< (왼쪽부터) 전기및전자공학부 황의종 교수, 황성현 박사과정, 김민수 박사과정 >
최근 실생활에 활용되는 인공지능 모델이 시간이 지남에 따라 성능이 점차 떨어지는 현상이 다수 발견되었고, 이에 따라 지속가능한 인공지능 학습 기술에 대한 필요성이 커지고 있다. AI 모델이 꾸준히 정확한 판단을 내리는 것은 더욱 안전하고 신뢰할 수 있는 인공지능을 만들기 위한 중요한 요소이다.
우리 대학 전기및전자공학부 황의종 교수 연구팀이 시간에 따라 데이터의 분포가 변화하는 드리프트 환경에서도 인공지능이 정확한 판단을 내리도록 돕는 새로운 학습 데이터 선택 기술을 개발했다고 14일 밝혔다.
최근 인공지능이 다양한 분야에서 인간의 능력을 뛰어넘을 정도의 높은 성능을 보여주고 있지만, 대부분의 좋은 결과는 AI 모델을 훈련시키고 성능을 테스트할 때 데이터의 분포가 변하지 않는 정적인 환경을 가정함으로써 얻어진다. 하지만 이러한 가정과는 다르게 SK 하이닉스의 반도체 공정 과정에서 시간에 따른 장비의 노화와 주기적인 점검으로 인해 센서 데이터의 관측값이 지속적으로 변화하는 드리프트 현상이 관측되고 있다.
시간이 지나면서 데이터와 정답 레이블 간의 결정 경계 패턴이 변경되면, 과거에 학습되었던 AI 모델이 내린 판단이 현재 시점에서는 부정확하게 되면서 모델의 성능이 점차 악화될 수 있다.
본 연구팀은 이러한 문제를 해결하기 위해, 데이터를 학습했을 때 AI 모델의 업데이트 정도와 방향을 나타내는 그래디언트(gradient)를 활용한 개념을 도입하여 제시한 개념이 드리프트 상황에서 학습에 효과적인 데이터를 선택하는 데에 도움을 줄 수 있음을 이론적으로 실험적으로 분석했다. 그리고 이러한 분석을 바탕으로 효과적인 학습 데이터 선택 기법을 제안하여, 데이터의 분포와 결정 경계가 변화해도 모델을 강건하게 학습할 수 있는 지속 가능한 데이터 중심의 AI 학습 프레임워크를 제안했다.
< 그림 1. 본 연구에서 제안한 알고리즘이 드리프트 환경에서 적절한 학습 데이터를 선택하는 예시 >
본 학습 프레임워크의 주요 이점은, 기존의 변화하는 데이터에 맞춰서 모델을 적응시키는 모델 중심의 AI 기법과 달리, 드리프트의 주요 원인이라고 볼 수 있는 데이터 자체를 직접 전처리를 통해 현재 학습에 최적화된 데이터로 바꿔줌으로써, 기존의 AI 모델 종류에 상관없이 쉽게 확장될 수 있다는 점에 있다. 실제로 본 기법을 통해 시간에 따라 데이터의 분포가 변화되었을 때에도 AI 모델의 성능, 즉 정확도를 안정적으로 유지할 수 있었다.
제1 저자인 김민수 박사과정 학생은 "이번 연구를 통해 인공지능을 한번 잘 학습하는 것도 중요하지만, 그것을 변화하는 환경에 따라 계속해서 관리하고 성능을 유지하는 것도 중요하다는 사실을 알릴 수 있으면 좋겠다ˮ고 밝혔다.
연구팀을 지도한 황의종 교수는 “인공지능이 변화하는 데이터에 대해서도 성능이 저하되지 않고 유지하는 데에 도움이 되기를 기대한다”고 말했다.
본 연구에는 KAIST 전기및전자공학부의 김민수 박사과정이 제1 저자, 황성현 박사과정이 제2 저자, 그리고 황의종 교수(KAIST)가 교신 저자로 참여했다. 이번 연구는 지난 2월 캐나다 밴쿠버에서 열린 인공지능 최고 권위 국제학술 대회인 ‘국제 인공지능 학회(Association for the Advancement of Artificial Intelligence, AAAI)’에서 발표되었다. (논문명: Quilt: Robust Data Segment Selection against Concept Drifts)
한편, 이 기술은 SK 하이닉스 인공지능협력센터(AI Collaboration Center; AICC)의 지원을 받은 ‘노이즈 및 변동성이 있는 FDC 데이터에 대한 강건한 학습’ 과제 (K20.05) 와 정보통신기획평가원의 지원을 받은 ‘강건하고 공정하며 확장가능한 데이터 중심의 연속 학습’ 과제 (2022-0-00157) 와 한국연구재단의 지원을 받은 ‘데이터 중심의 신뢰 가능한 인공지능’ 과제 성과다.
그린수소 또는 배터리 분야 등 청정 에너지의 성능을 높이는데 가장 큰 영향을 미치는 소재 중 하나는 전극이다. 한국 연구진이 차세대 전극 및 촉매로 활용될 수 있는 신소재를 효율적으로 설계하는 인공지능 기술을 개발했다. 이 기술을 통해 친환경 에너지 사회를 촉진하는데 중요한 역할을 할 것으로 기대된다. 우리 대학 기계공학과 이강택 교수 연구팀의 주도로 한국에너지기술연구원 (원장 이창근), 한국지질자원연구원 (원장 이평구), KAIST 신소재공학과 공동 연구팀들과 함께, 인공지능(AI)과 계산화학을 결합해 그린수소 및 배터리에 활용될 수 있는 스피넬 산화물 신소재를 설계하고, 성능과 안정성을 예측할 수 있는 새로운 지표를 개발하는 데 성공했다고 21일 밝혔다. 스피넬 산화물(AB2O4)은 그린수소 또는 배터리 분야의 차세대 촉매 및 전극 물질로 활용되어 산소 환원 반응(ORR)과 산소 발생 반응(OER)의 속도를 향상시킬 수 있는 잠재력이 높은 물질이다. 하지만, 수천 개
2024-11-21우리 대학이 12일(화) 오전 대전 인터시티호텔에서 ‘제1회 한국인공지능시스템포럼(이하 KAISF) 조찬 강연회’를 개최했다. 이는 우리 대학 인공지능반도체대학원이 AI 기술에 관련 미래와 혁신 등에 대해 다양한 분야의 전문가들이 함께 논의하는 장을 열고자 추진됐다. 총 77명의 전문가가 참석한 이번 행사에는 이광형 총장, 홍진배 정보통신기획평가원장, 방승찬 한국전자통신연구원장 등이 축사를 전했다. 이어서 ▲칩렛 이종 집적 첨단 패키지 기반 페타플롭스급 고성능 PIM 설계(한진호 한국전자통신연구원 PIM인공지능반도체연구실장) ▲자율주행·자율 행동체 연구개발사업 소개(최정단 한국전자통신연구원 모빌리티로봇연구본부장)에 대해 발표했다. 이후 인공지능 반도체 설계 전문 기업인 리벨리온(Rebellions)의 박성현 대표가 ‘인공지능 반도체와 리벨리온의 여정’을 주제로 강연을 진행했다. 박성현 리벨리온 대표는 강연에서 &ldq
2024-11-12최근 건강에 관한 관심이 점차 커지면서 일상생활에서 스마트 워치, 스마트 링 등을 통해 자기 신체 변화를 살펴보는 일이 보편화되었다. 그런데 기존 헬스케어 앱에서는 걷기에서 뛰기로 갑자기 변화를 줄 경우는 잘 측정이 되지만 천천히 속도를 높이는 경우는 측정이 안 되는 현상이 발생했다. 우리 연구진이 완만한 변화에도 동작을 정확하게 파악하는 기술을 개발했다. 우리 대학 전산학부 이재길 교수 연구팀이 다양한 착용 기기 센서 데이터에서 사용자 상태 변화를 정확하게 검출하는 새로운 인공지능 기술을 개발했다고 12일 밝혔다. 보통 헬스케어 앱에서는 센서 데이터를 통해 사용자의 상태 변화를 탐지하여 현재 동작을 정확히 인식하는 기능이 필수이다. 이를 변화점 탐지라 부르며 다양한 인공지능 기술이 변화점 탐지 품질을 향상하기 위해 적용되고 있다. 이재길 교수팀은 사용자의 상태가 급진적으로 변하거나 점진적으로 변하는지에 관계없이 정확하게 잘 동작하는 변화점 탐지 방법론을 개발했다.
2024-11-12우리 대학 문술미래전략대학원 전우정 교수가 우리나라 법학자 최초로 세계 최고 과학 학술지인 네이처(Nature)의 자매지 ‘네이처 일렉트로닉스(Nature Electronics)'의 코리스판던스(Correspondance) 섹션에 군사 AI 통제의 과학적 도전에 관한 기고문을 게재했다고 8일 밝혔다. 지난 9월 9일부터 10일까지 서울에서 개최된 ‘2024 인공지능(AI)의 책임 있는 군사적 이용에 관한 고위급 회의(REAIM 2024)'에서 군사 AI 거버넌스에 중요한 진전이 이뤄졌다. 우리나라 뿐만 아니라 네덜란드, 싱가포르, 케냐, 영국이 공동 주최국으로 참여한 이 회의에서 미국, 독일, 프랑스, 일본 등 61개국이 ‘행동을 위한 청사진(Blueprint for Action)'을 채택했다. 이후 두 개 국가가 추가로 동참해 현재 총 63개국이 채택하고 있다. 전우정 교수는 이번 기고문에서 군사 분야의 AI 활용에 대한 이러한 원칙들을
2024-11-08인공지능 차세대 반도체, 자율 실행 실험실 (Self-Driving Lab), 소재 개발 자율 로봇(Robotics for Autonomous Materials Development) 등 최신 연구 동향과 네이처 편집위원들을 만나 토론을 할 수 있는 국제행사가 KAIST에서 열린다. 우리 대학이 2025년 2월 5일부터 7일까지 3일간 대전 KAIST 본원 학술문화관에서 ‘2025 네이처 컨퍼런스’를 개최한다고 4일(월) 밝혔다. 국제학술지 네이처와 공동으로 개최하는 이번 행사에서는 5일 네이처 인텍스(Nature Index)와 정책포럼으로 시작하여 6~7일은 ‘인공지능을 위한 신소재, 신소재를 위한 인공지능(Materials for AI, AI for Materials)’을 주제로 인공지능과 신소재 분야의 최신 연구 동향을 공유한다. 네이처 인덱스는 올해 특집호에서 한국의 과학기술 분야 연구개발(R&D) 성과가 인력과 예산
2024-11-04