-
물리학 난제였던 유전율 텐서 측정 구현
우리 대학 물리학과 박용근 교수 연구팀이 기존에는 이론조차 존재하지 않았던 물리학 난제 중 하나인 유전율 텐서의 3차원 단층 촬영 방법을 개발했다고 4일 밝혔다.
유전율 텐서는 빛과 물질의 상호작용을 근본적으로 기술하는, 물질의 광학적 이방성(異方性, 방향에 따라 달라 보이는 특성)을 정량적으로 표현할 수 있는 중요한 물리량이다. 유전율은 고등학교 물리학에서도 다루는 기본적인 개념이지만, 지금까지 3차원 유전율 텐서를 실험적으로 측정할 수 있는 방법이 존재하지 않았다. 병리학, 재료과학, 연성물질 과학, 또는 디스플레이 등 다양한 분야에서 갖는 중요성에도 불구하고, 직접적으로 측정할 방법이 없다는 한계가 있었다. 현재까지도 3차원 광학적 이방성은 2차원 편광현미경 측정 및 시뮬레이션을 통해 부정확하게 추정할 수밖에 없다.
3차원 유전율 텐서의 측정은 물리학, 광학 분야의 오래된 난제 중 하나였다. 1967년 광학적 이방성을 무시하고 유전율 텐서를 3차원 굴절률 수치로 단순화하여 측정하는 기술이 발명돼 지난 50여 년간 빠르게 성장하고 상용화까지 성공했지만, 여전히 3차원 유전율 텐서를 측정하는 방법은 개발되지 못했다.
여태껏 이 문제가 풀리지 못했던 까닭은, 3개의 고유치를 가지는 유전율 텐서를 측정하기에는 빛의 편광 방향 자유도가 2개로 제한되기 때문이다.
재료과학 분야 최고 권위지인 `네이처 머티리얼즈(Nature Materials, IF 43.84)'에 3일 발표된 이번 연구(논문명: Tomographic measurements of dielectric tensors at optical frequency)에서 연구팀은 이러한 한계를 극복하고 광학적 이방성 구조의 3차원 유전율 텐서 단층 촬영 이론을 개발해 구현하는 데 성공했다.
기존의 고정관념에서 벗어나, 빛의 방향을 살짝 틀어주어 중첩된 정보를 활용하면, 편광 방향 자유도를 3개로 늘려서 유전율 텐서의 3개 고유치를 모두 구할 수 있다는 점에 착안한 것이 연구진의 핵심 아이디어다. 이렇게 3개의 편광 자유도를 제어하는 것과 동시에, 병원에서 사용하는 엑스레이, 컴퓨터단층(CT) 촬영처럼, 여러 각도에서 광학적 이방성 구조를 홀로그래피 현미경을 개발하여 촬영함으로써 3차원 유전율 텐서를 직접적으로 측정했다.
연구팀은 개발된 방법을 이용해 뒤틀린 네마틱 (twisted nematic) 액정과 같은 잘 알려진 3차원 광학적 이방체의 3차원 유전율 텐서를 성공적으로 측정함으로써 기술의 구현을 입증했다. 더 나아가 열적 비평형 상태로 성장-소멸-융합하는 액정 동역학, 반복되는 위상학적 특이점 구조의 액정 네트워크 등 기존의 방법들로 추정하기 어려웠던 3차원 유전율 텐서를 실험적으로 최초 측정하는 성과를 거뒀다.
제1 저자인 물리학과 신승우 박사는 "지금까지 직접 볼 수 없던 유전율 텐서를 실제로 측정할 수 있는 방법론을 처음으로 개발한 것이 큰 의미ˮ라며 "액정, 카이랄 물질, 암조직과 같은 병리 조직 내부의 콜라겐 파이버 등과 같은 광학적 방향성을 보이는 다양한 물질들의 3차원 구조를 정량적이고 비침습적으로 직접 관측할 수 있기에 여러 분야에 범용적, 필수적으로 사용할 수 있는 도구로 기대한다ˮ라고 말했다.
이번 연구는 박용근 교수 연구팀의 기술 개발 이외에도 다학제적 접근을 통해 결실을 볼 수 있었다. UNIST 물리학과 정준우 교수, 우리 대학 생명화학공학과 김신현 교수, 우리 대학 화학과 윤동기 교수 연구팀들이 오랜 기간 발전시켜온 액정 구조체 제작 기술 덕분에, 다양한 액정 구조체를 통해 기술의 실험적 검증을 효과적으로 진행할 수 있었다.
한편 이번 연구는 과학기술정보통신부의 정보통신기획평가원, 한국연구재단 창의연구사업 및 G-CORE 사업의 지원을 받아 수행됐다.
2022.03.04
조회수 8801
-
기후 변화 예측 정확도 개선 기술 개발
우리 대학 문술미래전략대학원(건설및환경공학과 겸임) 김형준 교수가 국제 공동 연구를 통해 21세기 후반의 전 지구 강수량변화에 대한 기후모델의 예측 불확실성을 줄이는 데 처음으로 성공했다고 28일 밝혔다.
전 지구의 평균 기온이 미래에 어느 정도 상승할지에 대한 예측은 보통 복수의 기후모델에 의해 이루어지며 각 기후모델 사이에는 무시할 수 없는 편차가 존재한다. 온도 상승 예측의 불확실성을 줄이기 위한 연구는 성공적으로 수행돼왔으나 강수량 변화 예측의 불확실성을 감소시키는 연구는 아직 보고되지 않고 있다.
KAIST, 일본 국립환경연구소, 일본 동경대학교로 구성된 국제 공동 연구팀은 67개의 기후모델에 의한 기온과 강수량의 시뮬레이션 결과를 과거의 관측자료와 비교함으로써 강수량변화 예측의 불확실성을 줄이는 데 세계 최초로 성공해 그 결과를 국제 학술지 `네이처 (Nature)' 2월 23일 판에 출판됐다. (논문명: Emergent constraints on future precipitation changes; doi.org/10.1038/s41586-021-04310-8)
지금까지 강수량변화 예측의 불확실성 개선이 어려웠던 가장 큰 이유로서 과거의 강수량변화에 온실가스와 대기오염물질인 에어로졸이 함께 작용했음을 들 수 있다. 과거에는 두 요인이 함께 증가했으나 그와 달리 미래에는 적극적인 대기오염 대책에 의한 에어로졸의 급격한 감소에 따라 온실가스의 증가만이 지배적으로 될 것이기 때문이다.
다시 말해 미래의 강수량 변화는 주로 온실가스 농도증가로 설명할 수 있지만, 이는 과거의 메커니즘과 다르므로 관측자료로부터 미래 예측의 불확실성 저감을 위한 정보를 얻는 것이 어려웠다고 할 수 있다.
연구팀은 세계평균 에어로졸 배출량이 거의 변하지 않는 기간(1980~2014년) 동안 모델과 관측의 트렌드를 비교함으로써 온실가스 농도증가에 대한 기후 응답의 신뢰성을 평가할 수 있다고 가정했다. 중간 정도의 온실가스 배출 시나리오(SSP-RCP 245) 에 있어서, 67개의 기후모델이 19세기 후반부터 21세기 후반에 강수량이 1.9-6.2% 증가한다고 예측했으나 각 기후모델의 온실가스에 대한 기후 응답 신뢰성을 고려함으로써 강수량증가의 예측 폭의 상한(6.2%)을 5.2-5.7%까지 감소시킬 수 있었으며 예측의 분산 또한 8-30% 줄이는 것이 가능했다.
공동 저자인 김형준 교수는 "이번 연구를 통해 기온뿐만 아니라 강수량에 대한 기후변화의 예측 정확도를 개선할 수 있게 됐다. 이로써 더욱 신뢰도 높은 기후변화 영향평가와 효율적인 기후변화 대응 및 적응 관련 정책 수립에 이바지할 수 있을 것이라 기대된다ˮ고 말했다.
한편 이번 연구는 한국연구재단 해외우수과학자유치사업(BP+)의 지원을 받아 수행됐다.
2022.02.28
조회수 8775
-
전기화학 분야의 오랜 난제인 전기 이중층 구조 규명
우리 대학 화학과 김형준 교수 연구팀이 GIST 신소재공학부 최창혁 교수 연구팀과 공동 연구를 통해 전기화학 분야의 오랜 난제 중 하나인 전기 이중층 구조를 이론적으로 규명하는 데 성공했다고 27일 밝혔다.
태양광 발전 등 친환경적으로 생산된 전기를 화학연료의 형태로 변환 및 저장하는 기술은 현재 인류가 직면하고 있는 에너지-환경 문제를 해결할 수 있는 가장 효율적인 미래전략이다. 2019년 리튬이온 배터리의 노벨 화학상 수상에서도 볼 수 있듯이, 전기화학 기술은 이러한 지속 가능한 탄소 중립 사회의 구축에 있어 가장 중요한 코어 기술로 여겨진다. 그러나 전기화학 분야에서 교과서에도 등장하는 100년 가까운 오래된 난제 중 하나가 있는데, 이는 바로 `전기 이중층'이라 불리는 특별한 액체 구조를 밝혀내는 것이다.
전기 이중층은 전기를 가한 금속 전극 주변에 액체 속의 이온이 쌓이면서 생성되는 특이한 층 구조를 의미한다. 이 구조적 특성에 따라 에너지 변환/저장 성능이 결정되기 때문에, 전기 이중층의 구조를 밝히려는 노력이 오랫동안 이어져 왔다. 그러나 전기 이중층은 금속 전극과 액체 전해질 사이 계면에 파묻혀 생성되는 나노 크기 정도 공간 속, 물과 이온들의 복잡한 배열을 가지는 구조이기 때문에 이를 직접 관측하기란 거의 불가능에 가까웠으며 지난 수십 년간 난제의 풀이에 대한 뚜렷한 진보를 이룰 수 없었다.
김형준 교수 연구팀은 컴퓨터 속 디지털 세상에 전기 이중층을 구현해 이러한 실험적 한계를 돌파하고자 했다. 양자 역학 및 분자동역학에 기반한 높은 정확도의 컴퓨터 시뮬레이션 방법을 개발해 그동안 베일에 싸여있던 전기 이중층 구조를 규명하는 데 성공했다. 이러한 가상공간에서의 결과는 GIST 최창혁 교수 연구팀이 실제로 실험에서 측정한 전기 이중층의 물리적 특성을 정확하게 예측할 수 있었다. 더 나아가 이러한 지식의 진보를 바탕으로, `주인-손님 화학' (특정 `손님' 분자만을 선택적으로 받아들이는 `주인' 분자의 특이한 화학적 성질을 의미)이라는 특별한 화학 반응을 활용해 전기 이중층 구조를 실제로 제어할 수 있는 전략을 도출했으며, 이를 통해 탄소 저감에 중요한 전기화학적 이산화탄소의 연료화 반응 효율 제어에 성공했다.
연구진은 "이번 연구를 통해 전기화학 분야의 오래된 난제인 전기 이중층 구조를 규명하는 데 성공했을 뿐만 아니라, 궁극적으로 이를 제어해 친환경 전기 에너지의 변환 및 저장 성능을 획기적으로 높일 가능성에 첫 단추를 끼웠다ˮ며, 이어 "이번 연구를 시발점으로 연료전지, 배터리, 질소 고정화 등 인류의 생존에 꼭 필요한 신 전기화학 기술 개발을 위한 연구를 지속하겠다ˮ고 소감을 밝혔다.
우리 대학 화학과 신승재 박사과정 학생과 GIST 신소재공학부 김동현, 배근수 박사과정 학생이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)' 에 1월 10일 字 게재됐다. (논문명: On the importance of the electric double layer structure in aqueous electrocatalysis)
한편 이번 연구는 삼성전자 미래기술육성사업 및 한국연구재단(NRF)의 지원으로 진행됐다.
2022.01.27
조회수 12031
-
광학 칩과 광섬유로 초안정 마이크로파 발생 기술 개발
우리 대학 기계공학과 김정원 교수와 물리학과 이한석 교수 공동연구팀이 광학 칩과 광섬유를 이용해 손바닥만 한 작은 장치로부터 2조분의 1(5×10-13) 수준의 주파수 안정도를 가지는 초안정 마이크로파를 발생하는 기술을 개발했다고 26일 밝혔다.
이 새로운 기술을 이용하면 기존의 마이크로파 발생 기술들보다 월등하게 우수한 위상잡음과 주파수 안정도의 마이크로파를 핸드폰 크기 면적의 작은 장치로부터 생성할 수 있어, 향후 5G/6G 통신, 전파망원경을 이용한 천체 관측, 군용 레이더, 휴대용 양자 센서 및 초고속 신호 분석 기술 등의 다양한 분야에서 획기적인 성능 향상이 가능하다.
우리 대학 기계공학과 권도현 박사(現 한국표준과학연구원)와 나노과학기술대학원 정동인 박사가 공동 제1 저자로 참여한 공동연구팀의 이번 논문은 국제학술지 `네이처 커뮤니케이션즈(Nature Communications)' 1월 19일 字에 게재됐다. (논문명: Ultrastable microwave and soliton-pulse generation from fibre-photonic-stabilized microcombs)
최근 초소형 마이크로공진기(microresonator)를 이용해 광 펄스를 생성하는 마이크로콤(micro-comb) 기술이 급격하게 발전하고 있다. 마이크로콤은 광 펄스가 나오는 속도를 수십 기가헤르츠(GHz, 1초에 10억 번 진동)에서 테라헤르츠(THz, 1초에 1조 번 진동)까지 높일 수 있어 고주파 마이크로파(microwave)나 밀리미터파(millimeter-wave) 생성이 쉽고 시스템의 소형화가 가능해 다양한 정보통신기술 시스템의 대역폭 향상과 성능 개선에 핵심적인 역할을 할 것으로 기대되고 있다.
마이크로콤은 이론적으로 펨토초(femtosecond, 10-15초=1,000조분의 1초) 수준의 펄스 간 시간 오차를 가지지만, 소형 소자의 특성상 주변 환경에 의해 쉽게 변해 장시간 그 성능을 유지하는 데에 어려움이 있었다. 이를 해결하기 위해 마이크로콤을 기계적으로 안정한 장치에 주파수 잠금해 안정도를 향상할 수 있으나, 지금까지는 이러한 안정화 장치가 매우 복잡하고 진동에 민감하며 부피가 커서 초소형 마이크로콤이 가지는 장점을 살릴 수 없고 실험실 밖 응용에 활용할 수 없었던 문제가 있었다.
연구팀은 이 문제를 해결하기 위해 광섬유를 이용해 마이크로콤의 주파수를 안정화하는 기술을 개발했다. 1km 길이의 광섬유는 열 기계적(thermomechanical) 잡음 한계에 의한 이론적인 길이 안정도가 1,000조분의 1 수준으로 매우 우수하면서도, 부피가 작고 매우 가벼우면서 가격도 저렴한 장점이 있다. 연구팀은 이러한 광섬유 기반의 안정화 장치를 108 mm × 73 mm × 54 mm 크기로 구현할 수 있었다.
그 결과 생성된 22-기가헤르츠(GHz) 마이크로파의 시간 오차를 상용 고성능 신호 발생기보다 6배 이상 향상된 10펨토초 수준으로 낮출 수 있었으며, 주파수 안정도는 2조분의 1(5×10-13) 수준까지 낮출 수 있었다.
이 기술은 매우 우수한 위상잡음과 주파수 안정도의 마이크로파와 광 펄스를 동시에 생성할 수 있어, 다양한 최첨단 과학기술 분야들에서 활용할 수 있다. 대표적인 예로서 전파망원경 기반의 초장기선 간섭계(very long baseline interferometer, VLBI)의 경우 보다 높은 주파수와 낮은 잡음을 가지는 마이크로파와 광 펄스를 사용하면 측정 분해능과 관측 정밀도를 획기적으로 향상시킬 수 있어 기존에는 관측할 수 없었던 블랙홀의 사건의 지평선(event horizon)과 같은 새로운 천체 현상들을 탐사할 수 있을 것으로 기대된다.
우리 대학 기계공학과 김정원 교수는 "이번에 개발된 초안정 기술을 통신, 레이더, 데이터 변환기와 전파망원경 등 다양한 분야들에 적용하기 위한 후속 연구들을 진행 중ˮ이라고 밝혔으며, 물리학과 이한석 교수는 "향후 성능을 더욱 끌어올리고자, 실리콘 칩 상에 구현된 핵심 소자인 마이크로공진기의 광학적 특성을 개선하는 연구를 수행 중ˮ이라고 밝혔다.
한편 이번 연구는 정보통신기획평가원 양자센서핵심원천사업과 한국연구재단 중견연구사업의 지원을 받아 수행됐다.
2022.01.26
조회수 10337
-
전하 전달 복합체를 이용한 신개념 디스플레이 소재 개발
우리 대학 신소재공학과 정연식 교수, 전덕영 명예교수, 한국전자통신연구원(ETRI) 권병화 박사 공동 연구팀이 차세대 디스플레이 소자에 적용 가능한 신개념 금속 산화물 복합 나노소재 개발에 성공했다고 19일 밝혔다.
KAIST-ETRI 공동 연구팀은 특정 금속 산화물 나노입자가 다른 산화물 내부에서 나노미터(nm) 크기로 분산될 경우, 접촉면(인터페이스)에서 전하가 교환되면서 전하 전달 복합체(Charge transfer complex)를 형성하는 새로운 현상을 발견했다. 연구팀은 이를 유기발광다이오드(OLED) 등 고부가가치 디스플레이에 적용해 기존 상용 유기 소재 기반의 소자 성능을 뛰어넘는 데 성공했다.
오는 2월에 우리 대학 신소재공학 박사학위 취득 예정인 김무현 연구원이 주도하고 조남명 박사, ETRI 주철웅 선임연구원 등이 참여한 이번 연구는 국제학술지 `네이처 커뮤니케이션스(Nature Communications)' 1월 10일 字 온라인판에 게재됐다. (논문명: Metal Oxide Charge Transfer Complex for Effective Energy Band Tailoring in Multilayer Optoelectronics)
디스플레이 발광 셀 등 다층구조를 가지는 광전자소자에서 금속 산화물은 우수한 전기적 특성 및 안정성 덕분에 전하 수송 및 주입 층으로 널리 활용되고 있다. 하지만, 유기 발광 다이오드(OLED)에서 퀀텀닷 발광다이오드(QLED), 페로브스카이트 발광다이오드(PeLED)로 이어지는 미래 디스플레이 산업에서 이러한 금속 산화물 소재를 더 유용하게 활용하기 위해서는 에너지 레벨 및 전기전도도와 같은 특성들이 더 넓은 범위에서 제어될 수 있어야 한다.
이는 유기 발광 소재, 퀀텀닷, 페로브스카이트 등으로 발광층 소재가 매우 다양해짐에 따라 디스플레이 소자들의 성능을 극대화하기 위해서는 각각의 시스템에 최적화된 전기적 특성을 제공해야 하기 때문이다.
연구팀은 에너지 레벨 차이가 있는 두 금속 산화물 사이에서 일어나는 전하 전달(Charge transfer) 현상에 주목했다. 전하 전달 복합체는 마치 건포도 빵의 형태와 유사한 구조로 되어 있는데, 건포도(나노입자)를 더 넣게 되면 더 많은 당분(전하)이 빵(매트릭스)으로 이동하여 빵 전체가 더 달콤해지는 원리로 비유될 수 있다.
이 새로운 개념을 산화 몰리브덴(MoO3) 나노입자와 산화니켈(NiO)의 조합으로 구현해 두 금속 산화물의 전하 전달 현상을 효과적으로 유도했으며, 광범위한 에너지 레벨 조절 능력 및 최대 2.4배의 전기전도도 향상을 달성했다. 이를 녹색과 청색 OLED에 적용했고 기존의 상용 유기 소재를 적용한 소자보다 32% 더 우수한 외부양자효율을 달성함으로 높은 범용성과 성능을 입증했다.
신소재공학과 정연식 교수는 "이번 기술은 핵심 소재의 성능 제어 방법을 혁신함으로써, 실감형 메타버스 구현에 꼭 필요한 최첨단 디스플레이 구현에 기여할 것ˮ이라고 전망했다.
이번 연구는 과학기술정보통신부 및 한국연구재단이 추진하는 미래소재디스커버리지원사업(단장 최성율), 글로벌프런티어 사업(단장 김광호) 및 나노·소재기술개발사업, 그리고 산업통상자원부에서 추진하는 소재부품장비혁신 Lab기술개발사업의 지원을 받아 수행됐다.
2022.01.24
조회수 11045
-
새로운 고무형태의 고체 전해질로 세계 최고성능 전고체전지 구현 성공
우리 대학 생명화학공학과 김범준 교수 연구팀이 미국 조지아공대(Georgia Tech) 이승우 교수팀과 공동연구를 통해 새로운 개념의 엘라스토머 고분자 전해질을 개발하고 이를 통해 세계 최고성능의 전고체전지를 구현했다고 13일 밝혔다.
우리 대학 한정훈 및 조지아공대 이승훈 연구원이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처(Nature)' 1월 13일에 출판됐다. (논문명: Elastomeric electrolytes for high-energy solid-state lithium batteries).
전고체 리튬메탈전지(all-solid-state Li-metal battery)는 이차전지에 사용되는 휘발성이 높은 액체전해질을 고체로 대체해 화재 및 자동차 안전사고를 막을 수 있는 미래기술로서, 현재 상용화된 리튬이온전지(Li-ion battery)에 비해 에너지밀도를 획기적으로 향상해 자동차 주행거리 확보 및 안전 문제를 해결할 수 있는 `꿈의 배터리 기술'이다.
공동 연구팀은 상온에서 리튬(Li) 이온의 전도도가 탁월하며, 기계적 신축성이 모두 확보된 엘라스토머(고무) 형태의 고분자 전해질을 개발했으며, 이를 전고체전지에 적용해 410Wh/kg의 세계 최고성능을 보이는 전고체 리튬 메탈전지를 구현했다. 이러한 기술을 도입하면 현재 한번 충전으로 800 km까지 주행 가능한 전기자동차의 구현(현재 500 km수준)이 가능할 것으로 보이며, 기존의 액체 전해질을 적용한 리튬이온전지의 안정성을 획기적으로 향상할 것으로 기대된다.
고체 전해질은 크게 고분자 기반, 산화물 기반, 황화물 기반의 전해질로 나뉘는데, 현재 황화물 기반에서 가장 활발한 연구가 되고 있으나 가격이 매우 비싸다는 단점이 있다. 고분자 기반 고체전해질은 원료가 매우 싸고, 저온 대량생산 공정, 가벼움의 장점을 갖고 있지만, 상온에서 낮은 이온전도도를 가지는 문제점이 있으며, 전지 충‧방전 시 안정성이 떨어진다.
연구팀은 고무처럼 신축성이 탁월한 엘라스토머 내부에 리튬 이온전도도가 매우 높은 플라스틱 결정 물질을 3차원적으로 연결한 엘라스토머 고분자 고체전해질을 개발했다. 연구팀이 개발한 전해질은 기존에 대표적인 폴리에틸렌옥사이드(PEO) 기반의 고분자 전해질에 비해 100배 정도 향상된 10-3 S/cm의 이온전도도를 가진다. 또한, 고무처럼 신축성이 우수한 전해질은 전지 충‧방전 시 안정성에 가장 큰 문제가 되는 리튬 덴드라이트(dendrite)의 성장을 억제해, 탁월한 전지 성능 및 안정성을 확보했다.
개발된 고분자 전해질은 얇은 리튬금속 음극과 니켈 리치 양극(NCM-Ni83)으로 구성된 전고체전지에서 4.5V 이상의 고전압에서도 안정적인 구동을 보였으며, 410Wh/kg 이상의 세계 최고의 에너지밀도를 보였다.
SK이노베이션의 최경환 차세대 배터리 센터장은 “전고체 배터리는 전기차주행거리와 안전성을 획기적으로 늘릴 수 있다”며 “전고체 배터리 상용화 여부는 전기차 시장의 판도를 가를 중요한 과제로, 김범준/이승우 교수 연구팀이 개발한 엘라스토머 전해질은 기존의 고분자계 고체전해질의 한계를 해결한 획기적인 결과”라고 말했다.
이차전지 분야의 권위자인 서울대 강기석 교수는 “전고체 이차전지에 대한 세계적인 개발 경쟁이 치열한 가운데, 기존 고체전해질과 차별되는 엘라스토머 기반의 신규 고체전해질 개발은 이 분야의 발전에 새로운 가능성을 제시할 것이다.”라고 말했다.
우리 대학 김범준 교수는 "이번 연구를 통해 미래의 배터리라고 불리는 세계 최고 성능 전고체전지를 개발했을 뿐만 아니라 엘라스토머 전해질이라는 기존과는 완전히 다른 새로운 종류의 고체전해질을 개발해 소재 원천 기술을 확보했다는 것에 큰 의의가 있다ˮ라고 밝혔으며, 미국 조지아공대 이승우 교수는 "이번 연구를 통해 개발한 엘라스토머 전해질은 기존의 고체전해질이 가진 문제점을 획기적으로 개선하고, 제조 공정이 매우 간단해, 전고체전지의 전해질의 게임체인저가 될 것으로 기대한다ˮ라고 밝혔다.
또한 이번 연구에는 한국연구재단의 중견도약연구사업, 미래소재디스커버리 사업, 기초연구실지원사업의 지원을 받아 수행되었으며, 한국화학연구원의 김병각 박사, 한국에너지기술연구원의 정규남 박사가 공동연구에 참여했다.
2022.01.13
조회수 13669
-
준강자성체를 이용한 차세대 반도체 기술의 발전방향 제시
우리 대학 물리학과 이경진 교수, 김세권 교수 연구팀이 스핀 기반 차세대 반도체 기술(스핀트로닉스)의 최신 연구 동향 및 미래 발전 전략을 정리한 `*준강자성체 기반 스핀트로닉스' 리뷰 논문을 물리 및 재료 분야의 세계적인 학술지 `네이처 머터리얼스 (Nature Materials)' 2022년 1월호에 표지논문으로 게재했다고 6일 밝혔다.
※ 준강자성체: 반강자성체와 같이 서로 이웃하는 자성 이온이 반대 방향으로 정렬되지만, 서로 자성의 크기가 달라서 물질 전체적으로는 자발적인 자성이 남아있는 물체
스핀트로닉스는 성장 한계에 다다른 기존 반도체 기술의 근본적인 문제점들을 전자의 양자적 성질인 스핀을 이용해 해결하고자 하는 연구 분야다. 이는 기존 정보처리 기술을 혁신적으로 발전시켜 초고속 초고집적 차세대 반도체 기술을 구현할 것으로 기대되고 있다. 스핀트로닉스 장치의 핵심 구성 요소는 자성체이기 때문에, 스핀 기반의 초고속 초고집적 정보처리를 구현하기 위해서는 최적의 자성 물질을 규명하는 것이 필수적이다.
지난 수십 년간 스핀트로닉스에서 주로 사용돼왔던 강자성체는 스핀 동역학 속도가 기존 정보 처리 기술의 수준과 유사한 기가헤르츠(GHz) 수준에 머물러 정보 처리 속도 향상에 어려움을 겪고 있었다. 또한, 강자성체가 생성하는 강력한 주위 자기장으로 인해 강자성체 기반 장치들이 서로 강하게 간섭해, 스핀 장치의 집적률을 증가시키는 데도 어려움이 있었다.
물리학과 이경진 교수와 김세권 교수는 지난 수년간의 연구를 통해 새로운 자성체인 준강자성체를 이용하면 강자성체가 갖는 문제점들을 해결해 초고속 초고집적 스핀 기반 정보 처리 장치를 개발할 수 있음을 밝혀왔고, 이를 기반으로 이번 리뷰 논문을 게재했다.
과거 2017년 연구팀은 준강자성체의 스핀 동역학 속도가 기존 정보 처리 기술보다 약 천배 빠른 테라헤르츠(THz) 수준이라는 점을 주목하고, 이를 이용해 스핀 메모리로 활용되는 자구벽을 강자성체보다 월등히 빠른 속도로 구동할 수 있음을 보여 네이처 머터리얼스에 논문을 게재했다. 또한, 2018년 이경진 교수는 반강자성체를 이용하면 스핀 양자 정보의 장거리 전송이 가능함을 밝혀 네이처 머터리얼스에 보고했다. 수년간에 걸친 꾸준한 연구성과로 인해 준강자성체 기반의 초고속 초고집적 스핀트로닉스에 대한 관심이 고조돼, 현재 세계적으로 관련 연구가 활발히 진행중이다.
최신 연구 동향 정리와 더불어, 연구팀은 준강자성체 기반 스핀트로닉스의 미래 발전 방향도 제시했다. 준강자성체 기반의 초고속 자기광학 장치 개발, 준강자성체가 갖는 독특한 스핀파 성질을 이용한 파동/양자 정보처리 장치 개발, 그리고 준강자성체를 이용한 뇌 모사 컴퓨팅 개발 등이 기대된다. 또한, 새로 개발된 준강자성체는 기존의 자성체와 근본적으로 다른 흥미로운 물리현상을 보일 것으로 기대돼 준강자성체 기반의 근본 자성 연구에 대한 발전 방향도 제시했다.
이경진 교수는 "이번 리뷰논문은 그동안 강자성체에만 집중돼왔던 스핀트로닉스 연구를 준강자성체로 확장시키는 데 중요한 이정표가 될 것ˮ이라고 기대감을 내비쳤다.
이번 연구는 이경진 교수, 김세권 교수, 그리고 미국 MIT Geoffrey Beach 교수, 일본 교토대학 Teruo Ono 교수, 네덜란드 Radboud 대학 Theo Rasing, 싱가포르국립대 양현수 교수의 공동 연구로 진행되었으며, 삼성미래기술육성재단과 한국연구재단의 지원을 받아 수행됐다.
2022.01.06
조회수 7395
-
형광 염색 없이 분자 정보를 보는 AI 현미경 개발
우리 대학 물리학과 박용근 석좌교수 연구팀이 형광 염색 없이 세포의 분자 정보를 볼 수 있는 인공지능 현미경 기술을 개발했다고 20일 밝혔다.
광학 현미경은 수백 년 전부터 현재에 이르기까지 생물학 및 의학에서 가장 중요하게 쓰이는 기술 중 하나로, 이미지 형성 원리에 따라 여러 형태로 발전해왔다. 최근 수십 년간 분자생물학이 눈부시게 발전하면서 세포 내의 특정 구조를 형광(fluorescence) 으로 표지하는 것이 가능해졌고, 이처럼 높은 생화학적 특이성(biochemical specificity) 덕분에 형광 현미경은 현재 가장 폭넓게 쓰이는 광학 현미경 기술이 됐다.
그러나 형광 현미경은 형광 표지 자체가 세포를 변형하는 것이기 때문에 세포에 부담을 주게 되고, 밝기와 세포독성, 안정성 문제 때문에 초고속 또는 장기간 측정이 힘들며, 제한된 색깔로 인해 다양한 구조를 동시에 보는 것이 어려운 근본적인 한계가 있다.
이와는 대조적으로, 각 물질과 빛의 상호작용을 결정하는 근본적인 특성인 굴절률(refractive index)을 이용해 아무런 염색을 하지 않아도 되는 현미경 기술 또한 꾸준히 발전해왔다. 굴절률로부터 파생되는 빛의 흡수, 위상차 등을 이용한 전통적인 현미경은 물론, 최근에는 굴절률 자체를 3차원 상에서 정량적으로 측정하는 다양한 홀로그래픽 현미경(holographic microscopy) 기술이 박용근 교수 연구팀에서 개발돼 상용화된 바 있다. 이러한 비표지(label-free) 현미경 기술은 형광 현미경과 비교해 여러 가지 장점을 갖고 있지만, 굴절률과 세포 내 구조들의 관계가 명확하지 않아 분자 특이성이 떨어진다는 단점이 있었다.
박용근 교수 연구팀에서는 2012년 초부터 조영주 졸업생(제1 저자, 물리학과·수리과학과 학사 11학번·KAIST 총장 장학생, 現 스탠퍼드대학교 응용물리학과 박사과정) 주도로 홀로그래픽 현미경 분야에 인공지능을 도입해 특이성 문제를 해결하려는 일련의 연구가 시작됐다.
우선 형태적으로는 비슷하나 생화학적인 구성에 차이가 있는 시료(여러 종의 박테리아, 다양한 분류의 백혈구 등)의 굴절률 영상은 사람 눈에는 비슷하게 보이는데, 흥미롭게도 인공지능은 이를 높은 정확도로 분류할 수 있음을 보였다(2013-2014년 KAIST 학부연구프로그램(URP) 이후, 2015년 Optics Express, 2017년 Science Advances, 2020년 ACS Nano 등 게재). 이러한 결과는 매우 다양한 생체 시료에서 일관되게 관찰됐고, 따라서 연구팀은 생화학적 특이성이 높은 정보가 굴절률의 공간 분포에 숨겨져 있다는 가설을 세웠다.
세포생물학 분야 최고 권위지인 `네이처 셀 바이올로지(Nature Cell Biology, IF 28.82)'에 12월 7일 발표된 이번 연구(논문명: Label-free multiplexed microtomography of endogenous subcellular dynamics using generalizable deep learning)에서, 연구팀은 홀로그래픽 현미경 영상으로부터 형광 현미경 영상을 직접 예측할 수 있음을 보임으로써 이 가설을 증명했다. 인공지능이 찾아낸 굴절률 공간 분포와 세포 내 주요 구조 간의 정량적인 관계를 이용해 굴절률의 공간 분포 해독이 가능해졌고, 놀랍게도 이러한 관계는 세포 종류와 관계없이 보존돼 있음을 확인했다.
이 과정에서 만들어진 `인공지능 현미경'은 홀로그래픽 현미경과 형광 현미경의 장점만을 갖는다. 즉, 형광 표지 없이 형광 현미경의 특이적인 영상을 얻을 수 있다. 따라서 자연 상태 그대로의 세포에서 동시에 수많은 종류의 구조를 3차원으로 볼 수 있으며, 밀리초(ms) 수준의 초고속 측정과 수십 일 수준의 장기간 측정이 가능해졌다. 더욱이 기존 데이터에 포함되지 않은 새로운 종류의 세포에도 즉시 적용이 가능하기에, 다양한 생물학 및 의학 연구에 응용이 가능할 것으로 기대된다.
이번 연구는 조영주 박사과정과 박용근 교수가 지난 10여 년간 발전시켜온 광학 및 인공지능 기술력 이외에도, 다학제적 접근과 KAIST 기술을 바탕으로 한 창업 덕분에 가능했다. 생명과학과 허원도 교수(공동 교신저자)와 박외선 박사(공동 제1 저자)가 오랜 기간 발전시켜온 분자생물학 및 형광 현미경 기술 덕분에 인공지능 학습에 필요한 데이터를 얻을 수 있었으며, 조영주 박사과정이 허원도 교수 연구팀에서 2015년 1년간 연구했던 경험 덕분에 구체적인 아이디어가 나오게 됐다.
또한 박용근 교수 연구팀 홀로그래픽 현미경 기술로 창업한 ㈜토모큐브를 통해 현미경 및 데이터 형식이 규격화돼 대규모 인공지능 학습이 용이했고, 이를 바탕으로 ㈜토모큐브 조형주 연구원(공동 제1 저자) 및 민현석 연구원(공동 교신저자) 등 인공지능 전문 인력이 합류하면서 최신 인공지능 기법들의 빠른 도입이 가능했다.
한편 이번 연구는 한국연구재단의 창의연구사업, 과학기술정보통신부의 정보통신방송 기술개발사업 (홀로그램핵심기술), 일자리진흥원의 연구장비개발 및 고도화지원사업, 한국보건산업진흥원의 보건의료기술 연구개발사업의 지원을 받아 수행됐다.
2021.12.20
조회수 8623
-
사물인터넷 기반 다수의 뇌 신경회로 동시 원격제어 시스템 개발
우리 연구진이 인터넷을 이용해 뇌 신경회로를 원격 제어할 수 있는 무선 네트워크 기술을 개발했다. 이 기술을 활용하면 시간과 장소에 구애받지 않고 목표 동물의 뇌 신경회로를 정교하게 제어할 수 있다.
우리 대학 전기및전자공학부 정재웅 교수 연구팀이 미국 워싱턴 대학교(Washington University in St. Louis), 미국 콜로라도 대학교(University of Colorado Boulder) 연구팀과의 공동 연구를 통해 사물인터넷 기반의 뇌 신경회로 원격제어 시스템을 개발했다고 8일 밝혔다.
이번 개발 기술은 많은 시간과 인력이 있어야 하는 뇌 연구 및 다양한 신경과학 연구를 자동화시켜 다양한 퇴행성 뇌 질환과 정신질환의 발병 기전 규명과 치료법 개발의 가속화에 크게 기여할 것으로 기대된다. 또한, 먼 거리에 있는 환자의 질환을 원격으로 치료하는 원격 의료 구현에도 활용될 수 있을 것으로 예상된다.
우리 대학 전기및전자공학부 라자 콰지(Raza Qazi) 연구원과 김충연 박사과정, 그리고 워싱턴대 카일 파커(Kyle E. Parker) 연구원이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 바이오메디컬 엔지니어링(Nature Biomedical Engineering)' 11월 25일 字에 게재됐다. (논문명 : Scalable and modular wireless-network infrastructure for large-scale behavioural neuroscience)
전 세계적으로 고령화 시대에 접어드는 현 상황에서 알츠하이머병, 파킨슨병과 같은 뇌 질환들로 고통받는 환자 수가 급증하고 있다. 이에 따라 근본적인 뇌 질환 치료법을 개발하기 위해 뇌 기능 및 뇌 질환 발병기전을 규명하기 위한 뇌 연구가 매우 시급하지만, 뇌 연구의 진행 속도가 뇌 질환 환자의 증가 속도를 따라잡지 못하고 있어서 뇌 연구의 효율성을 극대화하기 위한 새로운 기술 개발이 절실히 요구된다.
기존 뇌 연구에 사용되던 대부분의 신경과학 장치들은 외부 장비와 선으로 연결된 유선 방식으로 구동됐지만, 이러한 방식은 피실험 동물들을 물리적으로 제약할 뿐 아니라 실험 진행자의 직접적인 개입이 불가피해 피실험 동물의 행동에 영향을 주는 `관찰자 효과'를 발생시켜서 정확한 뇌 연구 결과 도출을 어렵게 만든다. 아울러 모든 과정에서 실험자의 직접적인 조작이 요구돼 연구에 많은 시간과 인력, 비용이 발생하게 한다.
연구팀은 사물인터넷(Internet of Things; IoT) 기술을 접목해 다양한 다수의 뇌 이식용 기기들을 인터넷 원격으로 동시 제어하거나 예약된 스케줄에 따라 기기들이 자동으로 구동되도록 하는 무선 네트워크 시스템을 개발했다. 이를 통해 시간과 장소에 상관없이 목표 동물들의 특정 뇌 회로를 원격 제어하는 것을 가능하게 했다. 이 시스템은 사용자가 인터넷 웹사이트 기반의 무선 네트워크 플랫폼을 통해 뇌 이식용 장치의 원격제어, 자동화된 데이터 수집, 뇌 회로 제어 스케줄링 등의 다양한 기능을 손쉽게 구현할 수 있도록 설계됐다.
연구팀은 이 시스템의 뇌 신경회로 자동 원격제어 기능을 사용해 자체 제작한 무선 장치(뉴럴 임플란트)가 이식된 수십 마리의 쥐의 뇌 신경회로를 광유전학적 방법으로 사람의 개입 없이 정교하게 원격 자동 제어함으로써, 완전 자동화된 뇌 연구 실험에 적용 가능함을 입증했다. 이 실험을 통해 쥐의 먹이 섭취량, 활동량, 그리고 다른 쥐들과의 사회적 상호작용 빈도를 성공적으로 조절함으로써, 예약이 설정된 대로 다수 동물의 뇌 신경회로를 동시에 독립적으로 원격 제어할 수 있음을 보였다.
정 교수는 "개발된 원격제어 기술은 동물을 활용한 뇌 연구에 필요한 인간개입을 최소화함으로써 뇌 연구의 효율을 높이고 실험의 불확실성을 크게 줄일 수 있을 것ˮ이라며 "이 기술은 뇌 연구를 넘어, 많은 동물 실험을 필요로 하는 신약 개발, 병원 방문 없이 뇌 질환 및 다양한 질병을 치료하기 위한 원격 의료 구현에도 적용될 수 있을 것이다ˮ라고 말했다.
연구팀은 이 기술이 더욱 광범위하게 뇌 과학 연구 및 치료에 사용될 수 있게 하도록, 인공지능 기반의 실시간 뇌파 원격 모니터링 기술을 개발해 본 시스템과 접목하기 위한 연구를 계획하고 있다.
한편 이번 연구는 KAIST 글로벌 특이점 연구사업, 한국연구재단이 추진하는 중견연구자지원사업 및 바이오의료기술개발사업, 미국 국립보건원의 지원을 받아 수행됐다.
2021.12.08
조회수 9144
-
기존 대비 10배 이상 빠른 마그논 전송현상 발견
우리 대학 물리학과 이경진, 김세권 교수 연구팀이 고려대학교 이동규 대학원생, 싱가포르국립대 양현수 교수, 이규섭 박사와 공동연구를 통해 *반강자성체에서 초고속 *마그논 전송을 실험적으로 관측하고 그 원리를 이론적으로 규명했다고 4일 밝혔다.
☞ 반강자성체(antiferromagnetic substance): 인접한 원자의 자기 모멘트들이 서로 반대방향으로 향하기 때문에 전체로서는 자력이 나타나지 않는 물질. 어떤 온도를 넘어서면 상자성체와 같은 자성을 나타낸다.
☞ 마그논(magnon): 자기 양자(Magnetic quantum)의 줄여진 신조어로 양자화된 스핀 파동을 뜻한다. 즉, 스핀파를 양자화한 준입자를 가리킨다.
양현수 교수 연구팀은 반강자성 절연체인 산화니켈(NiO)에서 마그논 전송속도가 그동안 알려져 있던 최대 속도보다 10배 이상 빠름을 실험적으로 관측했다. 그리고 이경진 교수 연구팀은 이러한 초고속 마그논 전송이 마찰력에서 기인함을 이론적으로 규명했다.
이 공동연구 결과는 반강자성 마그논을 이용한 정보처리 소자의 고속화 가능성을 열었다는 측면과 마찰력은 소자 특성을 나쁘게 한다는 기존 상식과 달리 짧은 거리에서 마그논 속도를 오히려 증가시킨다는 사실을 규명했다는 측면에서, 스핀트로닉스 분야 응용과 기초과학 모두에서 향후 관련분야 발전에 기여할 것으로 기대된다.
이규섭 박사와 이동규 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 나노테크놀로지(Nature Nanotechnology)'에 온라인 출판됐다. (논문명 : Superluminal-like magnon propagation in antiferromagnetic NiO at nanoscale distances).
산화니켈(NiO)은 반강자성 특성으로 인해 효율적인 마그논 전송이 가능하고, 전기적 절연특성으로 인해 스핀 정보 전송 시 열 손실이 없어 차세대 마그논 기반 스핀트로닉스 소자용 소재로 주목받고 있다.
양현수, 이경진 교수 공동연구팀은 2019년 산화니켈(NiO)을 통한 마그논 전류가 매우 큰 스핀 각운동량을 전달하며 그 결과 효율적으로 자화를 반전시킬 수 있음을 보고한 바 있다. [Science 366, 1125-1128 (2019)] 2019년 연구는 마그논이 운반하는 스핀의 크기에 집중한 반면, 이번 연구는 그 속도에 집중했다. 마그논 기반 스핀트로닉스 소자의 저전력 구동을 위해서는 마그논이 전달하는 스핀 정보의 크기와 속도 모두 중요하다.
기존 연구에서는 산화니켈(NiO)의 마그논 속도를 밀리미터 크기의 샘플에 대해 비탄성 중성자 산란을 이용해 간접 측정한 반면, 이번 연구에서는 나노미터 크기의 샘플에 대해 테라헤르츠 분광 장비(THz emission spectroscopy)를 활용해 마그논 속도를 직접 측정했다. 그 결과 기존 간접 측정에서 보고되었던 40km/s에 비해 10배 이상 큰 650 km/s의 빠른 마그논 전송을 관측했다.
이론 연구를 통해 이러한 초고속 마그논 전송이 산화니켈(NiO) 내에서 마그논이 경험하는 마찰력 때문임을 밝혔다. 이러한 초고속 전송 현상은 광학 분야에서 `빛보다 빠른 전송(Superluminal propagation)'으로 불리는 현상과 유사하다. 아인슈타인의 특수상대성 이론에 의하면 빛보다 빠른 전송은 불가능하지만, 손실이 있는 매체에 빛이 지나가는 경우 비정상적 분산관계로 인해 마치 빛보다 빠른 전송이 일어나는 것처럼 보이며 이는 인과율을 위배하지 않는다.
이번 연구에서 연구팀은 빛의 경우와 마찬가지로 마찰력을 갖는 반강자성 물질에서 마그논이 전송되는 경우 비정상적 마그논 분산관계로 인해 유사한 현상이 발생함을 밝혔다. 실제 마그논 소자의 구동 시간은 이러한 비정상적 초고속 마그논 전송에 의해 결정되므로 응용 소자 측면에서 파급력이 있을 것으로 기대된다. 또한 마찰력은 모든 물질에 존재하기 때문에, 이 연구에서 밝힌 초고속 마그논 전송은 매우 일반적 물리현상이라는 측면에서 기초 학문적 가치도 클 것으로 기대된다.
제1 저자인 이규섭 박사는 "자성체 기반의 이중 층에서의 `스핀 전류의 발생현상'을 시분해 테라헤르츠 분광 장비를 통해 비접촉 방식으로 검출하는 연구가 활발히 진행되고 있으며, 이번 연구를 통해 `스핀 전류의 발생에 이은 수송현상에 대한 동역학' 또한 분석됨을 보였다ˮ라며, "나노미터 두께의 정보 소자의 정보전달속도를 초고속 시분해능(~10 펨토초)로 분석하는 데 활발히 사용될 것으로 기대한다ˮ라고 말했다.
이번 연구는 한국연구재단 중견연구과제, SRC센터과제, 싱가포르 정부과제의 지원을 받아 수행됐다.
2021.11.05
조회수 8225
-
손상된 혈관을 정상화하는 새로운 항체를 만들다
혈관은 인체 건강에 핵심적 역할을 한다. 세포에 산소와 영양분을 공급하고, 노폐물을 배설기관으로 옮기며, 면역세포들의 이동을 돕기 때문이다. 혈관의 항상성은 Angiopoietin-TIE2 신호전달체계를 통해 조절된다. 하지만, 암, 패혈증, 당뇨성 망막병증, 족부궤양 등의 질환에서는 혈관 내피세포와 주변 지지세포들이 파괴되면서 심각한 혈관 손상이 일어난다. 이에 국내외 제약회사들이 앞다투어 손상된 혈관의 TIE2를 활성화시키는 치료제 개발에 뛰어들고 있다.
우리 대학 의과학대학원 김호민 교수(기초과학연구원(IBS) 바이오분자 및 세포구조 연구단 CI), 고규영 특훈교수(기초과학연구원(IBS) 혈관 연구단장) 연구팀은 질병 상황에서 손상된 혈관을 정상화하는 항체를 새롭게 개발하고, 3차원 분자구조를 규명하여 치료항체의 작동 기전을 제시했다. 암, 패혈증 등 혈관 손상을 동반하는 다양한 질병의 치료제 개발에 기여할 것으로 기대된다.
Angiopoietin1 단백질은 혈관 내피세포의 TIE2 수용체에 결합하여 세포표면 응집을 유도한다. 이 과정이 TIE2 활성화와 혈관 안정화 유도에 핵심적인 역할을 한다. 현재까지의 TIE2 활성화 유도 치료제는 대부분 단백질 엔지니어링을 통한 Angiopoietin 변이체 개발에 집중되었다. 그러나 이 전략은 낮은 생산성과 안정성, 생체 내 짧은 반감기 등의 문제가 있었다.
연구진은 기존 TIE2 활성화를 유도하는 치료제 개발과는 다른 전략을 채택하였다. 그 결과 혈관 내피세포의 TIE2 수용체에 결합하여 성장과 안정화를 유도하는 “TIE2 활성 항체(hTAAB)” 개발에 성공했다. 또한 단백질 결정학과 바이오투과전자현미경 등을 활용, TIE2 활성 항체와 TIE2의 결합 분자구조와 항체에 의한 TIE2 수용체의 활성화 분자기전도 규명했다.
연구진은 TIE2 수용체/Angiopoietin의 결합 분자구조를 바탕으로 TIE2 수용체에 직접 결합해 응집과 활성화를 유도하지만, Angiopoietin 결합에는 영향을 미치지 않는 항체를 새로 개발하고자 하였다. 이에 마우스 하이브리도마 기술과 혈관 내피세포를 활용한 효능평가를 통해 가장 효과적인 항체를 선별하였고, 단백질 결정학으로 TIE2 수용체와 TIE2 활성항체(hTAAB)의 상호작용에 핵심적인 분자코드를 규명하였다. 또한 바이오투과전자현미경으로 Y자 형태의 항체가 TIE2에 순차 결합하여 다각형 형태로 TIE2수용체의 클러스터(응집)를 유도하는 분자메커니즘을 규명해냈다. 이를 바탕으로 TIE2 인간화 항체 개발에도 성공했다.
김호민 교수는 “TIE2 수용체 활성 항체가 TIE2를 다각형 형태로 응집을 유도하여 활성화시키는 것은 새로운 발견”이라며 “두 연구실의 협력을 통하여 우수한 성과를 거둔 대표 사례이며, 기초연구와 응용․개발연구가 서로 다른 영역이 아님을 보여주는 연구”라고 말했다. 고규영 교수는 “향후 동물실험의 효과 검증을 통해 혈관 이상으로 인한 다양한 질환 치료제 개발로 연계되기를 기대한다”라고 말했다.
우리 대학 의과학대학원 김호민 교수와 고규영 교수가 주도하고, 기초과학연구원 조경희 박사와 배점일 박사가 공동 제1 저자로 참여한 이번 연구는 국제학술지 ‘네이처 커뮤니케이션즈 (Nature Communications, IF 14.919)’ 온라인 판 11월 1일 자에 게재됐다.
2021.11.02
조회수 9712
-
음극재 없는 고에너지 리튬 배터리 구동을 위한 음극 집전체 개발
우리 대학 생명화학공학과 김희탁 교수(차세대이차전지인력양성센터장) 연구팀이 음극재가 없는 고에너지밀도 리튬 배터리 구동을 위한 음극 집전체 구조를 개발하고, 그 작동원리를 규명했다고 7일 밝혔다.
생명화학공학과 권혁진 박사과정과 이주혁 박사가 공동 제1 저자로 참여한 이번 연구 결과는 국제학술지 `네이처 커뮤니케이션즈 (Nature Communications)' 9월 20일 字 온라인판에 게재됐다. (논문명: An electron-deficient carbon current collector for anode-free Li-metal batteries)
음극재가 없는 리튬 전지(Anode-free Li battery)는 휴대용 전자기기와 전기자동차에 사용되는 리튬이온전지의 많은 부피와 무게를 차지하는 흑연 음극재를 없앤 차세대 구조의 전지다. 그 대신에 음극 활물질을 저장해두는 구리 집전체만이 음극 부품으로 들어가며, 집전체 위에 높은 에너지밀도를 가지는 리튬 금속 형태로 에너지가 저장된다.
음극재가 없는 리튬 전지는 기존 리튬이온전지와 비교해 60% 더 높은 에너지밀도를 구현할 수 있다는 점 때문에 산업계와 학계에서 활발하게 연구가 진행되고 있다.
하지만 리튬 이온이 흑연에 저장되지 않고 리튬 금속 형태로 음극에 저장될 경우, 리튬 금속의 수지상 성장으로 인해 지속적으로 비가역적인 리튬의 손실이 발생하며 충·방전 효율을 크게 떨어뜨리는 문제점이 발생한다. 또한, 반응성에 차이가 있는 구리와 리튬 사이에 미세전류가 흐르면서 리튬의 부식과 동시에 구리 표면에서 전해액이 분해되는 `갈바닉 부식(Galvanic corrosion)'이 발생한다.
김희탁 교수는 3차원 음극 집전체 표면의 일함수(고체의 표면에서 전자를 빼내는 데 필요한 에너지)를 높여 리튬의 수지상 성장을 억제하고 집전체 표면에서 리튬과 전해액의 부식을 억제할 수 있음을 규명하고 음극재 없는 리튬전지의 구동이 가능함을 검증했다.
연구팀은 탄소 집전체 표면에 인위적으로 탄소 결함 구조를 도입해 일함수를 높였고, 전자가 집전체 표면으로부터 탈출하기 어려워져 전해질이 전자를 받아 분해되는 환원반응이 크게 억제되는 현상을 확인했다. 동시에 일함수가 낮은 특성을 가지는 리튬 금속과는 강하게 상호작용을 하면서 집전체 위에 리튬 금속의 균일한 성장을 유도하고 안정적으로 에너지를 저장할 수 있음을 검증했다. 연구팀은 개발된 집전체를 통해 기존 구리 집전체 대비 월등하게 높은 성능을 보여줬고, 동시에 극미량의 전해액만이 전지 내에 주입되는 희박 전해액 환경에서도 구동할 수 있음을 확인했다.
김희탁 교수는 "이번 연구결과는 리튬 배터리의 궁극적 형태인 음극재 없는 리튬 배터리의 구현을 위한 집전체 설계 방향을 새롭게 제시했다는 점에서 중요한 의미가 있다ˮ라고 말하면서, "이를 바탕으로 다양한 차세대 리튬 전지의 음극 설계에 응용되기를 기대한다ˮ고 말헀다.
한편 이번 연구는 LG에너지솔루션, KAIST 나노융합연구소, 과학기술정보통신부 기후변화대응과제의 지원을 받아 수행됐다.
2021.10.08
조회수 9248