<유회준 교수>
우리 대학 전기 및 전자공학과 유회준 교수 연구팀이 사용자의 시선을 인식해 증강현실을 구현할 수 있는 저전력 스마트안경 ‘케이-글래스2(K-Glass 2)’를 개발했다.
이번 연구는 지난 2월 미국 샌프란시스코에서 열린 세계 반도체 올림픽이라 불리는 국제고체회로설계학회(ISSCC)에서 발표돼 주목을 받았다.
케이-글래스 2의 핵심 기술인 시선 추적 이미지 센서 ‘아이-마우스(i-Mouse)’는 사용자의 시선에 따라 마우스 포인터를 움직이고, 눈 깜빡임으로 아이콘을 클릭할 수 있다. 더불어 안경 너머의 물체를 쳐다보면 관련 증강 현실 정보를 얻을 수 있다.
케이-글래스 2는 음성 인식 기능을 주로 사용하는 구글 글래스에 비해 주변 소음이 많은 야외에서도 방해받지 않고 쉽게 조작이 가능하다.
기존 시선 추적 시스템은 눈을 촬영하는 이미지 센서와 시선추적 알고리즘을 가속하는 멀티코어 프로세서로 구성된다. 이는 평균 200mW 이상의 전력을 필요로 해 스마트폰 배터리의 20%가량인 스마트 안경 시스템에서는 부적합했다.
하지만 케이-글래스 2의 시선 추적 이미지 센서는 복잡한 시선 추적 알고리즘을 센서 내에서 모두 처리하기 때문에 10mW의 평균 전력으로도 24시간 이상 동작이 가능하다.
이 기술은 유 교수 팀이 시선 추적 및 시선 속 물체를 인식할 수 있는 저전력의 전자 칩을 개발함으로써 가능해졌다.
또한 전압과 동작 주파수를 동적 조절이 가능한 멀티코어 프로세서에 함께 집적했기 때문에 복잡한 증강현실 알고리즘을 저전력으로 가속할 수 있다.
유 교수는 “스마트 안경 분야에서 주도권을 잡기 위해선 소형화·저전력화는 물론 사용자 인터페이스(UI)와 사용자 경험(UX)에 대한 개발이 필수”라며, “케이-글래스 2는 복잡한 증강현실을 초저전력으로 구현해 차세대 스마트 IT분야의 견인차 역할을 할 것”이라고 밝혔다.
유회준 교수 지도하에 홍인준 박사과정 학생이 주도해 개발한 케이-글래스 2는 미래창조과학부 국책과제인 뇌모방 지능형 메니코아 프로세서 연구사업의 일환으로 진행됐다.
사진1. 케이-글래스 2 후면 사진 및 기능 설명
사진2. 케이-글래스 2 착용 사진
기존의 반도체 소자에서 열 발생은 피할 수 없는데, 이는 에너지 소모량을 증가시키고, 반도체의 정상적인 동작을 방해하기 때문에 문제가 되며, 이에 열 발생을 최소화하는 것이 기존 반도체 기술의 관건이었다. KAIST 연구진이 이렇게 애물단지로 여겨지던 열을 오히려 컴퓨팅에 활용하는 방법을 고안하여 화제다. 우리 대학 신소재공학과 김경민 교수 연구팀이 산화물 반도체의 열-전기 상호작용에 기반하는 열 컴퓨팅(Thermal computing) 기술 개발에 성공했다고 25일 밝혔다. 연구팀은 전기-열 상호작용이 강한 모트 전이 (Mott transition) 반도체*를 활용했으며, 이 반도체 소자에 열 저장 및 열전달 기능을 최적화해 열을 이용하는 컴퓨팅을 구현했다. 이렇게 개발된 열 컴퓨팅 기술은 기존의 CPU, GPU와 같은 디지털 프로세서보다 1,000,000(백만)분의 1 수준의 에너지만으로 경로 찾기 등과 같은 복잡한 최적화 문제를 풀 수 있었다. *모트 전이 반도체:
2024-06-25우리 연구진이 공정 비용이 낮고 초저전력 동작이 가능하여 기존의 메모리를 대체하거나 차세대 인공지능 하드웨어를 위한 뉴로모픽 컴퓨팅(Neuromorphic Computing) 구현에 사용될 메모리 소자를 개발하여 화제다. 전기및전자공학부 최신현 교수 연구팀이 디램 (DRAM) 및 낸드(NAND) 플래시 메모리를 대체할 수 있는 *초저전력 차세대 상변화 메모리 소자를 개발했다고 4일 밝혔다. ☞ 상변화 메모리(Phase Change Memory): 열을 사용하여 물질의 상태를 비정질과 결정질을 변경하여, 이를 통해 저항 상태를 변경함으로써 정보를 저장하거나 처리하는 메모리 소자. 기존 상변화 메모리는 값비싼 초미세 반도체 노광공정을 통해 제작하며 소모 전력이 높은 문제점이 있었다. 최 교수 연구팀은 상변화 물질을 전기적으로 극소 형성하는 방식을 통해 제작한 초저전력 상변화 메모리 소자로 값비싼 노광공정 없이도 매우 작은 나노미터(nm) 스케일의 상변화 필라멘트를 자체적
2024-04-04우리 대학 신소재공학과 김경민 교수 연구팀이 다양한 멤리스터* 소자를 이용한 설명 가능한 인공지능 (XAI) 시스템을 구현하는데 성공했다고 25일 밝혔다. *멤리스터 (Memristor): 메모리 (Memory)와 저항 (Resistor)의 합성어로, 입력 신호에 따라 소자의 저항 상태가 변하는 소자 최근 인공지능 (AI) 기술의 급속한 발전이 다양한 분야에서 성과를 이루고 있다. 이미지 인식, 음성 인식, 자연어 처리 등에서 AI의 적용 범위가 확대되며 우리의 일상생활에 깊숙이 자리 잡고 있다. AI는 인간의 뉴런 구조를 모방해 만든 ‘인공신경망’을 기반으로, 적게는 수백만 개에서 많게는 수조 개에 달하는 매개변수를 통해 데이터를 분석하고 의사 결정을 내린다. 그러나 이 많은 매개변수로 인해 AI 모델의 동작 원리를 정확하게 이해하기 어렵고, 이는 통상적으로 블랙박스에 비유되곤 한다. AI가 어떤 기준으로 결정을 내는지 알 수 없다면, AI에 결함이나
2024-03-25우리 일상에 스며든 소프트 로봇, 의료기기, 웨어러블 장치 등에 적용시킬때 초저전력으로 구동되며 무게 대비 34배의 큰 힘을 내는 이온성 고분자 인공근육을 이용한 유체 스위치가 개발됐다. 유체 스위치는 유체 흐름을 제어함으로써 특정 방향으로 유체가 흐르게 하여 다양한 움직임을 유발하도록 한다. 우리 대학 기계공학과 오일권 교수 연구팀이 초저전력에서 작동하며 협소한 공간에서 사용할 수 있는 소프트 유체 스위치를 개발했다고 4일 밝혔다. 인공근육은 인간의 근육을 모방한 것으로 전통적인 모터에 비해 유연하고 자연스러운 움직임을 제공해 소프트 로봇이나 의료기기, 웨어러블 장치 등에 사용되는 기본 소자 중 하나이다. 이러한 인공근육은 전기, 공기 압력, 온도 변화와 같은 외부 자극에 반응하여 움직임을 만들어 내는데, 인공근육을 활용하기 위해서는 이 움직임을 얼마나 정교하게 제어하는지가 중요하다. 또한 기존 모터를 기반으로 한 스위치는 딱딱하고 큰 부피로 인해 제한된 공간 내에서
2024-01-04우리 대학 기계공학과 박인규 교수 연구팀이 개발한 마이크로 LED 가스 센서가 과학기술정보통신부와 나노기술연구협의회가 수여하는 2023년 10대 나노기술에 선정됐다고 29일 밝혔다. (기술명: 마이크로 LED와 금속산화물 나노소재가 일체된 초저전력 가스센서 기술) 박인규 교수 연구팀은 수십 마이크로미터 크기(마이크로미터: 10-6m)의 초소형 LED 바로 위에 고민감도의 금속산화물 나노소재가 집적된 광활성식 가스센서 플랫폼을 개발했다. 연구팀은 초소형 마이크로 LED에서 나오는 빛이 금속산화물에 전달되어 광활성시키고 가스 감지 소재로 활용되는 원리를 적용하고, 딥러닝 알고리즘을 이용해 여러 종의 가스를 실시간으로 높은 정확도로 선택적 판별하는 전자코 (electronic nose; E-nose) 기술을 개발했다. (가스 종 판별 정확도 99%, 농도 값 예측 오차 14%) 마이크로 LED 가스 센서는 낭비되는 광 에너지 손실 없이 전달 효율을 높여서 초저전력 가스 감지
2023-12-29