-
이산화탄소 분해 과정 원자 수준에서 관찰하다
대기 중의 온실가스를 제거하고 미래 청정 원료를 생산하기 위해 신재생에너지를 활용한 전기화학적 전환 기술은 탄소중립 달성을 위한 산업계 체제 전환 대응 핵심 기술로 주목받고 있다. 하지만, 이산화탄소를 산업적으로 분해/활용하기 위해서 최근 단원자 전이 금속 촉매가 이산화탄소를 분해하는 차세대 촉매로 큰 기대를 모으고 있으나 아직 이 화학반응 메커니즘 및 촉매 활성 부위가 명확히 밝혀지지 않아 고성능 촉매를 개발하는데 여전한 큰 걸림돌이 돼 왔다.
우리 대학 화학과 박정영 교수 연구팀이 이산화탄소(CO2) 전기환원 과정에서 단원자 구리(Cu) 금속 촉매가 분해되는 과정을 실시간 원자단위로 관찰하고, 주된 반응 활성자리임을 규명하는 데 성공했다고 28일 밝혔다.
전기화학 반응을 이용한 이산화탄소 전환 기술은 공정과 반응 조건이 비교적 간단하면서도 특히 구리 기반 촉매를 사용하면 열역학적 방법으로는 불가능한 고부가가치 화합물을 생산할 수 있어 연구활용 가치 기대가 매우 높다. 하지만, 이산화탄소의 환원반응은 일산화탄소(CO), 메탄(CH4), 에탄올(C2H5OH), 수소(H2) 등의 다양한 생성물들을 함께 만들어 낼 뿐만 아니라 촉매 표면 구조의 변화를 일으킨다는 문제점이 함께 한다. 따라서, 이를 해결하기 위해 전극 표면에서 일어나는 이산화탄소의 환원반응 경로 규명 및 표면 구조 거동 분석이 매우 중요해지고 있으나 액체 전해질 환경에서 반응이 이루어지는 탓에 분석에 어려움을 겪고 있다.
박 교수 연구팀은 전기화학 주사 터널링 현미경(EC-STM) 분석법을 적용해 단원자 구리금속 촉매 표면에서 일어나는 이산화탄소 환원반응을 관찰하고, 이때 표면에 형성되는 산화구리 나노 복합체가 주된 반응 활성자리임을 시각적 증거로 처음 제시했다. 연구진은 구리 전극 표면이 이산화탄소 전환과정에서 환원되며 반응 활성도 및 촉매 표면 구조가 달라진다는 점에 착안, 액체-고체 계면에서 단원자 구리금속 촉매 전극과 반응하는 이산화탄소 분자의 분해 과정을 실시간 원자단위로 포착했다.
우리 대학 박정영 교수는 “이번 연구는 액체-고체 계면 분석에 난항을 겪고 있는 상황에서 단원자 구리금속 기반 촉매 표면의 이산화탄소 전기환원 반응 현상을 원자수준으로 관찰할 수 있었고, 이를 통해 촉매 물질의 활성자리를 결정하고 정밀한 화학반응 경로 설계가 가능하다. 이러한 기술성과는 차후에 이산화탄소의 전기화학적 전환 연구 외에도 탄소중립 정책을 위한 다양한 촉매 소재 연구개발에 기여할 것으로 기대한다”고 말했다.
한편, 기초과학연구원, 한국과학기술연구원(KIST), 한국산업통상자원부 그리고 한국연구재단(NRF)의 지원을 받은 이번 연구성과는 국제학술지 ‘어드밴스드 사이언스(Advanced Science IF 17.5)’내부 표지 논문으로 최근 선정됐으며 11월 29일 자로 온라인 게재됐다. (논문 제목: In Situ Probing of CO2 Reduction on Cu-Phthalocyanine-Derived CuxO Complex)
2023.12.28
조회수 3636
-
액정 고분자를 통해 ‘올인원 솔루션’ 기술 개발
액정 고분자는 녹아있는 상태에서 액정성을 나타낸 고분자로 높은 내열성과 강도를 가지고 있어서 기존에는 광학 필름이나 코팅 소재로 응용되었지만, 최근에는 가스 및 액체 흡착, 약물 전달, 센서 기술 등의 분야에서 광범위하게 효율적 활용이 가능하다는 연구가 보고되고 있다.
우리 대학 화학과 윤동기 교수 연구팀이 연성 소재(soft material)중 하나인 액정 고분자의 자기조립(self-assembly)을 활용해 다공성 액정 고분자 구조체를 제작하고, 다양한 기능성 나노 입자를 도입해 복합체를 형성할 수 있는 원천기술을 개발했다고 20일 밝혔다.
이번 연구에서 윤 교수팀은 다양한 모양에 조립을 유도할 수 있는 분자 형태로 이루어져 있어 표면 개질, 공간적 한정, 빛, 전기장에 의해 배향이 쉽게 조절되는 특성을 가진 액정의 배향 제어를 기반으로 액정 고분자 기반의 다공성 구조체를 제작했고, 이를 매트릭스로 하여 페로브스카이트(perovksite), 금속유기골격체 (metal-organic framework), 퀀텀닷(quantum dot) 등과 같은 다양한 기능성 나노 입자 도입을 통해 유-무기 복합체(organic-inorganic composite)를 제작하는 것에 집중했다.
연구팀은 매트릭스의 기공에서 나노 입자들을 직접 성장시키거나 이미 제작된 나노 입자들을 도입하는 서로 다른 전략을 개발했다. 이를 통해 도입하고자 하는 기능성 나노 입자의 선택성을 넓혀 범용적인 복합체 제작이 가능하다는 것을 보였다. (그림 1)
연구팀은 또한 두 가지 이상의 나노 입자들을 도입하는 전략을 제시해 다기능성 복합체 제작이 가능하다는 것을 보였다. 기존의 다공성 고분자 기반의 복합체 제작 연구의 경우 하나의 기능성 입자를 도입하고자 하는 것에 초점이 맞추어져 있고, 두 가지 이상의 기능성 도입을 위한 자세한 연구는 부족하다. 연구팀이 이번 연구에서 제안한 다기능성 복합체의 경우 서로 다른 나노 입자들의 기능성을 동시에 가질 수 있어, 기존 기능성 입자들의 활용 범위를 더욱 넓힐 수 있다는 것을 보였다.
화학과 윤동기 교수는 “이 기술은 기존에 알려진 대표적인 무기 입자들을 액정 고분자를 통해 한 번에 제조, 포함할 수 있는 `올인원 솔루션'으로 오염물질 제거, 안정된 디스플레이 소자 개발, 차세대 통신용 인쇄 회로 기판 제조 등에 다기능성을 부여할 수 있다는 점에서 획기적인 기술이라고 할 수 있다”고 언급했다.
이번 연구는 국제 학술지 어드밴스드 머터리얼즈(Advanced Materials)에 “Universal Strategy for Inorganic Nanoparticle Incorporation into Mesoporous Liquid Crystal Polymer Particles”의 이름으로 지난 11월 22일 자에 게재됐다.
이근중†, 박건형†, 박계현, 박영서, 이창재, 윤동기* : 공동 제1 저자, * 교신저자.
한편 이번 연구는 과학기술정보통신부-한국연구재단의 지원을 받은 중견연구자 지원사업, 함께달리기사업의 지원을 받아 수행됐다.
2023.12.20
조회수 4044
-
원하는 색깔의 마이크로 LED 전사 기술 개발
기존 OLED 등과 비해 전기적·광학적 특성이 우수한 마이크로 LED는 머리카락 두께인 100마이크로미터(μm) 이하 크기의 무기물 LED 칩을 활용하는 차세대 디스플레이용 광원이다. 마이크로 LED의 상용화를 위해선 성장 기판에 배열된 대량의 마이크로 LED 칩을 최종 기판의 정확한 위치에 원하는 배열로 옮기는 ‘전사 공정’이 가장 중요한 핵심기술이지만, 기존 전사 기술들은 별도의 접착제 사용, 정렬 오차, 낮은 수율, 칩 손상 등으로 마이크로 LED 상용화에 많은 어려움이 존재했다.
우리 대학 신소재공학과 이건재 교수 연구팀이 마이크로진공 흡입력을 조절해 대량의 마이크로 LED 칩을 색깔별 원하는 칩들만 선택적으로 전사하는 기술을 개발했다고 19일 밝혔다.
이 교수팀은 레이저빔 조사시 물질 특성을 조정하여 식각하는 레이저 유도 에칭(Laser-induced etching, LIE) 기술을 활용해 미세 관통홀을 유리 기판에 초당 7,000개 속도로 형성했고, 이를 진공 채널에 연결해 미세진공 흡입력을 발생시켜 마이크로 LED를 전사하는 데 성공했다. 이 기술은 기존 전사 기술 대비 뛰어난 접착력 전환성을 달성하였으며, 다수의 진공 채널별 독립적인 진공 조절을 통해 대량의 마이크로 LED 칩을 선택적으로 전사하였다. 또한 다양한 재료, 크기, 모양, 두께를 지닌 초소형 반도체 칩들을 칩 손상 없이 임의의 기판에 높은 수율로 전사할 수 있었다.
이건재 교수는 “이번에 개발된 마이크로진공 전사 기술은 가파르게 성장하는 마이크로 LED 시장에서 높은 생산 원가를 절감하고 중저가 마이크로 LED 제품 양산화의 핵심 기술로 활용될 것이 기대된다”면서, “현재 얇은 핀으로 칩을 들어 올리는 이젝터 시스템을 적용해 대량의 상용 마이크로 LED를 전사하고, 이를 통해 차세대 디스플레이(대형 TV, 유연․신축성 기기 등) 뿐만 아니라 광-바이오 융합형 미용 면발광 패치 상용화를 진행 중이다”라고 말했다.
한편 이번 연구는 웨어러블플랫폼 소재기술 센터, 중견연구자지원사업, 소부장 전략협력 기술개발사업의 지원을 받아 수행됐으며, 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)'에 11월 26일 자 출판됐다.
2023.12.19
조회수 4453
-
친환경적 나일론 생산 전략 소개하다
기후 변화에 대응하여 전 세계는 '넷제로(Net-Zero)'라는 슬로건을 내세운 탄소 중립 관련 산업에 점점 더 주목하고 있다. 나일론으로 대표되는 폴리아마이드는 자동차, 전기, 섬유, 의료 산업 등 다양한 분야에서 광범위하게 사용되는 선형 고분자다. 1938년 나일론으로 처음 상업화된 이후, 매년 전 세계적으로 약 700만 톤의 폴리아마이드가 생산되고 있다. 이러한 폭넓은 활용성과 중요성을 고려할 때, 폴리아마이드를 생물 기반 방식으로 생산하는 것은 환경적, 산업적 측면에서 모두 중대한 의미를 지니고 있다.
우리 대학 생명화학공학과 이상엽 특훈교수팀의 이종언 박사와 김지연 박사과정생이 `바이오 기반 폴리아마이드 생산 기술의 발전 동향' 논문을 발표했다고 18일 밝혔다.
기후변화대응 기술 중 바이오리파이너리는 화석 원료에 의존하지 않고 바이오매스 원료로부터 생물공학적·화학적 기술을 이용해 화학제품·바이오 연료 등 산업 화학물질을 친환경적으로 생산하는 분야에 해당한다. 특히, 이상엽 특훈교수가 창시한 시스템 대사공학은 미생물의 복잡한 대사회로를 효과적으로 조작해, 바이오매스 원료로부터 유용 화합물을 생산하는 핵심 바이오리파이너리 기술이다. 이상엽 특훈교수 연구팀은 실제로 시스템 대사공학 전략을 이용해 숙신산, 생분해성 플라스틱, 바이오 연료, 천연물 등을 생산하는 고성능 균주들을 다수 개발한 바 있다.
연구팀은 우리의 실생활에서 의류 및 섬유에 다양하게 활용되는 바이오 기반 폴리아미드 생산기술이 보편화된다면, 친환경적 생산기술을 바탕으로 기후 위기에 대응할 수 있는 미래기술로써 주목받게 될 것임을 전망했다. 이번 논문에서는 바이오 기반 폴리아마이드 생산 전략을 종합적으로 정리함으로써 대사공학적으로 개량된 미생물 세포 공장을 사용한 폴리아마이드 생산과 합성된 바이오 기반 폴리아마이드 발전 동향을 제공했다. 또한, 화학적 전환을 통하여 합성된 바이오 기반 폴리아마이드 생산 전략, 생산된 폴리아마이드의 생분해 및 재활용 가능성에 대해 논의했다. 나아가 친환경 화학 산업과 지속 가능한 사회를 위해 바이오 기반 폴리아마이드 생산에 활용되는 대사공학이 나아갈 방향을 함께 제시했다.
이번 논문의 공동 제1 저자인 김지연 박사과정생은 “탄소 중립 목표 달성을 위해 시스템 대사공학을 활용한 바이오 기반 폴리아마이드 생산의 중요성이 더욱 대두되고 있다”라고 말했으며, 이상엽 특훈교수는 “증가하는 기후 변화에 대한 우려 속에 어느 때보다 친환경적이며 지속 가능한 산업 발전의 중요성이 커지고 있는 지금, 시스템 대사공학이 화학 산업뿐만 아니라 다양한 분야에 큰 영향을 미칠 것”이라고 밝혔다.
우리 대학 생명화학공학과의 이종언 박사, 김지연 박사과정생, 안정호 박사, 안예지 석사가 함께 참여한 이번 논문은 셀(Cell) 誌가 발행하는 화학 분야 권위 리뷰 저널인 `화학의 동향(Trends in Chemistry)' 12월호 표지논문 및 주 논문(Featured Review)으로 12월 7일 字 게재됐다.
※ 논문명 : Current advancements in the bio-based production of polyamides
※ 저자 정보 : 이종언(한국과학기술원, 공동 1 저자), 김지연(한국과학기술원, 공동 1 저자), 안정호(한국과학기술원, 제 3저자), 안예지(한국과학기술원, 제 4저자), 이상엽(한국과학기술원, 교신저자) 포함 총 5명
한편, 이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발’ 과제 및 ‘C1 가스 리파이너리 사업’의 지원을 받아 수행됐다.
2023.12.18
조회수 3832
-
혹시 나도 수면 질환? AI로 간단히 검사해 보세요
각종 장비를 몸에 부착한 채 병원에서 하룻밤을 보내야 하는 번거로운 검사 없이 웹사이트를 통해 간단히 수면 질환 위험도를 파악할 방법이 나왔다. 우리 대학 수리과학과 김재경 교수 연구팀이 삼성서울병원 주은연‧최수정 교수팀, 이화여대 서울병원 김지현 교수팀과 공동 연구를 통해 개발한 세 가지 수면 질환을 예측할 수 있는 알고리즘 ‘슬립스(SLEEPS‧SimpLe quEstionnairE Predicting Sleep disorders)’를 12일 공개했다.
‘잠이 보약’이라는 말처럼 수면은 정신적‧신체적 건강에 주요한 영향을 미친다. 성인의 60%가량이 수면 질환을 앓고 있지만, 관련하여 전문 의료진에게 문의한 비율은 6% 수준에 불과하다. 병원 방문을 꺼리는 원인 중 하나로는 수면 질환 진단을 받기 위해 시행하는 수면다원검사가 번거롭다는 이유가 있다.
공동연구진은 약 5,000명의 수면다원검사 결과를 기계 학습을 통해 학습시켜 수면 질환 위험도를 예측하는 알고리즘 ‘슬립스’를 개발했다. 슬립스에서 나이, 성별, 키, 체중, 최근 2주간의 수면 시 어려움, 수면 유지 어려움, 기상 시 어려움, 수면 패턴에 대한 만족도, 수면이 일상 기능에 미치는 영향 등 간단한 9개의 질문에 답하는 것만으로 만성불면증, 수면호흡장애, 수면호흡장애를 동반한 불면증의 위험도를 90%의 정확도로 예측할 수 있다. 가령, 슬립스 검사 결과 수면호흡장애 위험도가 50%라는 결과가 나왔다면, 실제 수면다원검사를 시행했을 때 수면호흡장애가 발견될 확률이 50%임을 의미한다.
제1 저자인 하석민 미국 MIT 박사과정생(前 IBS 의생명 수학 그룹 연구원)은 “미국 하버드대 연구팀도 AI 기반 수면 질환 검사 알고리즘을 개발한 바 있으나, 이 시스템은 목둘레, 혈압 등 쉽게 답하기 어려운 문항이 포함되어 있어 사용이 까다로웠다”며 “또한, 하버드대 연구팀의 시스템은 예측 정확도도 70% 정도에 그쳤다”고 말했다.
슬립스 사이트(www.sleep-math.com)를 통해 누구나 수면 질환 여부를 예측해볼 수 있다. 현재 본인의 상태를 기준으로 몸무게 변화나 나이가 듦에 따른 수면 질환 위험도 변화도 살펴볼 수 있다.
김재경 교수는 “이번 연구는 수학으로 우리가 직면한 건강 문제를 해결해보고자 하는 시도에서 시작됐고, 중요하지만 쉽게 간과할 수 있는 수면 질환에 기계 학습을 접목했다”며 “수면 질환 진단의 복잡한 과정을 줄인 만큼, 많은 사람이 슬립스를 통해 자신의 수면 건강을 알 수 있는 계기가 되길 바란다”고 말했다.
주은연 삼성서울병원 교수는 “슬립스는 간편한 수면 질환 자가 검진 시스템”이라며 “향후 건강검진 항목에 AI 기반 자가 검진 시스템을 포함한다면 잠재적인 수면 질환 환자들을 스크리닝하여 수면 질환으로 인해 발생하는 수많은 질병을 선제적으로 예방할 수 있을 것”이라고 말했다.
슬립스 개발 성과는 지난 9월 의료 건강 분야 국제학술지 ‘Journal of Medical Internet Research’에 실린 바 있다.
2023.12.14
조회수 4726
-
플라스틱 생산부터 생분해까지 친환경 기술 소개
플라스틱은 연간 약 4억 6천만 톤이 생산되며, 2060년에는 약 12억 3천만 톤이 생산될 것으로 예측되는 현대 사회에서 중요한 소재 중 하나다. 하지만 1950년부터 63억 톤 이상의 막대한 양의 플라스틱 폐기물이 발생했고, 이 중 1억 4천만 톤 이상의 플라스틱 폐기물이 수중 환경에 축적된 것으로 파악된다. 최근에는 미세플라스틱 오염의 심각성까지 대두되어 해양 생태계 및 인간 건강에 위험을 초래할 뿐만 아니라 지구의 이산화탄소 농도를 낮추는 데 중요한 역할을 하는 해양 플랑크톤의 활동을 저해해 지구 온난화를 더욱 악화시키고 있다.
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 미생물을 활용해 플라스틱을 생산하고, 폐플라스틱을 친환경적으로 처리하는 최신 기술을 총망라한 ‘미생물을 이용한 플라스틱의 지속 가능한 생산 및 분해’ 논문을 발표했다고 11일 밝혔다.
이러한 플라스틱 문제 해결을 위한 국제사회의 움직임으로 유엔을 중심으로 2024년까지 175개국이 참여해 플라스틱 오염 종식을 목표로 법적 협약을 체결하기로 하는 등 다양한 노력이 이뤄지고 있다. 지속 가능한 플라스틱 생산 및 처리를 위해 다양한 기술들이 개발되고 있는데, 그중 미생물을 이용한 생명공학 기술이 주목받고 있다.
미생물은 자연적으로 특정 화합물을 생산하거나 분해할 수 있는 능력이 있는데, 이러한 능력을 대사공학 및 효소공학 기술과 같은 생명공학 기술을 통해 극대화하여 화석원료 대신 재생 가능한 바이오매스 자원으로부터 플라스틱을 생산하고 폐플라스틱을 분해하는 기술 개발이 활발히 이루어지고 있다.
이에 연구팀은 플라스틱의 지속 가능한 생산과 분해에 관한 미생물 기반의 최신 기술들을 총망라하여 실질적으로 플라스틱 문제 해결에 어떻게 기여하는지 분석했고, 이를 토대로 기술들의 한계점, 전망 및 연구 방향을 제시해 플라스틱 순환경제 달성을 위한 청사진을 제공했다.
널리 사용되고 있는 폴리에틸렌(polyethylene, PE)과 같은 합성 플라스틱부터 자연환경에서 완전히 생분해되어 미세플라스틱 발생의 우려가 없는 미생물 유래 천연 고분자(polyhydroxyalkanoate, PHA) 등의 유망 바이오 플라스틱까지 다양한 플라스틱에 대한 미생물 기반 기술의 상용화 현황 및 최신 기술에 대해 논의했다. 또한, 이러한 플라스틱들을 미생물과 미생물이 가진 효소를 이용해 분해하는 기술과 분해 후 다른 유용화합물로 전환하는 업사이클링 기술도 소개해 미생물을 이용한 기술의 경쟁력 및 잠재력을 조명했다.
제1 저자인 KAIST 생명화학공학과 최소영 연구조교수는 “앞으로 미생물을 통해 만든 친환경 플라스틱을 우리 주위에서 더욱 더 쉽게 찾아볼 수 있을 것”이라고 말했으며, 교신저자인 이상엽 특훈교수는 “플라스틱을 더 지속가능하고 책임감 있게 사용해 환경을 보호하고 신플라스틱 산업을 통해 경제사회 발전을 동시에 이루는 것이 중요하며 이에 미생물 대사공학 기술의 활약이 기대된다”라고 밝혔다.
이번 논문은 네이처 마이크로바이올로지(Nature Microbiology) 온라인판에 지난달 30일 게재됐다.
※ 논문명 : Sustainable production and degradation of plastics using microbes
※ 저자 정보 : 최소영(KAIST, 공동 제1 저자), 이영준(KAIST, 공동 제1 저자), 유혜은(KAIST), 조인진(KAIST), 강민주(KAIST), 이상엽(KAIST, 교신저자) 총 6명
한편, 이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발 과제 및 미생물 세포공장 기반 신규 방향족 바이오플라스틱의 원스텝-원팟 생산 원천기술 개발 과제의 지원을 받아 수행됐다.
2023.12.11
조회수 5302
-
강한 빛에서 0.02초 내에 새로운 촉매를 합성하다
대면적의 빛을 활용하고 대기 중의 환경에서 0.02초 이내에 연료전지 등 차세대 에너지 저장 및 발전에 광범위하게 적용되는 고엔트로피 촉매 및 단일원자 촉매의 합성을 세계 최초로 구현했다.
우리 대학 전기및전자공학부 최성율 교수 연구팀과 신소재공학과 김일두 교수 연구팀이 공동연구를 통해 강한 빛을 다양한 탄소 기반 소재에 조사해, 0.02초 이내에 나노입자 촉매와 단일원자(single atom) 촉매를 진공 시설이 없는 대기 조건에서 합성하고 우수한 촉매 성능을 구현하는데 성공했다고 6일 밝혔다.
연구팀은 2022년 4월 제논 램프 빛을 조사해 금속산화물의 상(phase) 변화와 표면에 촉매 입자가 생성될 수 있음을 최초로 밝혔고 그 후속으로 소재의 광열효과를 유도하는 합성법에 대한 연구를 진행했다. 이에 초고온(1,800~3,000oC)과 빠른 승/하온 속도(105 oC/초)를 통해 기존의 합성법으로는 구현할 수 없는 촉매 입자를 합성하는 데 성공했다.
이번 기술은 대면적의 빛을 활용하고 대기 중의 환경에서 매우 빠른 시간(0.02초 이내)에 고엔트로피 촉매 및 단일원자 촉매의 합성을 세계 최초로 구현한 기술이다. 광열효과가 뛰어난 소재(탄소 나노섬유, 그래핀 산화물, 맥신(Mxene))에 다종 금속 염을 고르게 섞어주고 빛을 가하게 되면 초고온 및 매우 빠른 승/하온 속도를 기반으로 최대 9성분계의 합금 촉매를 합성할 수 있음을 밝혔다. 합금 촉매는 연료전지, 리튬-황전지, 공기 전지, 물 분해 수소 생산 등 저장 및 발전에 광범위하게 적용되며, 비싼 백금의 사용량을 획기적으로 줄이는데 유리하다.
연구팀은 광열효과를 통해 단일원자 촉매의 신규 합성법에도 성공했다. 그래핀 산화물에 멜라민 및 금속염을 동시에 혼합하여 빛을 조사하게 되면 단일원자 촉매가 결합된 질소 도핑 그래핀을 합성할 수 있음을 최초로 밝혔다. 백금, 코발트, 니켈 등의 다양한 단일원자 촉매가 고밀도로 결착되어 다양한 촉매 응용 분야에 활용할 수 있다.
최성율 교수와 김일두 교수는 "강한 빛을 소재에 짧게(0.02초 이내) 조사하는 간편한 합성기법을 통해 단일 원소 촉매부터 다성분계 금속 나노입자 촉매의 초고속, 대면적 합성을 가능하게 하는 새로운 촉매 합성 공정 플랫폼이 될 것으로 기대된다ˮ고 밝혔다. 특히, "매우 빠른 승/하온 속도를 기반으로 기존에 합성하기 어려웠던 고엔트로피 다성분계 촉매 입자를 대기 중 조건에서 균일하게 합성해 고성능 물 분해 촉매로 응용했다는 점에서 매우 의미있는 연구 결과이며, 응용 분야에 따라 촉매 원소의 크기와 조성을 자유롭게 조절해 제작할 수 있는 신개념 광 기반 복합 촉매 소재 합성 플랫폼을 구축했다ˮ고 밝혔다.
고엔트로피 촉매 제조 관련 연구는 공동 제1 저자인 차준회 박사(KAIST 전기및전자공학부, 現 SK하이닉스 미래기술연구원), 조수호 박사(KAIST 신소재, 現 나노펩 선임연구원), 김동하 박사(KAIST 신소재, 현 MIT 박사후 연구원, 한양대학교 ERICA 재료화학공학과 교수 임용)의 주도하에 진행됐으며, 최성율 교수(KAIST 전기및전자공학부), 김일두 교수(KAIST 신소재), 정지원 교수(KAIST 신소재, 現 울산대학교 신소재 교수)가 교신저자로 참여했다.
단일원자 촉매 제조 관련 연구는 공동 제1 저자인 김동하 박사와 차준회 박사의 주도하에 진행됐으며, 김일두 교수, 최성율 교수가 교신저자로 참여했다.
이번 연구 결과는 나노 분야의 권위적인 학술지인 `어드밴스드 매트리얼즈(Advanced Materials)' 11월호에 속표지 논문으로 선정되었으며, `에이씨에스 나노(ACS Nano)' 12월호에 속표지 논문으로 출간 예정이다.
한편 연구는 한국연구재단 중견연구자지원 사업, 과학기술정보통신부와 산업통상자원부 사업, 한국연구재단 미래소재디스커버리 사업의 지원, 과학기술정보통신부 반도체-이차전지 인터페이싱(InterFacing) 플랫폼 기술개발사업을 받아 수행됐다.
2023.12.06
조회수 5883
-
극한 호우는 지구온난화 때문이었다
과거 60여 년간 동아시아지역에 호우 강도가 약 17% 증가했고 주된 원인이 인간 활동에 의한 지구온난화의 가속화임을 세계 최초로 입증하는 데 성공했다.
우리 대학 문술미래전략대학원(건설및환경공학과, 녹색성장및지속가능대학원 겸임) 김형준 교수와 인문사회연구소 문수연 박사가 한·미·일 국제 공동 연구를 통해 과거 60여 년간 관측된 동아시아 지역의 기상 전선에 의한 호우 강도의 증가가 인간 활동에 의한 기후변화의 영향이었음을 지구 메타버스 기술을 이용해 처음으로 증명했다고 5일 밝혔다.
여름 호우는 농업 및 산업에 큰 영향을 미치며 홍수나 산사태 등의 재해를 일으켜 지역의 생태계에도 영향을 주는 등 인간 사회 있어서 커다란 위협 중 하나라고 할 수 있다. 여름 호우의 강도가 과거 몇십 년간 변화돼 온 사실은 세계 각지에서 보고됐다. 그러나 동아시아의 여름 호우는 태풍, 온대 저기압, 전선과 같은 다양한 프로세스에 기인하며, 여름 호우의 40% 이상을 차지하는 전선이 야기하는 호우에 관한 연구는 아직 미흡하다. 또한, 호우는 기후 시스템의 자연 변동 혹은 우연성에 의한 영향 또한 존재하기 때문에 인간 활동에 의한 온난화가 전선 유래의 호우 강도에 어느 정도 영향을 주고 있는지는 아직 밝혀지지 않고 있다.
KAIST, 동경대, 동경공업대, 전남대, GIST, 유타주립대 등 한·미·일 8개 기관으로 구성된 국제 공동연구팀은 동아시아의 기상 전선에 의한 호우 강도를 과거 약 60년간 관측 데이터로 확인한 결과 중국 남동부의 연안 영역부터 한반도 그리고 일본에 걸쳐 호우의 강도가 약 17% 증가한 사실을 발견했다. 연구팀은 이러한 변화의 원인을 밝히기 위해 인간 활동에 의한 온실가스의 배출이 있는 지구와 그렇지 않은 지구를 시뮬레이션한 지구 메타버스 실험을 이용해 온실가스 배출에 의해 호우 강도가 약 6% 강화됐으며, 발견된 변화가 인간 활동에 의한 온난화의 영향을 배제하고서는 설명할 수 없음을 보이는 데 세계 최초로 성공했다.
교신 저자인 김형준 교수는 "이번 연구는 동아시아에서 기상 전선에 의한 호우의 강도가 최근 반세기에 걸쳐 유의미하게 증가했음을 밝히고 그러한 변화에 이미 인류의 흔적이 뚜렷하게 남겨져 있음을 증명한다ˮ며, "이는 기후변화의 영향을 이해하는 데 중요한 단서가 되며 동시에 탄소중립을 성공적으로 달성하더라도 필연적으로 진행되는 가까운 미래의 기후변화에 대해 효율적으로 적응하기 위해 필수 불가결한 정보라고 할 수 있다ˮ고 말했다.
이번 연구 결과는 국제 학술지 `사이언스 어드밴시스(Science Advances)'에 11월 24일 출판됐다. (논문명: Anthropogenic warming induced intensification of summer monsoon frontal precipitation over East Asia)
한편 이번 연구는 한국연구재단 해외우수과학자유치사업(BP+)와 인류세연구센터의 지원을 받아 수행됐다.
2023.12.05
조회수 3831
-
K-약용식물에서 세 단계만에 분자연금술 뚝딱
K-약용식물 추출물에서 단 세 단계 만에 퇴행성 신경질환 등 난치성 신경질환 치료제로 개발가능한 물질인 ‘수프라니딘 B’를 합성하는 ‘분자 연금술’에 성공하여 화제다.
우리 대학 화학과 한순규 교수 연구팀이 국내 자생 ‘광대싸리’에 극미량 존재하는 고부가가치 천연물을 생체모방 전략을 통해 쉽게 얻을 수 있는 물질로부터 간단하게 합성하는 방법을 개발했다고 1일 밝혔다.
`세큐리네가 알칼로이드'는 국내 자생 약용식물인 ‘광대싸리’에서 발견되는 천연물 군으로, 항암 및 신경돌기 성장 촉진 등 다양한 약리 활성을 보여 수십 년간 합성화학계의 관심을 받아왔다.
이들 물질 군에는 기본 골격으로부터 산화되거나 사슬처럼 연결된 형태를 갖는 100여 종의 초복잡 천연물들이 존재하는데, 상대적으로 간단한 기본 골격체의 합성은 잘 정립되어 있었던 반면, 초복잡 화합물의 합성은 난제로 남아 있었다.
그 중 `수프라니딘(suffranidine) B'도 초복잡 세큐리네가 천연물 중의 하나로, 신경세포의 신경돌기 성장을 촉진해, 퇴행성 신경질환이나 신경 절단 등 현재는 난치성인 신경질환의 치료제로 기대되는 물질이다. 그러나 식물 1 킬로그램(kg)당 추출량이 0.4 밀리그램(mg)에 그칠 정도로 극히 적고 정제 또한 어려워 추가적인 연구에 제한점이 많았다.
한 교수 연구팀은 광대싸리에서 쉽게 대량으로 추출할 수 있는 기본골격을 갖는 세큐리네가 천연물인 알로세큐리닌(allosecurinine)과 시중에서 값싸게 구할 수 있는 누룩산(kojic acid) 유래 물질로부터 단 세 단계 만에 수프라니딘 B를 합성하는 방법을 개발했다.
이번 연구는 수프라니딘 B의 세계 최초 합성으로 쉽게 구할 수 있는 물질로부터 고부가가치 화합물을 간단하게 만들어 낸 일종의 `분자 연금술'이라 볼 수 있다. 수프라니딘 B와 같이 복잡한 천연물을 이렇게 짧은 과정으로 합성해 낸 사례는 몹시 드물다.
생체모방 합성(biomimetic synthesis)은 자연이 천연물을 합성하는 과정(생합성)을 모방해 복잡한 천연물을 합성하는 연구 방식이다. 합성 과정에서 생합성 경로에 존재할 것으로 여겨지는 중간체들의 화학적 반응성을 탐구할 수 있으므로, 해당 물질의 생합성 경로를 더욱 깊게 이해할 기회를 제공한다. 세큐리네가 알칼로이드는 1956년 최초로 발견되었으나 현재까지도 생합성 경로가 밝혀지지 않은 상태다.
한 교수는 "이번 연구로 수프라니딘 B를 간단하게 생산할 수 있게 되었을 뿐 아니라 초복잡 세큐리네가 천연물의 생합성에 대한 이해 또한 높일 수 있었다ˮ며 "고부가가치 국내 자생 약용식물을 합성화학적으로 또는 합성생물학적으로 생산할 수 있는 학문적 토대를 마련했다ˮ고 밝혔다.
KAIST 화학과 강규민 석박사통합과정 학생이 제1 저자로 참여한 이번 연구는 화학 분야 저명 국제 학술지인 `미국화학회지(Journal of the American Chemical Society)' 지난 11월 2일 자에 게재됐다. (논문명 : Synthesis of Suffranidine B)
한편 이번 연구는 KAIST의 도약연구(UP) 및 한국연구재단의 기초연구사업(중견연구)등의 지원을 통해 이뤄졌다.
2023.12.01
조회수 4054
-
스파이더맨 슈트처럼 내 몸에 착 맞춰지는 옷감형 웨어러블 햅틱 개발
우리 대학 기계공학과 오일권 교수 연구팀이 형상기억합금 와이어를 오그제틱(auxetic) 메타구조로 매듭지어 형상 적응이 가능한 옷감 형태의 착용형 '햅틱(haptic) 인터페이스'를 개발했다고 28일 밝혔다.
착용형 햅틱 인터페이스 기술은 시·청각 기반의 플랫폼의 한계를 벗어나, 피부 표면으로 전해지는 직관적인 촉감으로 메타버스 속 상호작용 몰입도를 높이는 역할을 한다.
하지만 일반적인 햅틱 인터페이스는 피부에 부착하거나 별도의 고정 장치를 착용하는 착용(부착)형으로, 이러한 햅틱 인터페이스는 장시간 사용 시 피부 발진의 위험과 고정 방식은 일상 움직임에서 불편함을 초래할 수 있다. 또 수십 개의 촉각 전달 소자를 장착해 촉감을 모방하는 기존의 제작 방식 역시 장치의 무게·부피 증가로 이어지는 한계를 보이고 있다.
우선 연구팀은 가볍고 편하게 착용할 수 있는 햅틱 인터페이스 개발을 위해 형상기억합금 와이어를 핵심 소재로 선택했다. 형상기억합금 와이어란 상온에서 모양이 쉽게 변형되고, 특정 온도에 도달하면 미리 기억된 형태로 되돌아가는 특징을 갖는 형상기억합금을 철사처럼 가늘고 길게 제작한 것이다. 이러한 형상기억합금 와이어를 기존의 천 제작 방식을 활용해 매듭지어 옷감처럼 제작하는 방식을 활용하였다. 특히, 연구팀은 형상기억합금 와이어를 오그제틱(auxetic) 구조로 매듭지어, 일반 구조에서는 볼 수 없는 3D 방향으로 구조 전체가 동시에 수축 및 이완하는 특성을 구현해 내었고, 이를 통해 착용자의 신체 형상에 순응하며 사이즈가 자동으로 조절되는 옷감형 액추에이터를 개발했다.
또한 연구팀은 8개의 영역을 개별 수축 제어할 수 있도록 설계해 총 아홉 가지 방향과 타이밍에 대한 정보를 사용자에게 촉감 피드백으로 전달할 수 있게 제작했다.
예로 팔목에 착용 시, 사용자는 방향 및 타이밍에 관한 정보를 촉각적으로 인지할 수 있고, 반면 팔꿈치에 착용할 때는 옷감형 액추에이터의 가변강성 기능을 활용해 팔꿈치의 굽힘각도에 따른 피드백을 제공하는 멀티모달(두 가지 이상의 피드백 형태로 정보를 전달) 햅틱 인터페이스로서 개발했다.
이처럼 옷감형 액추에이터를 팔목에 착용한 사용자가 가상현실 속 모빌리티 로봇 주변의 위치정보를 파악하고, 시각과 청각 정보가 제한될 때 장애물을 피해 로봇을 안정적으로 주행하는 실증에도 성공했다.
오일권 교수는 이번 연구성과를 통한 실용화 시 활용에 대해 "착용형 햅틱 인터페이스는 촉각 정보를 활용한 로봇, 무인기 제어와 메타버스가 접목된 의료·교육 등에도 활용할 수 있다"고 말했다.
한편, 이번 연구는 과학기술정보통신부(장관 이종호)와 한국연구재단이 추진하는 리더연구자(창의연구) 지원 사업으로 수행됐다. 연구 성과는 첨단 소재 분야 국제학술지 <어드밴스드 머티리얼스(Advanced Materials)>에 9월 19일 게재됐고, 연구의 우수성을 인정받아 학술지 표지 논문으로 선정됐다. (논문명: Easy-To-Wear Auxetic SMA Knot-Architecture for Spatiotemporal and Multimodal Haptic Feedbacks)
2023.11.30
조회수 4185
-
독립적으로 더 스마트해진 ‘도커SSD’ 개발
정보를 저장하는 솔리드 스테이트 드라이브(Solid-Sate Drive, SSD)가 컴퓨터 없이도 데이터 처리가 가능한 독립 서버로 운영이 가능해지며 편리성이 극대화되고 데이터의 탄소 배출량도 획기적으로 감소시킬 수 있는 새로운 형태의 스마트 SSD로 개발됐다.
우리 대학 전기및전자공학부 정명수 교수 연구팀(컴퓨터 아키텍처 및 메모리 시스템 연구실)이 물리적 장치의 실행이 아닌 가상으로 데이터 처리와 운영이 되는 `도커(Docker)' 개념을 적용한 새로운 고성능·저전력 메모리 (PIM, Processing-In-Memory) 모델 중 하나인 `도커SSD'를 개발했다고 27일 밝혔다.
스마트 SSD는 여러 가지 데이터를 처리하는 프로그램들을 데이터가 실제 존재하는 스토리지 근처에서 실행할 수 있게 함으로써 데이터 이동에 불필요한 에너지 및 전력 소모를 줄이고 고성능 결과를 얻게 하는 기술로 오랫동안 다양한 곳에 적용을 시도해 왔다. 하지만 기존 데이터 처리 프로그램을 SSD 제조사별로 그리고 장치가 제공하는 환경별로 모두 수정하고 새로 만들어야 하는 문제 때문에 스마트 SSD를 다양한 환경과 데이터 처리 응용에 적용하는 것에 한계가 존재했다. 이러한 한계를 극복하고자 KAIST 연구팀은 스마트 SSD의 제조사나 장치 환경에 관계 없이 현존하는 여러 가지 프로그램들을 그대로 스토리지에 이식하여 실행할 수 있는 도커SSD를 개발하였다.
이를 위해 정명수 교수 연구팀은 사용자들에게 데이터 처리 기술 중 편의성을 제공하는 방법으로 `컨테이너'를 주목했다. 컨테이너는 응용 프로그램과 해당 프로그램 실행에 필요한 라이브러리를 모두 포함한 소프트웨어 패키지로, 외부의 환경에 구애받지 않고, 컨테이너 내부적으로 독립적인 실행 환경을 운용할 수 있게 해준다.
연구팀이 개발한 도커SSD는 가상화 운영체제 환경인 *도커(Docker)를 스토리지 내부에서 실행할 수 있는 특허 기술을 적용해 호스트로부터 요청받은 컨테이너 단위의 작업을 처리한다. 사용자들은 메모리/스토리지 제조사에 영향을 받지 않고 다양한 응용 프로그램을 스토리지 내부에서 실행할 수 있다. 또한, 외부와 독립적인 실행 환경을 제공하는 컨테이너의 특성 덕분에, 사용자들이 기존 응용 프로그램의 소스 코드를 수정할 필요조차 없어져 사용자 편의성이 극대화된다.
☞ 도커(Docker): 리눅스 컨테이너를 만들고 사용할 수 있도록 하는 컨테이너화 기술
연구팀은 일반적으로 SSD 장치에 접근하기 위해 사용되는 스토리지 프로토콜과, 도커 소프트웨어 동작의 기반이 되는 네트워크 관련 프로토콜이 서로 호환되지 않는다는 점을 극복하기 위해 스토리지 프로토콜을 통해 네트워크 관련 메시지를 전송할 수 있는 새로운 인터페이스를 독자 개발했다. 또한, 컨테이너 및 도커를 실행하기 위해서 기존 운영체제를 경량화하여 도커SSD 내부에 통합했다. 마지막으로, 스토리지에 내재된 저사양 프로세서를 활용하여 작업을 처리할 경우 성능이 저하될 수 있다는 점을 착안하여 자체 제작한 저전력 하드웨어 가속 모듈을 활용하여 네트워크 및 입출력 관련 동작을 가속함으로써 문제를 해결했다.
연구팀은 도커SSD에 적용한 운영체제 수준 가상화의 실효성 검증을 통해 현재 학계에서 가장 자주 사용되는 스토리지 기반 모델보다도 데이터를 2배 빠르게 처리하면서 전력 소모 또한 약 2배 감소시킴을 확인했다.
정명수 교수는 "불필요한 데이터 이동을 최소화하여 빠르면서 에너지 절약에 최적화된, 동시에 사용자 입장에서 편리하면서도 우수한 호환성을 가진 메모리 모델을 확보했다ˮ며 "고성능·저전력 메모리 모델인 도커SSD는 빠르게 확장하고 있는 국내·외 데이터센터 운영 기업/기관에 실용화되어 탄소중립에 기여할 수 있을 것ˮ이라 말했다.
이번 연구는 스코틀랜드 에든버러에서 오는 2024년 3월에 열릴 컴퓨터 구조 분야 최우수 학술대회인 `국제 고성능 컴퓨터 구조 학회(IEEE International Symposium on High Performance Computer Architecture, HPCA)'에 관련 논문(논문명: DockerSSD: Containerized In-Storage Processing and Hardware Acceleration for Computational SSDs)으로 발표될 예정이다.
한편 해당 연구는 KAIST 교원창업 회사인 파네시아(https://panmnesia.com)와 정보통신기획평가원등의 연구 지원을 받아 진행됐다.
2023.11.27
조회수 3819
-
숨겨진 효소 쏙쏙 찾아내는 인공지능 개발
대장균은 가장 많이 연구된 생명체 중 하나에 해당되지만 아직 대장균을 구성한 단백질 30%의 기능에 대해 명확하게 밝혀지지 않았다. 이에 대해 인공지능을 활용하여 아직 명확하게 밝혀진 바 없던 단백질에서 464종의 효소를 발견하였으며, 이 중 3종의 단백질의 예측된 기능을 시험관 내 효소 분석 방법을 통해 검증하는데 성공하였다.
우리 대학 생명화학공학과 이상엽 특훈교수와 캘리포니아대학교 샌디에이고(UCSD) 생명공학과 버나드 펄슨(Bernhard Palsson) 교수 공동연구팀이 단백질 서열을 활용, 해당 단백질의 효소 기능을 예측할 수 있는 인공지능, `딥 EC 트랜스포머(DeepECtransformer)'를 개발해 빠르고 정확하게 효소 기능을 파악할 수 있는 예측 시스템을 구축했다고 24일 밝혔다.
효소는 생물학적 반응을 촉매하는 단백질로서, 생명체 내 존재하는 다양한 화학 반응과 이에 따라 결정되는 생명체의 대사 특성을 파악하기 위해서는 각 효소의 기능을 이해하는 것이 필수적이다. EC 번호(효소 고유 번호, Enzyme Commission number)는 국제생화학 및 분자 생물학연맹 (International Union of Biochemistry and Molecular Biology, IUBMB)가 고안한 효소 기능 분류 체계로서, 다양한 유기체의 대사 특성을 이해하기 위해선 게놈 서열에서 존재하는 효소의 종류와 EC 번호를 빠르게 분석할 수 있는 기술 개발이 필요하다.
단백질의 기능 및 효소 기능 예측을 위해 인공지능을 활용하는 다양한 예측 시스템 또한 보고됐지만, 인공지능의 추론 과정을 직접 확인할 수 없는 블랙박스(black box)의 특징을 가졌거나, 효소 서열 내 아미노산 잔기(최소 단위) 수준으로 해석하지 못하는 문제가 있었다.
공동연구팀은 심층학습 기법과 단백질 상동성 분석 모듈을 활용해 주어진 단백질 서열의 효소 기능을 예측하는 인공지능 딥 EC 트랜스포머(DeepECtransformer)를 개발했다. 연구팀은 이번 연구에서 더 다양한 효소 기능을 정확하게 예측할 수 있도록 단백질 서열 전체 문맥에서 효소 기능에 중요한 정보를 추출하였고, 이를 통해 효소의 EC 번호를 정확하게 예측할 수 있었다. 개발된 인공지능은 총 5,360종류의 EC 번호를 예측할 수 있었다.
공동연구팀은 나아가 딥 EC 트랜스포머의 인공신경망 내 정보 흐름을 분석하여 인공지능이 추론 과정에서 효소 기능에 중요한 활성 부위나 보조 인자 결합 부위 정보를 활용하고 있음을 밝혀냈다. 이처럼 인공지능의 블랙박스를 해석함으로써 인공지능이 학습 과정에서 스스로 효소 기능에 중요한 특징을 파악하고 있음을 연구팀은 확인했다.
이번 논문의 제1 저자인 우리 대학 김기배 박사과정생은 “이번에 개발한 예측 시스템을 활용해 아직 밝혀진 적 없던 효소의 기능을 새롭게 예측하고 실험으로 검증할 수 있었다”고 말했다. 그는 또한 “딥 EC 트랜스포머를 활용해 생명체 내 밝혀지지 않았던 효소를 파악함으로써 유용 화합물을 생합성하기 위해 필요한 효소나 플라스틱을 생분해하기 위해 필요한 효소 등 다양한 대사 과정을 새롭게 밝혀낼 수 있을 것”이라고 덧붙였다.
또한 이상엽 특훈교수는 “효소 기능을 빠르고 정확하게 예측하는 딥 EC 트랜스포머는 기능 유전체학의 핵심 기술로서 시스템 수준에서 전체 효소들의 기능들을 분석할 수 있게 한다”며 “이를 활용해 모든 효소 정보를 포함한 대사 네트워크를 기반으로 친환경 미생물 공장 개발을 수행할 수 있을 것”이라고 밝혔다.
생명화학공학과 김기배 박사과정이 참여한 이번 논문은 국제 학술지 네이처(Nature) 誌가 발행하는 `네이처 커뮤니케이션즈(Nature Communications)'에 동료 심사를 거쳐 11월 14일 字 게재됐다.
※ 논문명 : 트랜스포머 레이어와 딥러닝을 사용하여 효소 인코딩 유전자의 기능적 주석 달기 (Functional annotation of enzyme-encoding genes using deep learning with transformer layers)
※ 저자 정보 : 김기배 (한국과학기술원, 제1 저자), 김지연 (한국과학기술원, 제2 저자), 이종언 (한국과학기술원, 제3 저자), Charles J. Norsigian (UCSD, 제4 저자), Bernhard O. Palsson (UCSD, 제5 저자) 및 이상엽(한국과학기술원, 교신저자) 포함 총 6 명
한편, 이번 연구는 과기정통부가 지원하는 ‘석유대체 친환경 화학기술개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발’ 과제(과제책임자 KAIST 이상엽 특훈교수)의 지원을 받아 수행됐다.
2023.11.24
조회수 4301