본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%9E%90%EC%97%B0%EA%B3%BC%ED%95%99%EB%8C%80%ED%95%99
최신순
조회순
김갑진 교수, 초고속 동작 자기메모리 핵심 기술 개발 성공
〈 김 갑 진 교수 〉 우리 대학 물리학과 김갑진 교수와 고려대학교 이경진 교수 연구팀이 차세대 자구벽 기반 자기메모리의 속도를 획기적으로 향상시키는 기술을 개발했다. 이 연구는 물리·재료 분야 최고 권위의 학술지인 네이처 머티리얼즈(Nature Materials) 9월 25일자에 게재됐다. 현재 사용되는 메모리 소자인 D램(D-RAM)과 S램(S-RAM)은 속도는 빠르나 전원이 꺼지면 메모리가 사라지는 휘발성 특성이 있고, 플래시 메모리(Flash memory)는 비휘발성이나 속도가 느리고, 하드 디스크 드라이브(HDD)는 용량은 크나 전력 사용량이 크고 충격에 약하다는 한계가 있다. 기존 메모리의 단점을 해결하기 위해 ‘자구벽 기반 자기메모리’를 개발 중이다. 자구벽 메모리의 핵심 동작원리는 전류에 의한 자구벽 이동이다. 자성 나노선을 사용하여 비휘발성 특성을 확보하고, 기계적 회전을 없앰 으로써 전력사용량을 줄인 고집적․저전력의 차세대 메모리이다. 그러나 현재까지 연구결과, 자구벽 메모리의 동작 속도는 최대 수백 m/s로 속도에 한계가 있고, 이는 자구벽이 회전하면서 움직이는 ‘워커붕괴현상*’ 때문이라고 알려져 있다. 따라서 자구벽 메모리의 실용화를 위해 워커붕괴현상을 제거하여 동작 속도를 높일 수 있는 핵심기술 개발이 요구됐다. 자구벽 메모리 연구는 대부분 ‘강자성체’ 물질을 사용했으며, 강자성체의 경우 자구벽이 회전하는 워커붕괴현상을 피할 수 없다. 연구팀은 자기메모리 연구에 ‘페리자성체’인 GdFeCo를 사용한 결과 특정조건을 만족할 경우 워커붕괴현상을 없앨 수 있는 원리를 발견했고, 이를 이용해 자구벽의 이동 속도를 상온에서 2 km/s 이상까지 증가시키는데 성공했다. 자구벽 메모리는 고집적·저전력·비휘발성을 갖춘 메모리로서 이번 연구로 발견한 초고속 동작 특성이 추가된다면 하드디스크를 뛰어넘는 차세대 메모리가 될 것으로 기대된다. 김갑진 교수는 “이번 연구는 페리자성체의 각운동량이 0인 지점에서 나타나는 새로운 물리 현상을 발견했다는 점에서 의미가 크고, 향후 차세대 메모리 구현을 앞당길 수 있을 것으로 기대된다”고 밝혔다. 이 연구는 한국연구재단의 신진연구자지원사업, 선도연구센터지원사업(응집상 양자 결맞음 연구센터)과 DGIST 위탁연구(바이오자성 글로벌 연구센터) 등의 지원을 받아 수행됐다. □ 그림 설명 그림1. 페리자성체를 이용한 자구벽 메모리 소자의 개념도 그림2. 자구벽 속도 측정 소자의 개략도 및 실험 결과
2017.10.20
조회수 13816
최인성 교수, 농산물 장기보존 가능한 나노코팅기술 개발
〈 최 인 성 교수 〉 우리 대학 화학과 최인성 교수 연구팀이 친환경 나노코팅 기법을 이용해 과일의 부패 기간을 늦출 수 있는 기술을 개발했다. 이 기술은 식물 기반의 폴리페놀 물질을 이용해 코팅 시료의 종류에 관계없이 사용할 수 있는 범용 스프레이 나노코팅기술이다. 이번 연구결과는 국제학술지 ‘사이언티픽 리포트(Scientific Reports)’ 8월 1일자 온라인 판에 게재됐다. 폴리페놀 물질은 다량의 수산기(-OH)를 갖는 식물의 광합성 대사산물 중 하나로 뛰어난 항산화 작용을 수행하는 식물 기반의 천연물질이다. 잠재적 항암효과와 높은 항균성을 가져 식품 첨가물 등에 사용되고 있다. 폴리페놀은 철 이온과 화학적으로 강하게 결합해 복합체를 형성한다는 특성도 갖는다. 연구팀은 폴리페놀-철이온 복합체의 형성반응과 분사 기술을 접목해 나노코팅기술을 개발했다. 이 스프레이 코팅 기술은 코팅물질을 코팅용액에 담가 코팅하는 침지법에 비해 코팅 시간이 짧고(5초 이내) 원하는 영역에만 선택적 코팅이 가능하다. 또한 침지법에서 발생하는 시료의 변형과 코팅용액의 상호 오염을 막을 수 있다. 연구팀은 개발된 기술을 과일 표면에 적용해 가식성(edible) 항균 코팅으로의 응용이 가능함을 입증했다. 코팅된 귤과 딸기를 각각 28일, 58시간 이후에 상태를 측정했고 코팅되지 않은 과일에 비해 상당수가 모양과 품질을 유지했다. 반면 코딩되지 않은 귤과 딸기는 박테리아 및 곰팡이 균의 번식으로 부패 및 변형이 발생했다. 연구팀은 과일 뿐 아니라 금속표면, 플라스틱, 유리, 섬유시료에도 손쉽게 코팅할 수 있음을 확인했다. 특히 안경알, 신발 밑창 등 생활용품 표면에도 코팅이 가능해 각각 흐림방지, 무좀균 생장을 억제하는 항균 기능도 가능함을 증명했다. 개발된 나노코팅기술은 국내 특허로 등록됐고 현재 과일 신선도 유지 코팅법의 상용화를 진행 중이다. 최 교수는 “나노코팅기술은 큰 잠재력과 응용성을 가진 첨단기술이다”며 “개발된 나노코팅기술은 다양한 목적으로 쉽게 적용가능하고 기존 코팅 기술 및 나노물질과 결합돼 더 큰 시너지를 일으킬 것이다”고 말했다. 이번 연구는 미래창조과학부와 한국연구재단이 추진하는 리더연구자지원사업의 일환으로 수행됐다. □ 그림 설명 그림1. (a-I, II) 나노코팅된 귤과 코팅되지 않은 귤을 14일, 28일 동안 상온에서 보관하였을 때 비교사진. (b-I, b-II) 나노코팅된 딸기와 코팅되지 않은 딸기를 58시간 동안 상온에서 보관하였을 때 비교사진 및 식품 변질 검사결과
2017.08.10
조회수 16192
백무현 교수, 타이타늄 촉매반응으로 화학소재 올레핀 합성 성공
〈 백 무 현 교수 〉 우리 대학 화학과 백무현 교수 연구팀이 우리 주변에 흔한 타이타늄(Titanium) 촉매를 활용해 플라스틱, 의약품 원료로 사용하는 올레핀(olefins) 합성에 성공했다. 석유화학산업 분야 주요 소재인 올레핀은 보통 800℃ 고온으로 석유를 증기 분해(steam cracking)해 제조한다. 매우 높은 열과 에너지가 투입되고 이산화탄소 등 온실가스가 발생하는 것이 단점이다. 연구결과는 27일 국제학술지 네이처 케미스트리에 게재됐다. 기초과학연구원 분자활성 촉매반응 연구단의 부연구단장으로 재직 중인 백무현 교수는 계산화학을 통해 타이타늄을 최적의 촉매로 선택했고 탄화수소(hydrocarbon)의 수소를 선택적으로 없애는 탈수소반응을 구현했다. 이로써 기존 공정에 비해 10분의 1정도 낮은 온도(75℃)에서 올레핀을 합성했다. 올레핀은 플라스틱, 고분자 화합물, 의약품 등에 활용하는 기초 원료이다. 활용도가 커 올레핀 합성 과정은 많은 연구자들이 연구주제로 삼고 있다. 올레핀은 탄화수소가 수소를 잃으면서 탄소(C) 두 개가 이중결합(C=C)해 생성되는데 증기 분해 방식은 반응 중 탄소-탄소 결합이 끊어져 올레핀 혼합물이나 다른 탄화수소들이 합성되는 단점이 있다. 또 석유 대신 천연가스에서 올레핀을 합성하려면 온실가스가 발생해 오염과 공해 문제가 뒤따랐다. 화학자들은 석유와 천연가스 등 탄화수소 화합물을 가공하거나 분해할 때 열과 에너지를 적게 사용하고, 환경오염이 덜한 화학반응을 구현하기 위해 다양한 촉매반응을 연구했다. 탄소와 수소만으로 결합된 탄화수소는 두 분자 간 결합이 매우 강하기 때문에 결합을 끊고 반응을 유도하는 촉매 개발이 주요 과제였다. 이리듐(Iridium), 로듐(rhodium), 루테늄(ruthenium) 등 전이금속을 촉매로 적용했으나 비용이 너무 비싸 실제 산업에 활용하기는 어려웠다. 백 부단장은 비싼 전이금속 보다 수십 배 저렴한 타이타늄을 촉매로 적용했다. 백 부단장은 밀도범함수를 활용한 계산 화학을 통해 최적의 촉매 후보물질로 타이타늄을 제안했고 미국 펜실베니아대학 연구진은 약 75℃에서 탈수소반응이 성공적으로 이뤄졌음을 실험으로 확인했다. 지난해 이리듐 촉매로 메탄가스의 강력한 탄소-수소 결합을 분해한 데 이어 이번 연구에서도 계산화학으로 정확한 촉매를 예측했다. 또 탈수소반응에 이리듐 촉매를 활용할 때 탄화수소가 이성질화(isomerization) 되는 문제도 타이타늄 촉매로 해결됨을 관찰했다. 백 교수는 “이리듐은 반응성이 매우 크지만 값이 비싸고 구하기 어렵다. 반면 타이타늄은 값이 매우 저렴하고 구하기 쉽다”며 “향후 타이타늄 촉매의 반응성과 효율성을 높인다면 기존 올레핀 합성공정의 비용이 줄어들 것”이라고 말했다. 이번 연구는 미국 펜실베니아 대학의 대니얼 민디올라(Daniel J. Mindiola) 교수 그룹과 공동으로 진행됐다. □ 그림 설명 그림1. 연구진이 제안한 타이타늄 촉매를 활용한 탈수소반응 메커니즘 그림2. 밀도범함수를 활용한 계산화학으로 본 탈수소반응 메커니즘
2017.06.28
조회수 16497
윤동기 교수, 액정 결함의 변이 과정 관찰에 성공
우리 대학 나노과학기술대학원 윤동기 교수 연구팀이 액정의 결함이 온도에 따라 변화하는 과정을 규명했다. 액정 결함에 관한 연구는 20세기 초반부터 약 100여 년 간 위상기하학을 연구하는 물리, 수학자들에 의해 연구됐지만 결함의 형태 전이를 세밀하게 직접적으로 관찰한 것은 이번 연구가 처음이다. 이 액정에서의 결함은 위상학적(topology)으로 우주에서 발생하는 블랙홀과 같은 위상학적 현상과 비슷한 구조를 갖기 때문에 우주의 원리를 연구하는 데 도움이 될 것으로 기대된다. 김민준 박사가 1저자로 참여한 이번 연구 결과는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications) 5월 30일자 온라인 판에 게재됐다. (논문명 : Morphogenesis of liquid crystal topological defects during the nematic-smectic A phase transition) 일반적으로 액정 재료는 손쉬운 배향 제어, 빠른 반응속도, 이방적(anisotropic)인 광학 특성을 갖고 있어 액정표시장치(LCD)나 광학 센서 등에 사용된다. 이 때 액정의 결함을 최소화하는 것이 성능 측면에서 유리한 것으로 알려져 있으나 물질 특성 상 액정의 결함은 불가피하게 발생한다. 윤 교수 연구팀은 이 결함을 단순히 없애는 데만 집중하지 않고 결함의 구조를 이해하고 형성 원리를 명확하게 규명하는 기초연구에 집중했다. 이러한 노력을 바탕으로 액정재료의 위상학적 결함이 안정적으로 발생하는 플랫폼을 구성해 온도 변화에 따른 상전이(phase transition)를 직접적으로 관찰했다. 위상학적 결함의 상전이는 2016년도 노벨물리학상의 주제이기도 할 만큼 기초과학 분야에서 중요하다. 우주 은하의 위상학적 구조적 원리도 이에 바탕하고 있어 많은 연구자들이 집중하고 있는 분야이다. 우주 은하의 위상학적 결함을 관찰하기에는 너무 범위가 크고 시간이 오래 걸린다. 하지만 윤 교수팀이 고안한 플랫폼의 위상학적 결함 구조는 광학 현미경으로 관찰이 가능한 수준의 크기이다. 또한 결함의 상전이가 일어나는 시간도 수초에서 수분 단위이기 때문에 관찰이 용이하다. 여기서 액정 재료들이 형성하는 결함 구조는 하나의 특이점(singularity)을 중심으로 방사형, 원형, 나선형 등의 형태를 갖는다. 특이점은 영화 ‘인터스텔라’에서도 나온 것처럼 우주의 블랙홀의 중심부 부분에 해당한다. 이 액정 재료는 일반적으로 딱딱한 두 유리판 사이에 모세관 현상을 통해 주입해 그 시료를 준비하게 된다. 그러나 이 과정에서 유리판처럼 단단한 기판은 표면효과 때문에 액정 물질의 움직임을 제한시키고 이는 결함의 상전이를 관찰하는 장애물이었다. 연구팀은 물 위에 기름이 떠다니는 현상을 이용해 물 위에 얇은 액정재료 막을 형성함으로써 액정 분자들의 움직임이 제한적이지 않은 환경을 조성했다. 이런 환경에서 온도를 변화시키면 그 구조체를 구성하는 분자와 분자 사이의 미세한 상호작용이 기판에 의한 표면효과보다 훨씬 크기 때문에 위상학적 결함의 상전이를 연속적, 직접적으로 관찰할 수 있다. 이 연구 방식은 온도 변화를 통해 위상학적 결함의 형성과정을 순서대로 혹은 역으로 조절할 수 있다. 따라서 전이과정을 면밀하게 관찰하면 중간 상태의 결함구조를 통해 최초의 그 결함 형태와 구성 분자들의 배열을 정확히 역추적 할 수 있다. 이는 위상학적 결함의 형성 원리를 근본적으로 이해할 수 있는 연구 수단이 될 것으로 기대된다. 윤 교수는 이번 연구에 대해 “연구에 대한 발상의 전환을 통해 남들이 보지 못한 것을 볼 수 있었다”며 “액정 결함에 대한 이번 연구 결과는 산업적 측면 뿐 아니라 기초 학문에 세계적 공헌을 할 수 있을 것이다”고 말했다. 또한 “우리나라가 액정 디스플레이 산업의 강국이지만 액정에 대한 기초연구는 세계적 수준에 비해 높지 않다”며 “이번 연구를 계기로 국내 관련 기초연구에 대한 관심을 촉발시키는 계기가 되길 바란다”고 말했다. 이번 연구는 미래창조과학부와 한국연구재단이 추진하는 미래유망융합기술파이오니어사업과 신진연구지원사업의 지원으로 수행됐다. □ 그림 설명 그림1. 물 위에 형성된 액정 결함의 냉각에 의한 위상학적 결함의 상전이 현상의 편광현미경 사진 그림 2. 액정 분자들이 모이는 위상학적 결함의 편광현미경 이미지와 그에 대한 모식도와 액정 분자들이 퍼지는 위상학적 결함의 편광현미경 이미지와 그에 대한 모식도
2017.06.01
조회수 16675
박용근 교수, 세포 자유롭게 변형 가능한 홀로그래피 기술 개발
우리 대학 물리학과 박용근 교수 연구팀이 세포와 같이 복잡한 3차원 물체를 빛을 통해 자유자재로 제어할 수 있는 홀로그래피 기술을 개발했다. 이 기술은 복잡한 형상을 갖는 물체들을 포획하고 조립하면서 실시간 촬영이 가능해 세포들 간의 상호를 연구하거나 미세한 물체를 제작하고 조립하는 새로운 응용 분야를 개척할 수 있을 있을 것으로 보인다. 이번 연구 결과는 네이처 자매지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 5월 22일자 온라인 판에 게재됐다. 광학 집게라고 불리는 기존 광 제어 기술은 레이저로 광 초점을 만들어 그 초점에 구형 물체를 포획하는 방식이다. 렌즈를 이용해 작은 레이저 광 초점을 만들면 이 광초점에 자석에 철가루가 끌려오듯 주변 미세 물체를 달라붙게 하는 기술이다. 또한 이 기술은 초점의 위치를 옮기거나 힘을 가하는 방식으로 포획된 구형 물체의 3차원 위치를 조절할 수 있다. 1997년 노벨 물리학상의 공적인 이 기술은 물리학 및 광학 분야 등에 널리 이용된다. 그러나 이 광학 집게 기술은 물체의 모양이 복잡해지는 경우에는 물체를 안정적으로 포획하기 어렵다. 제어할 수 있는 물체의 방향이 제한적이기 때문에 생명 세포처럼 복잡한 3차원 형상을 가진 미세 물체를 광 제어하는 데는 한계가 있었다. 연구팀은 문제 해결을 위해 임의의 형상을 가진 복잡한 물체도 포획할 수 있는 새로운 레이저 포획 기술을 개발했다. 이 기술은 우선 3차원 홀로그래픽 현미경을 이용해 물체의 3차원 정보를 실시간 측정한 뒤 그 정보를 바탕으로 물체를 효과적으로 제어할 수 있는 광학 패턴을 정밀히 계산해 입사하는 방식이다. 기존 광학 집게 기술이 단순한 광 초점을 이용한 수동적 방식이라면 이 기술은 물체에 따라 능동적으로 적용할 수 있다. 빛과 물체의 모양이 같아질 때 물체가 갖는 에너지가 최소화돼 복잡한 형상의 물체더라도 안정적으로 포획할 수 있음을 확인했다. 이는 물리적으로는 에너지를 최소화하는 방향으로 현상이 발생하는 원리와 같다. 연구팀은 물체가 다양한 위치, 방향, 모양을 갖게 제어해 물체의 3차원 운동을 자유자재로 제어하고 원하는 모양으로 만들 수 있었다. 마치 거푸집을 자유롭게 제작해 원하는 석고상을 만들어내는 것과 같다. 연구팀은 이 기술을 통해 적혈구 세포를 안정적으로 집어 원하는 각도로의 회전, 기역자 모양으로 변형, 두 개의 적혈구를 조립해 새로운 구조물 제작 등을 구현하는 데 성공했다. 또한 복잡한 구조인 대장암 세포를 안정적으로 포획하고 원하는 각도로 회전시킬 수 있었다. 이 기술은 안정적인 상태에서 세포를 원하는 모양으로 변형시킬 수 있어 세포에 힘을 가하여 변형시킬 때의 세포 반응을 정량적으로 분석할 수 있다. 논문의 1저자인 김규현 박사는 “복잡한 형상을 가진 물체의 모양, 특성 등 사전 정보를 몰라도 물체의 운동을 자유자재로 제어할 수 있는 기술이다”며 “생물 물리학 연구, 부유 물질 및 나노 물체 조립 등의 다양한 분야에 응용 가능할 것이다”고 말했다. □ 그림 설명 그림1. 3차원 능동 광 제어 기술의 모식도 그림2. 복잡한 형태의 생명 세포들의 3차원 운동 및 모양 제어 결과
2017.05.25
조회수 12227
방효충 교수 연구팀, 지구 저궤도 관측 큐브위성 궤도진입 및 교신 성공
우리 대학 항공우주공학과 방효충 교수 연구팀이 큐브위성 궤도진입 및 첫 교신을 성공적으로 수행했다. 방 교수 연구팀에서 개발한 LINK(Little Intelligent Nanosatellite of KAIST)는 4월 18일에 발사돼 국제우주정거장으로 배송된 바 있다. 궤도진입은 5월 18일 오전 10시에 NRCSD(NanoRacks CubeSat Deployer)를 통해 이뤄졌으며 한국 시각으로 같은 날 23시 5분 첫 교신에 성공했다. 지상국에서 확인한 큐브위성의 상태는 양호하다. LINK는 벨기에 Von Karman Institute에서 주관하는 QB50 프로젝트의 일환으로 개발됐다. QB50는 큰 대기항력 때문에 관측이 덜 이루어진 200~400km 구간의 지구 저궤도 대기를 개발비용이 저렴한 큐브위성을 다수 발사해 관측하고자 하는 국제 공동 프로젝트로 전 세계 23개 이상의 국가에서 참여하고 있다. LINK는 2unit(20x10x10cm3) 크기로 무게가 약 2kg이며 지구관측을 위해 이온-중성자 질량 분광기 및 랑뮈어 탐침을 탑재하고 있다. 랑뮈어 탐침은 우리 대학 물리학과 민경욱 교수 연구팀이 개발했다. 궤도진입을 마친 큐브위성은 초기 한 달 동안 지상국을 통해 시스템 점검을 수행한 뒤 두 달에 걸쳐 저궤도 대기관측 데이터를 수집할 예정이다. LINK 큐브위성의 개발은 항공우주연구원 '2012년 큐브위성대회'의 지원을 받아 이뤄졌다. □ 그림 설명 그림1. NRCSD(NanoRacks CubeSat Deployer) 큐브위성 사출 장면 그림2. LINK 비콘신호 수신
2017.05.24
조회수 12124
한순규 교수, 천연 물질인 플루게닌C 합성에 성공
우리 대학 화학과 한순규 교수 연구팀이 새로운 방식의 화학반응을 이용해 자연 상태에서 존재하는 천연물을 인위적으로 제작하는 데 성공했다. 연구팀은 분자 간 화학반응의 일종인 라우훗-쿠리어 반응(Rauhut-Currier 반응, RC 반응)을 이용해 이합체 천연물인 플루게닌 C를 합성했다. 전상빈 석박사통합과정이 1저자로 참여한 이번 연구는 화학 분야의 국제 학술지 ‘미국화학회지(JACS : Journal of the American Chemical Society)’ 5월 10일자에 게재됐다. 천연물 전합성(Total Synthesis)은 순차적 화학반응을 통해 자연에 존재하는 천연 물질을 실험실에서 인위적으로 합성해내는 연구 분야이다. 이 과정은 각 단계의 화학반응이 모두 성공적으로 이뤄져야만 목표하는 분자에 도달할 수 있어 높은 수준의 인내심, 창의성 등이 요구된다. 학계에서는 천연물 전합성 학자를 가리켜 ‘분자를 다루는 예술가’로 부르기도 한다. 이번 연구는 분자 간 라우훗-쿠리어 반응을 전합성에 응용한 최초의 사례이다. 라우훗-쿠리어 반응은 1963년 라우훗과 쿠리어에 의해 보고된 반응으로 친핵체 촉매에 의해 진행되는 현상이다. 기존의 분자 간 라우훗-쿠리어 반응은 150도 이상의 고온 및 고농도 용액에서 유독한 촉매를 통해 비 선택적으로 진행된다는 한계가 있어 천연물 전합성에 적합하지 않았다. 연구팀은 문제 해결을 위해 반응물 내부에 친핵체를 위치시켰다. 이를 통해 상온의 옅은 용액에서 촉매 없이 간단한 염기성 시료를 첨가시키는 것만으로도 라우훗-쿠리어 반응을 이끌어 낼 수 있음을 확인했다. 연구팀은 이 반응 조건을 이용해 시중에서 구입 가능한 아미노산 유도체를 12단계를 거쳐 플루게닌 C라는 천연물질로 합성하는 데 성공했다. 한 교수는 “이번 연구는 라우훗-쿠리어 반응의 효율성과 선택성을 획기적으로 향상시킨 발견이다”며 “기존에는 합성할 수 없었던 다양한 천연물, 신약 또는 유기재료를 합성할 수 있는 길이 열렸다”고 말했다. 이번 연구는 KAIST의 정착 연구비, 하이리스크하이리턴(HRHR) 및 RED&B(Research, Education, Development & Business) 과제, 한국연구재단의 신진연구자 지원사업, 기초과학연구원 분자활성 촉매반응 연구단의 지원을 통해 수행됐다. □ 그림 설명 그림1. 대표적인 이합체-소중합체 세큐리네가 알칼로이드 그림2. 플루게닌 C의 합성 경로
2017.05.19
조회수 18025
방효충 교수, 지구 저궤도의 관측 위한 큐브위성 발사
우리 대학 항공우주공학과 방효충 교수 연구팀이 지구 저궤도 관측을 위한 초소형 큐브위성을 발사했다. 방 교수 연구팀에서 개발한 큐브위성인 LINK(Little Intelligent Nanosatellite of KAIST)를 포함한 총 28개의 큐브위성이 아틀라스 V(Atlas V) 발사체(NASA CRS-7 미션)에 탑재돼 미 동부시간 4월 18일 오전 11시 11분에 미국 Space Launch Complex 41에서 성공적으로 발사됐다. 큐브위성들은 국제우주정거장에서 보관 후 약 한 달 뒤에 궤도 진입 예정이며 이후 약 3달 동안 과학임무를 수행한다. LINK는 벨기에의 Von Karman Institute에서 주관하는 QB50 프로젝트의 일환으로 개발됐다. QB50 프로젝트는 큰 대기항력 때문에 관측이 덜 이뤄진 200~400km 구간의 지구 저궤도 대기를 개발비용이 저렴한 큐브위성을 다수 발사해 관측하는 국제 공동 프로젝트이다. 2012년에 시작된 이 프로젝트는 전 세계 23개 이상의 국가가 참여하고 있다. LINK는 2유닛(20x10x10㎤) 크기로 무게는 2kg 정도이며 지구 관측을 위해 이온-중성자 질량 분광기 및 랑뮈어 탐침을 탑재했다. 랑뮈어 탐침은 우리 대학 물리학과 민경욱 교수 연구팀이 개발했다. 방 교수는 “QB50 프로젝트는 교육용으로만 쓰이던 큐브위성이 의미있는 과학임무를 수행하기 위한 도구로 도약하는 계기가 될 것이다”며 “다수의 큐브위성을 이용해 저궤도 대기 관측을 한 첫 사례로 의미있는 데이터를 얻을 것으로 기대한다”고 말했다. 또한 “이 노하우를 이용해 앞으로 위성을 추가 개발해 연구 내용을 우주에서 직접 검증할 수 있을 것이다”고 말했다. 현재 큐브위성을 실은 Cygnus 모듈이 궤도에서 대기 중이며 미 동부시간 4월 22일 오전 8시 39분 국제우주정거장과 도킹을 완료했다.
2017.04.24
조회수 14222
박희성 교수, 맞춤형 단백질 변형기술 동물 모델 적용에 성공
우리 대학 화학과 박희성 교수 연구팀이 아주대 의과대학 박찬배 교수와의 공동 연구를 통해 동물 모델에서 단백질의 아세틸화 변형을 조절할 수 있는 기술을 개발했다. 인간의 질병 연구에 대표적으로 쓰이는 쥐 모델에서 단백질 아세틸화를 조절할 수 있게 돼 다양한 질병의 원인을 밝힐 수 있을 것으로 기대된다. 이번 연구는 미래창조과학부의 글로벌프런티어사업(의약바이오컨버젼스연구단, 단장 김성훈)과 지능형 바이오시스템 설계 및 합성연구단(단장 김선창), 식약처의 미래 맞춤형 모델동물개발 연구사업단(단장 이한웅)의 지원을 받아 수행됐다. 이번 연구 결과는 국제 학술지인 ‘네이처 커뮤니케이션즈(Nature Communications)’ 21일자 온라인 판에 게재됐다. 우리 몸의 세포에서 만들어지는 2만 여종의 단백질은 생합성 이후 인산화, 아세틸화, 당화 등 200여 종의 다양한 변형(post-translational modification)이 발생하게 된다. 세포 내 단백질들은 다양한 변형을 통해 기능과 활성이 조절되며 이러한 변형은 생체 내에서 세포 신호 전달 및 성장 등 우리 몸의 정상적인 신진대사 활동을 조절하는 매우 중요한 역할을 한다. 하지만 유전적 또는 환경적 요인으로 인해 단백질 변형이 비정상적으로 일어나면 세포의 신호 전달, 대사 활동 등이 손상돼 암, 치매, 당뇨를 포함한 다양한 중증 질환을 유발한다. 기존에는 이러한 비정상적 단백질 변형을 동물 모델에서 인위적으로 유발시키고 제어하는 기술이 존재하지 않아 질병의 원인 규명 및 신약 개발 연구에 어려움이 있었다. 박 교수팀은 2016년 9월 다양한 비정상 변형 단백질을 합성할 수 있는 맞춤형 단백질 변형 기술을 개발해 사이언스(Science)지에 발표한 바 있다. 연구팀은 기존 연구를 더 발전시켜 각종 암과 치매 등의 이유가 되는 퇴행성 신경질환의 원인인 비정상적인 단백질 아세틸화를 동물 모델에서 직접 구현하는 기술을 개발했다. 연구팀은 이 기술을 바탕으로 실험용 쥐의 특정한 발달 단계나 시기에 표적 단백질의 특정 위치에서 아세틸화 변형을 조절할 수 있음을 증명했다. 또한 다른 조직에 영향을 주지 않고 간이나 콩팥 등 특정 조직이나 기관에서만 표적 단백질의 아세틸화 변형 제어가 가능함을 확인했다. 연구팀은 “이 기술은 암과 치매 등 단백질의 비정상적 변형으로 발생하는 각종 질병의 바이오마커 발굴 등 질병 원인 규명 연구의 획기적인 전기를 마련할 것으로 기대된다”고 말했다. 박희성 교수는 “실용화 될 경우 지금까지 실현이 어려웠던 다양한 질병에 대한 실질적 동물 모델을 제조할 수 있을 것으로 전망된다”며 “향후 맞춤형 표적 항암제 및 뇌신경 치료제 개발 등 글로벌 신약 연구에 새 패러다임을 열 것이다”고 말했다. □ 그림 설명 그림1. 아세틸화 변형 조절 마우스 개발 및 아세틸화 제어 결과 그림2. 비정상적인 단백질 변형 및 각종 질병의 모식도
2017.03.06
조회수 17197
윤동기 교수, 금속에 버금가는 정렬도 갖는 액정 개발
우리 대학 나노과학기술대학원 윤동기 교수 연구팀이 유동적으로 움직이는 액정 재료들을 금속과 같이 단단한 결정처럼 움직이지 않게 만드는 3차원 나노패터닝 기술을 개발했다. 이 기술은 수십 나노미터 수준의 제한된 공간에서 액정 분자들의 자기조립(self-assembly) 현상을 유도해 이뤄진다. 이는 승강기 안에 적은 수의 사람들이 있다가 많은 사람이 탑승하면서 빽빽하게 자리를 차지하는 현상과 비슷하다. 김한임 박사가 1저자로 참여한 이번 연구 결과는 국제 학술지 사이언스의 자매지인 ‘사이언스 어드밴스(Science advances)’ 2월 10일자 온라인 판에 게재됐다. 이번 연구는 향후 유기 분자 기반의 나노재료를 활용하는 기술에 다양하게 기여할 수 있을 것으로 기대된다. 액정 재료는 손쉬운 배향 제어, 빠른 반응 속도, 이방적(anisotropic)인 광학 특성 등으로 인해 액정표시장치(LCD), 광학 센서 등에 이용되는 대표적인 유기 소재이다. 그러나 액정 재료는 물풀과 같이 유동적으로 흐르기 때문에 구조의 제어가 어렵고 안정적이지 않아 활용 범위가 제한됐다. 연구팀은 문제 해결을 위해 액정 재료가 들어 있는 수십 나노미터크기의 2차원의 한정된 공간을 위아래 옆, 사방에서 눌러주는 시스템을 개발했다. 게스트(guest) 역할의 액정물질과 상호작용하는 호스트(host) 물질을 3차원적 나선형의 나노구조체로 제작함으로써 효과적으로 게스트 액정물질을 제어하는데 성공했다. 이렇게 공간 자체를 줄이게 되면 유동적으로 흐르는 액정 물질조차 마치 고체처럼 단단해지는 효과가 발생한다. 기존 연구가 단순히 2차원의 고정된 공간을 한정적으로 이용했다면 이번 연구는 고정된 공간을 인위적으로 조절함으로써 그동안 존재하지 않던 좁은 공간을 3차원적으로 구현한 것이다. 이 기술을 이용하면 냉각이나 건조 등의 추가 공정 없이도 유기액정재료를 금속 결정상에 버금가는 배열로 3차원 공간에 균일하게 제어할 수 있다. 이를 통해 새로운 개념의 액정 기반 3차원 나노패터닝 기법을 개발할 수 있고, 전기 및 자기장에 민감하게 반응하는 액정 소재의 고유 성질과 융합하면 고효율의 광전자 소자 개발에 기여할 수 있다. 또한 현재 디스플레이 및 반도체에 사용되는 단순한 선과 면 형태의 2차원 패터닝을 탈피해 고차원 구조 중 가장 구현이 어렵다는 나선 형태도 쉽게 제조가 가능하다. 이를 통해 향후 카이랄 센서, 차광소재, 분리막 등 광범위한 분야에 응용할 수 있다. 연구팀은 이번 연구에 대해 “유동적인 액정소재의 배향, 배열 정보를 3차원 공간에 완벽하게 제어하는 데 성공했다”며 “액정 물질 뿐 아니라 다양한 유기 분자로 구성된 나노 구조체를 한정된 공간과 재료의 상호작용을 이용해 손쉽게 제어할 수 있는 기술이다”고 말했다. 윤 교수는 “이번에 개발한 원천기술을 이용하면 현재 사용되는 2차원적 광식각 공정(Photolithography)에 비해 10배 이상 제작 과정을 간소화시킬 수 있다”며 “현재 기술로 구현이 어려웠던 복잡한 구조를 최초로 만듦으로써 반도체, LCD 등 관련 분야에서 신 성장 동력을 창출할 수 있을 것이다”고 말했다. 이번 연구는 미래창조과학부, 교육부와 더불어 한국연구재단이 추진하는 미래유망융합기술파이오니어 사업과 글로벌연구네트워크 지원사업의 일환으로 수행됐다. □ 그림 설명 그림1. 게스트 액정 도입 전 후 사진 및 모식도 그림2. 결정화된 액정구조체 형성 원리 모식도
2017.02.14
조회수 14680
박용근 교수, 성능 수천배 향상된 3차원 홀로그래픽 디스플레이 기술 개발
우리 대학 물리학과 박용근 교수 연구팀(KI 헬스사이언스 연구소)이 성능이 2천 배 이상 향상된 3차원 홀로그래픽 디스플레이 기술을 개발했다. 이번 연구를 통해 기존 무 안경 홀로그래픽 기술의 큰 문제점이었던 제한적인 영상 크기와 시야각을 향상시킬 수 있을 것으로 기대된다. 유현승 박사과정이 1저자로 참여한 이번 연구는 광학 분야 국제 학술지인 ‘네이처 포토닉스(Nature Photonics)’ 1월 24일자 온라인 판에 게재됐다. 공상과학 영화에 자주 등장하는 3차원 홀로그램은 대중에게 친숙한 기술이지만, 영화 속 홀로그램은 컴퓨터 그래픽 효과로 만들어낸 것이다. 실제 기술로 구현하기에는 한계가 많기 때문이다. 이 때문에 디스플레이 산업계는 2차원 영상 두 개로 착시 효과를 활용하는 가상현실(VR)과 증강현실(AR)에 집중하고 있다. 이 기술들은 3차원 이미지 대신 두 개의 서로 다른 2차원 이미지를 눈에 투사하는 방식을 채택한다. 3D안경 등 특수 장비 없이도 볼 수 있는 3차원 홀로그램을 만들기 위해선 공간광파면 조절기(빛이 퍼져나가는 방향을 정밀하게 조절할 수 있는 광학제어장치)를 이용해 빛의 방향을 변경해야 한다. 그러나 이와 같은 공간광파면 조절기를 3차원 디스플레이로 사용하지 못하는 가장 큰 걸림돌은 픽셀의 개수이다. 최근 각광받는 고해상도 모니터의 많은 픽셀 개수조차도 2차원 이미지에만 적합할 뿐 3차원 이미지를 만들기에는 정보량이 매우 부족하다. 이 때문에 기존의 기술로 만들 수 있는 3차원 영상은 크기 1센티미터, 시청 가능 각도 3도 이내 수준으로서 실용성과는 거리가 멀다. 연구팀은 문제 해결을 위해 공간광파면 조절기만 사용하는 대신 간유리를 추가적으로 활용해 빛을 무작위로 산란시켰다. 무작위로 산란된 빛은 여러 방향으로 퍼지기 때문에 넓은 각도에서 시청 가능하고 영상 크기도 확대된다. 하지만 무작위한 패턴을 갖기 때문에 특별한 제어 없이는 3차원 이미지를 볼 수 없다. 연구팀은 빛의 결맞음(파동이 간섭 현상을 보이는 성질) 정도에 대한 수학적인 상관관계를 활용해 빛을 적절히 제어해 문제를 해결했다. 연구팀은 실험을 통해 가로, 세로, 높이 2센티미터 영역에 약 35도의 시청각을 갖는 3차원 이미지를 제작하는 데 성공했다. 이는 기존의 공간대역폭보다 약 2천 600배 이상 향상된 결과이다. 연구팀의 홀로그래픽 디스플레이는 기존의 공간광파면 조절기에 간유리를 추가하는 것만으로 제작이 가능해 일반적인 디스플레이 장치와 결합해 상용화가 가능할 것으로 기대된다. 1저자인 유현승 학생은 “물체의 인식을 방해한다고 여겨진 빛의 산란을 적절히 이용해 기존 3차원 디스플레이보다 향상된 이미지를 만들 수 있음을 선보였다”며 “특수 안경 없이 볼 수 있는 실용적인 디스플레이의 기반이 될 것으로 기대된다”고 말했다. 이번 연구는 한국연구재단의 시간역행반사 창의연구단 사업과 미래유망융합기술파이오니어사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 3차원 홀로그래픽 디스플레이의 모식도 그림2. 2 cm × 2 cm × 2 cm 영역에 만들어진 3차원 이미지 그림3. 3차원 홀로그래픽 디스플레이의 원리
2017.01.24
조회수 16798
윤동기 교수, 붓으로 DNA의 모양을 조절하는 기술 개발
우리 대학 나노과학기술대학원 윤동기 교수 연구팀이 일상생활에서 흔히 쓰이는 화장용 붓을 이용해 일정한 지그재그 형태를 갖는 DNA 기반의 나노 구조체 제작 기술을 개발했다. 차윤정 박사과정 학생이 1저자로 참여한 이번 연구 성과는 재료분야 저명 학술지 ‘어드밴스드 머티리얼즈(Advanced materials)’ 11월 15일자 온라인 판에 게재됐고 액정(liquid crystal) 분야 핫 토픽으로 선정됐다. 기존에도 DNA를 빌딩블록으로 사용해 다양한 나노 구조체를 만드는 기술은 많이 존재했다. 그러나 이 방식은 복잡한 설계과정이 필요하고 특히 염기서열이 조절된 값비싼 DNA를 이용해야 하는 단점이 있다. 연구팀은 연어에서 추출한 DNA 물질을 이용해 기존보다 1천 배 이상 저렴한 비용으로 잘 정렬된 지그재그 형태의 나노 구조체를 구현했다. 연구팀은 화장품 가게에서 구매한 화장용 붓으로 연어에서 추출한 DNA를 물감처럼 이용해 그림 그리듯 기판에 한 방향으로 문질렀다. 수 센티미터 크기의 붓을 이용해 지름이 약 2 나노미터인 DNA 분자들을 붓질 방향으로 나란히 정렬시켰다. 얇게 퍼진 진한 상태의 DNA 필름이 공기 중에 노출돼 건조되며 이 때 기판의 바닥에서 잡아주는 힘 때문에 팽창력이 작용한다. 이 팽창력은 DNA의 탄성력과 상호작용해 일렬로 향하던 DNA의 분자에 파도모양의 기복이 생기면서 일정한 지그재그 패턴이 형성된다. 형성된 DNA 지그재그 패턴은 생물체에서 추출한 저렴한 DNA를 사용했기 때문에 그 내부정보(sequence)까지는 조절되지 않았지만, DNA 물질의 구조적 정교함은 변하지 않아 아주 일정한 구조체가 된다. 이렇게 정밀하게 구조가 조절된 DNA 막 위에 다른 물질을 바르면 DNA 구조에 따라 정밀하게 그 물질이 정렬하기 때문에 다양한 분야에 이용 가능하다. 예를 들어 액정 디스플레이에 사용되는 다른 액정을 정렬시킬 수 있고 금속 입자, 반도체 물질 역시 정렬이 가능하다. 이러한 기능을 통해 새로운 개념의 광전자 소자로의 응용에 기여할 수 있을 것으로 기대된다. 윤 교수는 “DNA 뿐 아니라 자연계에 존재하는 단백질, 근육 세포, 뼈의 구성물질 등 다양한 생체 물질을 광전자 분야에 사용할 수 있다는 점에서 큰 의의를 갖는다”고 말했다. 이번 연구는 한국연구재단의 나노소재 원천기술개발사업 및 미래유망융합기술 파이오니아 사업을 통해 수행됐다. □ 그림 설명 그림1. 규칙적인 DNA 지그재그 구조체의 이미지와 내부 분자의 배향을 설명하는 모식도 그림2. 정렬되지 않던 DNA(좌)가 붓질 및 건조시킨 후 정렬된 과정(우) 그림3. 마이크로 채널 기판을 이용한 DNA 지그재그 구조체의 제어 그림4. DNA 지그재그 구조체 표면 위에 형성된 액정 물질의 배향제어 모식도 및 편광 현미경 이미지
2016.12.01
조회수 15150
<<
첫번째페이지
<
이전 페이지
11
12
13
14
15
16
17
18
>
다음 페이지
>>
마지막 페이지 18