정한 결과 물리적으로 똑같은 특성을 지닌 단일층 그래핀 내에서 마찰력이 현저히 다른 구역(비등방성 마찰력 도메인)이 존재하는 것을 발견하였다.
또한 연구진은 마찰력의 차이가 발생하는 원인을 밝히는 과정에서 그래핀에 잔주름의 방향이 다른 구역(domain, 도메인)이 존재함을 밝혔고, 적절한 열처리 공정을 이용하면 이런 구역구분이 없어지며 전체가 일정한 마찰력을 보이도록 재구성할 수 있음을 보였다.
연구진은 “본 연구는 주름구역의 존재를 최초로 확인하였다는 점과 주름구조의 제어 가능성을 보임으로써 휘어지는 전자소자 등에의 응용가능성을 한 단계 확장시켰다는데 의의가 있고, 향후 활발한 후속연구를 기대한다”라고 밝혔다.
본 연구의 특이한 점으로는 그래핀과 관련된 국내 최고의 전문가들인 서강대 정현식 교수팀, 성균관대 이창구 교수, KIAS 손영우 교수팀 등이 공동 연구에 참여했다는 점이다.
SiO2 기판위에 박리법으로 증착된 그래핀의 원자힘 현미경 이미지(좌), 마찰력 도메인 이미지(중앙), 마찰 도메인에서 예측한 잔주름 분포(우).
2011.07.01
조회수 15087
-
생명의 기원과 진화의 비밀 풀 수 있는 열쇠(커널) 찾아내다
- Science 자매지 표지논문발표,“인간 세포의 주요기능 그대로 보존한 최소 핵심구조 규명”-
세포를 구성하는 복잡하고 거대한 분자네트워크의 주요기능을 그대로 보존한 최소 핵심구조(커널)가 국내 연구진에 의해 규명되었다.
특히 커널에는 진화적․유전적․임상적으로 매우 중요한 조절분자들이 대거 포함되어 있다는 사실이 밝혀짐에 따라, 향후 생명의 기원에 관한 기초연구와 신약 타겟 발굴 등에 큰 파급효과가 있을 것으로 기대된다.
우리 학교 조광현 교수 연구팀(김정래, 김준일, 권영근, 이황열, 팻헤슬롭해리슨)의 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 오세정)이 추진하는 중견연구자지원사업(도약연구), 기초연구실육성사업, 시스템인포메틱스사업(칼슘대사시스템생물학) 및 WCU육성사업의 지원으로 수행되었다.
이번 연구결과는 세계적인 학술지인 ‘사이언스’의 첫 번째 자매지로서 세포신호전달분야의 권위지인 ‘사이언스 시그널링(Science Signaling)’지(5월 31일자) 표지논문에 게재되는 영예를 얻었다.
(논문명 : Reduction of Complex Signaling Networks to a Representative Kernel)
생명체를 구성하는 다양한 분자들은 사람과 마찬가지로 복잡한 관계로 얽혀 거대한 네트워크를 형성한다.
현대 생물학의 화두로 떠오른 IT와 BT의 융합학문인 ‘시스템생물학’의 발전에 따라, 생명현상은 복잡한 네트워크로 연결된 수많은 분자들의 집단 조절작용으로 이루어진다는 사실이 점차 밝혀지고 있다. 즉, 특정기능을 담당하는 단일 유전자나 단백질의 관점에서 벗어나 생명체를 하나의 ‘시스템’으로 바라보게 된 것이다.
그러나 생명체 네트워크의 방대한 규모와 복잡성으로 근본적인 작동원리를 이해하는데 여전히 한계가 있다. 일례로, 세포의 다양한 정보처리를 위해 진화해 온 인간세포 신호전달 네트워크는 현재까지 약 2,000여개의 단백질과 8,000여 가지의 상호작용으로 이루어져 있다고 알려졌고, 아직 확인되지 않은 부분까지 고려하면 실제 더욱 복잡한 네트워크일 것으로 추정된다.
생명체의 조절네트워크는 태초에 어떻게 만들어졌고, 어떻게 진화되어 왔을까? 그 복잡한 네트워크의 기능을 그대로 보존하는 단순한 핵심구조가 존재하고 그것을 찾아낼 수 있다면, 인류는 복잡한 네트워크에 대한 수많은 수수께끼를 풀 수 있을 것이다.
조광현 KAIST지정석좌교수 연구팀은 이 수수께끼의 열쇠인 복잡하고 거대한 세포 신호전달 네트워크의 기능을 그대로 보존하는 최소 핵심구조인 커널을 찾아냈다.
연구팀은 새로운 알고리즘을 개발하고, 이를 대규모 컴퓨터시뮬레이션을 통해 대장균과 효모 및 인간의 신호전달 네트워크에 적용한 결과, 각각의 커널을 확인할 수 있었다.
매우 흥미로운 사실은 이번에 찾아낸 커널이 진화적으로 가장 먼저 형성된 네트워크의 뼈대구조임이 밝혀진 것이다. 또한 커널에는 생명유지에 반드시 필요한 필수유전자뿐만 아니라 질병발생과 관련된 유전자들이 대거 포함되어 있었다.
이번 연구를 주도한 조광현 교수는 “특히 이번에 찾은 커널에는 현재까지 FDA(미국식품의양국)에서 승인한 약물의 타겟 단백질이 대량 포함되어 있어, 커널 내의 단백질들을 대상으로 향후 새로운 신약 타겟이 발굴될 가능성이 높아, 산업적으로도 큰 파급효과가 있을 것으로 기대한다”고 연구의의를 밝혔다.
<세포내 신호전달네트워크에 존재하는 최소 핵심구조 "커널">
<논문표지>
2011.06.22
조회수 17761
-
윤태영 교수팀, 생체막 단백질 기능 첫 규명
우리대학 윤태영 물리학과 교수 주도하에 생체막 단백질인 시냅토태그민1(Synaptotagmin1)이 신경세포 통신을 능동적으로 제어한다는 사실을 세계 최초로 규명하였다.
시냅토태그민1은 신경전달물질 분출을 조절하는 양대 핵심 단백질로서, 지금까지 학계는 단순히 칼슘 이온이 유입되면 시냅토태크민1이 신경전달물질을 분출하는 것으로 추정해 왔지만, 명확히 그 기능을 밝혀내지 못했다.
△카이스트 윤태영 물리학과 교수, △이한기 박사 △신연균 교수(포항공대, 아이오와주립대) △권대혁 교수(성균관대) △현창봉 교수 (고등과학원) 등이 참여한 이번 연구는 교육과학기술부(장관 안병만)와 한국연구재단(이사장 박찬모)이 추진하는 ‘기초연구실육성사업(BRL)"과 ‘세계 수준의 연구중심대학(WCU)육성사업’의 지원을 받아 수행되었고, 연구결과는 세계 최고 권위의 과학저널인 ‘사이언스(Science)’誌 5월 7일자에 게재된다. 이번 연구결과는 젊은 국내 토종박사들이 주축이 되어 불굴의 도전정신으로 일궈낸 값진 연구성과이다.
총 9명으로 구성된 연구팀에서 8명이 국내 연구자들로, 이중 7명이 만 40세를 넘지 않은 신진 연구자이다.
특히 연구를 주도한 윤태영 교수는 만 34세로 2004년 서울대에서, 이한기 박사는 만 33세로 명지대에서, 권대혁 교수는 만 38세로 서울대에서 박사학위를 받은 토종박사들이다.
또한 이번 연구성과는 정부의 대표적인 연구지원사업(BRL)과 인력 양성사업(WCU)의 지원을 받아 시너지 효과를 발휘하여, 세계 최고의 과학저널에 발표했다는 점에서 의의가 있다.
[그림1. 신경전달물질 분출에 있어서 시냅토태그민1의 동적제어 스위치 모델]
윤태영 교수 연구팀은 시냅토태그민1이 신경세포 통신의 강약을 자유자재로 제어하는 스위치 역할을 한다는 새로운 사실을 밝혀냈다.
연구팀은 신경세포 내에 적정농도(10μmol/L, 1리터당 10마이크로 몰)의 칼슘 이온이 유입되면 시냅토태그민1은 신경전달물질을 빠르게 분출하지만, 적정농도 이상의 칼슘이 유입되면 오히려 그 기능이 감소된다는 사실을 최초로 확인하였다. 이것은 시냅토태그민1이 신경세포에서 나오는 칼슘 농도에 따라 다양하게 반응한다는 사실을 의미하는 것으로, 시냅토태그민1이 신경세포 통신의 강약을 자유자재로 제어할 수 있다는 사실을 새롭게 규명한 것이다.
윤태영 교수팀의 이번 연구는 지난 10년간 학계의 풀리지 않은 수수께끼인 시냅토태그민1의 기능에 대한 명쾌한 해답을 제시하였다. 이번 연구는 낮은 농도의 칼슘에서 시냅토태그민1이 가장 활발히 활동한다는 사실을 최초로 발견하여, 기존 연구가 밝히지 못한 시냅토태그민1의 기능을 정확히 설명하였다.
특히 연구팀은 시냅토태그민1을 생체막으로부터 분리하면, 제어 스위치 기능이 상실된다는 사실도 확인하여, 시냅토태그민1의 생체막 부착 여부가 그 기능에 핵심인 것을 밝혀냈다.
또한 윤 교수팀은 차세대 신약개발의 주요 타깃인 생체막 단백질의 기능을 분자수준에서 관찰할 수 있는 신기술을 개발하는데 성공하였다.
생체막 단백질은 물질 수송 등 세포내 필수적인 역할을 하는데, 암, 당뇨, 비만 등 각종 질병과 밀접하게 관련되어 있어, 차세대 신약개발 표적 단백질의 최대 70%를 차지하는 것으로 알려져 있다.
연구팀은 ‘단소포체 형광 기법(single-vesicle fluorescence detection)’을 개발하는데 성공하여, 생체막 단백질의 기능을 단분자 혹은 수개 분자 수준에서 관찰할 수 있는 세계 최고 수준의 기술을 보유하게 되었다.
[그림2. 단소포체 형광기법]
윤 교수는 “이번 연구결과는 지난 10년간 학계가 밝혀내지 못한 시냅토태그민1의 기능을 명쾌히 밝혀내고, 복잡한 생체막 단백질의 기능을 분자수준에서 관찰할 수 있는 신기술을 개발한 것이다. 이번 연구로 생체막 단백질을 활용하여, 암, 당뇨, 비만 등 현대인의 질병에 대한 신약을 개발할 수 있는 가능성을 열었다“라고 연구 의의를 밝혔다.
2010.05.07
조회수 25002
-
매미와 개구리는 지휘자없이 어떻게 합창할까
나무위의 매미와 논두렁의 개구리는 지휘자 없이 어떻게 합창할까? 이와 관련해서, KAIST 바이오 및 뇌공학과의 조광현 교수는 생명체의 동기화된 주기적 진동신호의 생성원리를 최근 규명했다. 나무에 붙어있는 많은 반딧불들의 동시다발적인 깜빡임, 매미들의 조율된 울음소리, 뇌신경세포들간의 전기신호, 세포내 분자들의 농도변화에 이르기까지 생명체는 다양한 형태의 주기적 진동신호 교환을 통해 정보를 전달하는데, 이들은 놀랍게도 정확히 동일한 위상(phase)으로 동기화되곤 한다. 이는 마치 오케스트라에서 지휘자 없이도 모든 연주가 일정한 박자에 맞춰 이루어지는 것과 같다.
어떻게 생명체의 여러 주기적 진동신호들이 그러한 동기화를 이루는가?
우리학교 바이오및뇌공학과 조광현(曺光鉉) 교수 연구팀이 대규모 가상세포(virtual cell)실험을 통해 생명체의 다양한 주기적 진동(oscillation)신호들이 동기화(synchronization)되는 보편적인 원리를 규명했다.
曺교수팀은 이번 연구를 통해 여러 독립적인 주기적 진동신호들은 양성피드백(positive feedback)을 통해 서로의 위상에 영향을 줘 하나의 동일한 위상으로 수렴되는 현상을 밝혀냈다.
특히 양성피드백은 이중활성(double activation) 또는 이중억제(double inhibition)의 구조로 구현된다. 이중활성피드백은 연결시간지연이 짧을 때, 이중억제피드백은 연결시간지연이 길 때 보다 안정적인 신호동기화를 가능하게 했다.
또한, 노이즈(noise) 교란이 있을 때 이중활성피드백은 진동신호의 주기보다 진폭을 안정적으로 유지하는 반면 이중억제피드백은 연결강도에 불규칙한 변화가 주어졌을 때 일정한 주기와 진폭을 유지시켜줬다. 현존하는 대부분의 현상들이 이러한 원칙을 따르고 있었다.
이번에 규명된 원리는 생체내 주기적 진동신호의 동기화가 교란될 때 발생하는 뇌질환 등 여러 질병의 원인을 새롭게 조명하는 계기를 마련할 것으로 기대된다.
이번 연구는 기존 생명과학의 난제에 대해 IT융합기술인 시스템생물학(Systems Biology) 연구를 통해 해답을 제시할 수 있음을 보여줬으며, 향후 생명과학 연구에 있어서 가상세포실험의 무한한 가능성을 제시했다.
曺교수는 “생명체는 복잡하게 얽혀있는 것으로 보이는 네트워크속에 이와 같이 정교한 진화적 설계원리를 간직하고 있었다”며 “이러한 규칙들은 임의로 수많은 디지털 진동자들을 만들어 인공진화를 통해 신호의 동기화 현상을 관측하였을 때에도 마찬가지로 성립된다는 흥미로운 사실을 확인했다”고 말했다.
이 연구는 교육과학기술부가 지원하는 한국연구재단 연구사업의 일환으로 수행되었으며, 연구결과는 세포생물학 분야 권위지인 세포과학저널(Journal of Cell Science) 2010년 1월 26일자 온라인판에 게재됐다.
세포생물학 실험결과만을 출판하는 이 저널에 순수 컴퓨터시뮬레이션만으로 수행된 가상세포실험 연구결과가 게재된 것은 매우 이례적인 일이다.
인터넷주소: http://jcs.biologists.org/cgi/content/abstract/jcs.060061v1
<용어설명>◯ 양성피드백(positive feedback): 서로 연결되어 있는 두 요소 사이에 어느 하나의 변화가 결과적으로 스스로를 동일한 방향으로 더욱 변화시키는 형태의 연결구조.
<사진설명>◯ 설명: A: 서로 상호작용하는 두 생체신호 진동자(oscillator)들의 예시. B: 이중활성 양성피드백으로 연결된 진동자들. C: 이중억제 양성피드백으로 연결된 진동자들. D: 연결강도에 따라 진동신호 동기화에 소요되는 시간. E: 연결강도 증가에 따라 점차 진동신호 동기화가 되어가는 모습의 예시 (좌측의 비동기화 진동신호들이 점차 우측의 동기화된 진동신호들로 변화되어 가는 과정을 나타냄).
2010.02.02
조회수 20292