-
빛 투과율 조절하는 능동형 광학 필름 개발
우리 대학 연구진이 기존 창호시스템을 교체하지 않고서도 투과율을 큰 폭으로 자유롭게 조절할 수 있는 에너지 절감형 스마트 윈도우 등으로 활용이 가능한 새로운 광학 필름 제작 기술을 개발했다.
우리 대학 신소재공학과 전석우 교수와 건설및환경공학과 홍정욱 교수·신소재공학과 신종화 교수 공동연구팀이 3차원 나노 복합체를 이용, 에너지의 효율적인 신축변형을 통해 세계 최고 수준의 가시광 투과율 조절이 가능한 능동형 광학 필름을 개발하는데 성공했다고 14일 밝혔다.
전석우 교수와 홍정욱 교수가 교신 저자로, 조동휘 박사과정 학생과 신라대학교 심영석 교수가 공동 1저자로 참여한 이번 연구는 재료 분야의 세계적인 학술지 ‘어드밴스드 사이언스(Advanced Science)’ 4월 26일 字 온라인판에 게재됐다. (논문명: High-Contrast Optical Modulation from Strain-Induced Nanogaps at Three-Dimensional Heterogeneous Interfaces)
해당 연구진들은 정렬된 3차원 나노 네트워크에 기반한 신축성 나노 복합체를 이용해, 가시광 투과율을 최대 90%에서 16%까지 조절 가능한 넓은 면적의 광학 필름 제작에 필요한 원천 기술을 확보했다. 약 74%의 범위를 갖는 이는 평균적으로 46%의 범위를 가졌던 기존 2차원 필름의 수준을 훨씬 뛰어넘는 세계 최고 수준의 기술이다.
최근 제로 에너지 빌딩, 스마트 윈도우, 사생활 보호 등 에너지 저감/감성 혁신 응용에 대한 관심이 급증함에 따라, 능동형 광학 변조 기술이 주목받고 있다. 기존 외부 자극 (전기/열/빛 등)을 이용한 능동형 광학 변조 기술은 느린 반응속도와 불필요한 색 변화를 동반하고 낮은 안정성 등의 이유로 선글라스, 쇼케이스, 광고 등 매우 제한적인 분야에 적용돼왔기 때문에 현재 새로운 형태의 광학 변조 기술 개발이 활발히 진행 중이다.
에너지 효율적인 신축 변형을 이용한 광학 변조 기술은 비교적 간단한 구동 원리와 낮은 에너지 소비로 효율적으로 투과율을 제어할 수 있는 장점을 지녀 그동안 학계 및 관련 업계에서 집중적인 관심을 받아왔다. 그러나 기존 연구에서 보고된 광 산란 제어를 유도하는 구조는 대부분 광학 밀도가 낮은 2차원 표면 구조에 기반하기 때문에 좁은 투과율 변화 범위를 갖고, 물 등 외부 매질과 인접할 때 광학 변조기능을 잃는 문제를 가지고 있다. 특히, 비 정렬 구조에 바탕을 두고 있어 광학 변조 특성이 균일하지 못해서 넓은 면적으로 만들기도 힘들다.
연구팀은 정렬된 3차원 나노구조 제작에 효과적인 근접장 나노패터닝 (PnP, Proximity-field nanopatterning) 기술과 산화물 증착(증기를 표면에 얇은 막으로 입힘)을 정교하게 제어할 수 있는 원자층 증착법 (ALD, Atomic layer deposition)을 이용했다. 이에 주기적인 3차원 나노쉘 (nanoshell) 구조의 알루미나 (alumina)가 탄성중합체에 삽입된 신축성 3차원 나노복합체 필름을 현존하는 광학 변조 필름 중 가장 큰 면적인 3인치×3인치 크기로 제작하는 데 성공했다.
광학 필름을 약 60% 범위에서 당겨 늘리는 경우, 산화물과 탄성중합체의 경계면에서 발생하는 수없이 많고 작은 구멍에서 빛의 산란 현상이 발생하는데 연구진은 이를 이용해 세계 최고 수준의 가시광 투과율 조절 범위인 약 74%를 달성했다. 동시에 10,000회에 걸친 반복적인 구동 시험과 굽힘과 뒤틀림 등 거친 변형, 70℃ 이내 고온 환경에서의 구동, 물속에서의 구동 특성 등을 확인한 결과 높은 내구성과 안정성을 확인했다. 이와 함께 재료역학적‧광학적 이론 해석을 바탕으로 경계면에서 발생하는 광 산란 현상 메커니즘도 규명하는 데 성공했다.
전 교수 공동연구팀이 개발한 이 기술은 기존 창호 시스템 교체 없이도, 간단한 얇은 필름 형태로 유리 표면에 부착함으로써 투과율 조절이 가능한 에너지 절감형 스마트 윈도우로 활용이 가능하다. 이 밖에 두루마리 타입의 빔프로젝터 스크린 응용 등 감성 혁신적인 폭넓은 응용이 가능할 것으로 기대된다.
이번 연구는 한국연구재단 원천기술개발사업의 다부처 공동사업과 글로벌 프론티어 사업, 그리고 이공분야기초개발사업의 지원을 통해 수행됐다.
2020.05.14
조회수 18677
-
알츠하이머 치료제 개발을 위한 새로운 가능성 제시
우리 연구진이 알츠하이머 발병 원인을 동시다발적으로 억제 가능한 치료제 개발 원리를 증명하고 또 동물실험에서 효능을 입증하는 등 알츠하이머병에 관한 새로운 치료제 개발에 대한 가능성을 제시함으로써 많은 주목을 받고 있다.
우리 대학 화학과 임미희 교수 연구팀이 알츠하이머 발병의 원인으로 알려진 ‘활성 산소종’과 ‘아밀로이드 베타’, ‘금속 이온’ 등을 손쉽고도 동시다발적으로 억제할 수 있는 치료제 개발 원리를 새롭게 증명하고 알츠하이머 질환에 걸린 동물 모델(실험용 쥐) 치료를 통해 이를 입증하는 데 성공했다고 11일 밝혔다.
이번 연구에는 KAIST 백무현 교수와 서울아산병원 이주영 교수도 함께 참여했으며 저명 국제 학술지인 미국 화학회지(Journal of the American Chemical Society) 4월 1일 字에 게재됐다. 이 논문은 특히 4월 26일 字 ‘편집장 선정 우수 논문(Editors’Choice Paper)’으로 꼽혀 많은 주목을 받고 있다. (논문명 : Minimalistic Principles for Designing Small Molecules with Multiple Reactivities against Pathological Factors in Dementia)
알츠하이머병은 치매를 일으키는 대표적인 뇌 질환이다. 이 질환의 원인으로 다양한 요소들이 제시됐지만, 원인 인자들 사이의 원리들은 아직도 명확하게 밝혀지지 않고 있다.
알츠하이머병을 일으키는 대표적인 원인 인자로는, 활성 산소종과 아밀로이드 베타, 금속 이온이 알려져 있다. 이 요인들은 개별적으로 질병을 유발할 뿐만 아니라, 상호 작용을 통해 뇌 질환을 더욱 악화시킬 수 있다. 예를 들어, 금속 이온들은 아밀로이드 베타와 결합해 아밀로이드 베타의 응집 속도를 촉진시킬 뿐만 아니라, 활성 산소종들을 과다하게 생성하여 신경독성을 유발할 수 있다. 따라서 이처럼 복잡하게 얽힌 여러 원인 인자들을 동시에 겨냥할 수 있는 새로운 알츠하이머병 치료제 개발이 필요하다.
임 교수 연구팀은 단순한 저분자 화합물의 산화 환원 반응을 이용해 알츠하이머병의 원인 인자들을 손쉽게 조절할 수 있음을 증명했다. 임 교수팀은 산화되는 정도가 다른 화합물들의 합리적 설계를 통해 쉽게 산화되는 화합물들은 알츠하이머 질병의 여러 원인 인자들을 한꺼번에 조절할 수 있다는 사실을 확인했다.
연구 결과, 임 교수 연구팀은 저분자 화합물의 산화 환원 반응으로 활성 산소종에 대한 항산화 작용의 가능성을 확인했을 뿐만 아니라 아밀로이드 베타 또는 금속-아밀로이드 베타의 응집 및 섬유 형성 정도 또한 확연히 감소되는 것을 실험적으로 증명했다.
이 밖에 알츠하이머병에 걸린 동물 모델(실험용 쥐)에 체외 반응성이 좋고 바이오 응용에 적합한 성질을 가지고 있는 대표 저분자 화합물을 주입한 한 결과, 뇌 속에 축적된 아밀로이드 베타의 양이 크게 줄어드는 현상과 함께 알츠하이머 동물 모델의 손상된 인지 능력과 기억력이 향상되는 결과를 확인했다.
이번 연구가 크게 주목받는 이유는 알츠하이머병을 치료하기 위한 화합물을 개발하는 데 있어 아주 단순한 방향족 저분자 화합물의 구조변화를 통해 산화 환원 정도를 조절하여 여러 원인 인자들을 동시에 조절할 수 있고 이러한 간단한 원리를 통해 누구나 손쉽게 치료제를 디자인할 수 있기 때문이다.
임미희 교수는“이번 연구는 아주 단순한 방향족 저분자 화합물의 산화 정도의 차이를 이용해 여러 원인 인자들과의 반응성 유무를 확연히 구분할 수 있다는 점을 증명한 데 의미가 있다”며, “이 방법을 신약 개발의 디자인 방법으로 사용한다면, 비용과 시간을 훨씬 단축시켜 최대의 효과를 가질 수 있다”고 덧붙였다. 임 교수는 이와 함께 “제시된 치료제의 디자인 방법은 다양한 퇴행성 뇌 질환 치료제들의 개발 성공 가능성을 높일 것으로 기대된다”라고 강조했다.
한편 이번 연구는 한국연구재단, 기초과학연구원과 서울아산병원 등의 지원을 받아 수행됐다.
2020.05.11
조회수 15580
-
이상엽 특훈교수 연구팀, 미생물 기반 바이오 숙신산 대량 생산 기술 개발
국내 연구진이 플라스틱의 원료와 식품·의약품 합성에 사용되는 중요한 화학물질인 숙신산을 대량으로 생산할 수 있는 기술을 개발했다.
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀과 경북대학교(총장 김상동) 김경진 교수 연구팀이 시스템 대사공학을 이용해 미생물 기반의 바이오 숙신산 대량 생산을 가능케 하는 세계 최고의 효율을 지닌 숙신산 생산 균주를 개발하는데 성공했다고 6일 밝혔다. 이 교수와 김 교수가 이끄는 공동연구팀의 이번 연구 성과는 국제학술지 ‘네이쳐 커뮤니케이션 (Nature Communications)’ 4월 23일 字 온라인 판에 게재됐다. (논문명 : Enhanced succinic acid production by Mannheimia employing optimal malate dehydrogenase)
기후변화 대응 기술 중 바이오리파이너리 기술은 화석연료에 의존하지 않고 바이오매스 원료로부터 생물공학적 ‧ 화학적 기술을 이용해 화학제품과 바이오연료 등 산업 화학물질을 친환경적으로 생산하는 분야이다. 이 중 특히 핵심 기술인 ‘시스템 대사공학’은 미생물의 복잡한 대사회로를 효과적으로 조작해 산업 화학물질의 생산 효율을 높일 수 있다.
현대 산업 전반은 화석연료를 바탕으로 하는 산업에 매우 의존적이며 숙신산의 생산 또한 화석연료를 기반으로 이뤄진다. 그러나 이는 화석연료의 고갈과 이에 따른 원류 가격의 지속적인 증가, 화석연료 기반 산업으로부터 발생되는 지구 온난화 등 매우 심각한 부작용을 낳는다. 또 급속도로 고갈돼 가는 화석연료를 대체할 수 있는 바이오 기반의 숙신산 생산은 필수적이다. 연구팀은 한우의 반추위에서 분리한 미생물인 맨하이미아(Mannheimia)의 대사회로를 조작해 숙신산을 생산하는 연구를 지속해 왔으며 이번에 세계 최고의 생산 효율을 지닌 숙신산을 생산할 수 있는 개량균주를 개발하는데 성공했다.
숙신산은 탄소 4개로 구성된 다이카복실산인데 대사과정에 있어 숙신산 한 분자를 생산할 때 이산화탄소 한 분자를 소모한다. 따라서 미생물 배양에 의한 숙신산 생산을 통해 이산화탄소의 저감에 기여한다. 연구팀은 이번 연구 과정에서 숙신산 전환에 핵심역할을 하는 효소의 구조를 밝히는 한편 단백질 공학을 통해 효소 성능을 개선했으며, 이를 전체 대사회로 최적화에 연계시키는 시스템 대사공학을 수행했다. 이를 통해 포도당, 글리세롤, 이산화탄소를 원료로 리터당 134g(그램)의 높은 농도로 숙신산을 생산하고 경제와 가장 밀접하게 연관되는 생산성이 시간당·리터당 21g(그램)에 달하는 등 매우 효율적인 공정을 개발했는데 이는 세계 최고의 효율성을 지닌 숙신산 생산 공정으로 평가를 받고 있다. 지금까지는 일반적으로 시간당·리터당 1~3g(그램)이 최고 수준이었다.
기후변화 등 환경 문제의 주범으로 꼽히는 화석연료에 대한 의존성을 대폭 낮추고 주요 산업 기반 화학물질인 숙신산을 효과적으로 생산할 수 있는 근간을 제시한 이번 연구 성과는 학계로부터 중요성을 인정받아, 국제학술지인 네이처 커뮤니케이션지에 게재됐다. KAIST 이상엽 특훈교수는 “이번에 개발한 미생물 기반 바이오 숙신산 대량 생산 기술은 화학산업의 플랫폼 화학물질로 사용될 수 있는 숙신산을 보다 더 효율적으로 생산할 수 있기 때문에 환경친화적인 바이오화학 산업으로의 전환에 기여할 것”이라고 설명했다.
한편 이번 연구는 과학기술정보통신부가 지원하는 ‘C1 가스 리파이너리 사업’ 및 ‘바이오리파이너리를 위한 시스템대사공학 원천기술개발 과제’의 지원을 받아 수행됐다.
2020.05.06
조회수 14873
-
미생물의 새로운 C1 가스 흡수 대사회로 규명
생명과학과 조병관 교수 연구팀이 미생물이 C1 가스(이산화탄소, 일산화탄소 등 단일 탄소로 이뤄진 가스)를 활용하는 새로운 대사 회로 메커니즘을 규명했다. 연구팀이 규명한 새 대사회로는 현재까지 알려진 관련 대사회로 중 가장 우수한 효율을 갖고 있어 향후 C1 가스를 고부가가치 생화학물질로 전환하는 산업적 응용에 활용 가능할 것으로 기대된다.
조병관 교수와 UNIST 김동혁 교수 공동 연구팀이 수행하고 KAIST 송요셉 박사가 1 저자로 참여한 이번 연구결과는 국제 학술지 미국국립과학원회보(PNAS) 3월 13일 자 온라인판에 게재됐다.(논문명 : Functional cooperation of the glycine synthase-reductase and Wood-Ljungdahl pathways for autotrophic growth of Clostridium drakei)
현재까지 자연계에 알려진 C1 가스를 유기물로 전환하는 대사회로는 총 6개이며, 대표적인 예로 식물의 광합성을 들 수 있다. 그중 미생물인 아세토젠 내에서 발견되는 우드-융달 대사회로는 C1 가스의 흡수 대사회로 중 가장 효율적인 회로로 알려져 있다. 특히 아세토젠은 다양한 환경에서 서식할 수 있어 1년에 1천억kg의 아세틸산(아세토젠의 생산물)을 생산하며 지구 탄소 순환에 큰 영향을 끼친다.
그러나 아세토젠 미생물은 대장균과 같은 산업 미생물과 비교했을 때 생장 속도가 10배 이상 느리다. 이는 C1 가스를 유용한 생화학물질로 변환하기 위한 산업적 미생물로 이용되기에 한계점으로 작용한다. 이에 C1 가스 고정을 더욱 효율적으로 할 수 있는 새로운 대사경로 연구가 활발히 이뤄지고 있다.
연구팀은 문제 해결을 위해 아세토젠 미생물 중 하나인 클로스트리디움 드라케이(Clostridium drakei)가 이산화탄소 흡수 시 다른 미생물에 비해 빠른 성장 속도를 나타내는 점에 주목해, C1 가스 전환효율을 높일 실마리를 찾아낼 수 있을 것으로 예측했다. 연구팀은 차세대시퀀싱 기술을 이용한 게놈서열 및 유전자 분석을 통해 디지털 가상 세포를 구축하고 C1 가스의 흡수 대사경로 효율을 예측했다. 이 결과 현재까지 보고되지 않은 새로운 7번째 대사회로의 존재를 발견했다.
우드-융달 대사 회로와 글리신 생합성 대사회로가 결합돼 C1 가스 고정과 동시에 세포 생장에 필요한 에너지를 획득하는 새로운 형태의 대사회로의 존재를 규명했다. 연구팀은 대사 회로를 구성하는 유전자의 발현량, 동위원소를 이용한 대사경로 흐름 추적, 유전자가위 기술 등을 통해 클로스트리디움 드라케이 미생물이 실제로 새로운 대사 회로를 사용해 C1 가스를 흡수하는 것을 증명했다. 더불어 관련 유전자들을 세포 생장 속도가 느린 다른 아세토젠 미생물에 도입한 결과 빠른 속도로 C1 가스를 사용하여 생장함을 확인했다.
조 교수는 “연구팀이 발굴한 신규 C1 가스 고정 대사 회로를 이용해 아세토젠 미생물의 느린 생장 속도로 인한 고부가가치 생화학물질 생합성 한계를 극복할 수 있기를 기대한다”라고 말했다.
이번 연구결과는 과학기술정보통신부와 한국연구재단이 추진하는 C1 가스 리파이너리 사업 및 지능형바이오시스템 설계 및 합성 연구단(글로벌프론티어사업)의 지원과 KAIST 초세대 협력연구실 사업(바이오디자인 연구실)의 지원을 받아 수행됐다.
2020.03.26
조회수 16096
-
50년 만에 스핀구름 존재 규명
물리학과 심흥선 교수 연구팀(응집상 양자 결맞음 선도연구센터)이 금속과 반도체 안에서 불순물의 자성을 양자역학적으로 가리는 스핀 구름의 존재를 규명하는 데 성공했다.
이는 50년 동안 입증되지 않아 논란이 있던 스핀 구름의 존재를 밝힌 것으로, 향후 차세대 양자정보 소자 개발 등에 활용할 수 있을 것으로 기대된다.
일본이화학연구소(RIKEN), 홍콩성시대학(City University of Hong Kong)과 공동으로 수행하고 KAIST 물리학과 심정민 박사과정 학생이 1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘네이처(Nature)’ 3월 12일 자에 게재됐다. (논문명 : Observation of the Kondo screening cloud)
도체나 반도체 내의 잉여 전하는 주위 자유 전자들의 전하 구름에 의해 가려진다. 이와는 근본적으로 원리가 다르지만, 도체나 반도체 내 불순물이 스핀을 가질 때, 이 스핀은 주위의 자유 전자들에 의해 생성된 스핀 구름에 의해 가려진다고 알려져 있다. 콘도 효과 (Kondo effect)라고 불리는 이 현상은 충분히 낮은 온도에서 발현되는 양자역학적 현상으로 대표적 자성 현상이다.
콘도 효과의 여러 특성들은 대부분 규명됐으나 스핀 구름의 존재가 입증되지 않은 채 남아있었다. 지난 50년 동안 다양한 시도들이 꾸준히 있었으나 스핀 구름은 발견되지 않았고, 이에 따라 스핀 구름이 실제로 존재하는 것인가에 대한 논쟁이 있었다. 스핀 구름이 다양한 자성 현상에서 중요한 역할을 할 것으로 예측됐기 때문에, 스핀 구름을 발견하고 제어하는 것은 관련 학계에서 성배를 찾는 것과 같은 정도의 중요성으로 비유됐다.
심 교수 연구팀은 일본 이화학연구소와 홍콩성시대학의 연구진들과 공동 연구를 통해 콘도 스핀 구름을 최초로 발견했다. 발견한 스핀 구름의 크기는 마이크로미터(10-6 미터)에 달한다.
연구팀은 스핀 구름을 전기 신호를 이용해 관측하는 방법을 2013년에 선행연구로 제안한 바 있다. 이 선행연구에서는 전기장을 스핀 구름 내부에 가한 경우와 외부에 가한 경우에 각각 서로 다른 전류가 발생함을 예측했고, 이를 이용해 스핀 구름 공간 분포의 관측을 제안했다.
심 교수 연구팀의 제안에 따라 일본이화학연구소와 홍콩성시대학의 연구팀은 양자점을 이용해 반도체에 불순물 스핀을 인위적으로 생성하고, 생성된 불순물 주변에 서로 다른 여러 곳에 전기장을 인가할 수 있는 양자 소자를 제작하는 실험을 수행했다.
100mK(밀리켈빈)의 낮은 온도에서 관측된 소자의 전기 신호를 심 교수 연구팀에서 분석한 결과, 발견된 스핀 구름의 크기와 공간 분포는 이론 예측과 일치했고 그 크기는 수 마이크로미터(10-6 미터)로 확인됐다.
심흥선 교수는 “스핀 구름의 존재 입증은 학계의 숙원으로, 이번 연구에서 스핀 구름이 발견된 만큼 스핀 구름에 대한 후속 연구들이 활성화될 것으로 기대된다”라며, “스핀 구름을 전기적으로 제어해 미해결 자성 문제들을 이해하는 데에 활용할 수 있을 뿐 아니라, 스핀 구름의 양자 얽힘 특성을 기반으로 해 차세대 양자정보 소자를 개발할 수 있다”라고 말했다.
이 연구는 한국연구재단의 기초과학 선도연구센터 지원사업의 지원을 통해 수행됐다.
2020.03.13
조회수 13821
-
포유류 종마다 시각 뇌신경망 구조 다른 원인 밝혀
바이오및뇌공학과 백세범 교수 연구팀이 포유류 종들의 시각피질에서 서로 다른 뇌신경망 구조가 형성되는 원리를 밝혔다.
이번 연구결과는 시스템 뇌신경과학 분야에서 수십 년간 설명되지 못했던 문제를 이론적 접근과 계산적 모델 시뮬레이션을 통해 해답을 제시한 계산뇌과학 연구의 성공적인 예시로 평가된다.
연구팀은 두뇌의 시각피질과 망막에 분포하는 신경세포들 간의 정보 추출 비율을 분석함으로써 특정 포유류 종이 갖는 시각피질의 기능적 구조를 예측할 수 있음을 밝혀냈다.
연구팀은 서로 다른 크기의 망막과 시각피질 사이의 신경망 연결 모델을 시뮬레이션 해 두 정보 처리 영역 사이에 대응되는 신경세포의 비율이 달라짐에 따라 완전히 다른 두 가지 구조의 기능성 뇌지도가 형성됨을 보이고, 이 결과가 실제 실험에서 관측되는 신경망 구조와 일치함을 증명했다.
장재선, 송민 박사과정이 공동 1저자로 참여한 이번 연구는 국제 학술지 ‘셀(cell)’의 온라인 자매지 ‘셀 리포츠(Cell Reports)’ 3월 10일 자에 게재됐다. (논문명 : Retino-cortical mapping ratio predicts columnar and salt-and-pepper organization in mammalian visual cortex)
포유류의 시각피질에서는 시각 자극의 방향에 따라 반응의 정도가 달라지는 성질인 방향 선택성(orientation selectivity)을 갖는 세포들이 관측된다. 원숭이, 고양이 등의 종에서는 이 세포들의 선호 방향이 연속적, 주기적인 형태로 변하는 방향성 지도(orientation map) 구조를 형성하는 반면, 생쥐 등의 설치류에서는 마치 소금과 후추를 뿌려 놓은 듯한 무작위에 가까운 형태로 분포해, 이를 소금-후추 구조(salt-and-pepper organization)라 한다.
동일한 역할을 수행하는 것으로 보이는 기능성 뇌신경망이 이렇게 종에 따라 다른 구조를 갖는 원인을 찾기 위해 지난 수십여 년 간 다양한 연구가 진행됐으나, 아직까지도 이를 결정하는 요인에 대해서는 명확하게 알려진 바가 없었다.
이러한 원리를 규명하기 위해 연구팀은 서로 다른 크기의 망막과 시각피질이 연결될 때 동일한 망막 신호를 샘플링하는 시각피질 세포의 비율이 달라지게 된다고 가정했다. 이러한 조건에서 망막-시각피질 신호의 샘플링 형태를 시뮬레이션 하여 샘플링 비율에 따라 시각피질에서 형성되는 기능성 지도의 구조가 완전히 다르게 결정될 수 있음을 발견했다.
이 결과를 기반으로 연구팀은 다양한 종들에 대한 망막 및 시각피질 데이터를 종합적으로 비교해 시각피질이 클수록, 또 망막이 작을수록 연속적인 방향성 지도가 형성되는 경향이 있음을 확인했다.
또한, 기존의 연구에서 확인된 포유류 여덟 종의 시각피질-망막 크기 비율을 기반으로 한 모델을 정량적으로 시뮬레이션하고, 이 결과가 실험에서 관측된 것과 같이 방향성 지도 존재 여부에 따라 두 그룹으로 명확히 나누어짐을 확인했다.
이러한 결과는 다른 종으로 진화가 이뤄질 때, 감각기관의 크기와 같은 지극히 단순한 물리적인 조건의 차이에 의해서도 뇌신경망의 구조가 완전히 다른 방향으로 변화될 수 있음을 뜻한다. 이는 다양한 생물학적 구조가 기존의 생각보다 훨씬 단순한 물리적 요소들의 차이에 의해 예측되거나 설명될 수 있음을 보여준다.
백세범 교수는 “이미 오랫동안 알려져 있었으나 그 의미를 찾아내지 못했던 데이터들과 이론적인 모델을 결합해 새로운 발견을 도출해낸 의미 있는 연구이다”라며 “뇌 과학뿐만 아니라 계통분류학, 진화생물학 등 생물의 기능적 구조와 관련된 다양한 생물학 분야에서 이론적 모델 연구의 역할에 대한 중요한 시각을 제공할 것이다”라고 언급했다.
이번 연구는 한국연구재단의 이공분야기초연구사업 및 원천기술개발사업의 지원을 받아 수행됐다.
2020.03.11
조회수 13396
-
산소 이용해 알츠하이머 유발 단백질 독성 개선
화학과 임미희 교수 연구팀이 공기 중의 산소를 이용해 알츠하이머 유발에 관여하는 단백질의 독성을 개선할 수 있는 화학적 도구를 설계하는 데 성공했다.
연구팀은 알츠하이머 발병에 관여한다고 알려진 구리-아밀로이드 베타 복합체의 응집과 이에 의한 발생한 세포 독성을 개선할 수 있는 화학적 도구를 설계하고, 구리 배위권 이중 변형을 통한 작용 원리를 분자적 수준에서 밝혀냈다.
한지연 박사과정이 1 저자로 참여한 이번 연구 결과는 국제 학술지인 미국 국립과학원회보(PNAS)에 2월 27일 자로 게재됐다.(논문명 : Mechanistic approaches for chemically modifying the coordination sphere of copper-amyloid-β complexes)
전이 금속 중 구리 이온은 항산화 작용과 신경전달물질 생성 등 신체에 필수적인 생리적 기능에 관여한다. 건강한 사람의 뇌와 달리 알츠하이머병 같은 퇴행성 뇌 질환 환자의 뇌에서는 이러한 구리 이온의 항상성이 완전히 무너져있다고 알려져 있다.
알츠하이머 발병에 밀접하게 관계가 있다고 알려진 아밀로이드 베타 펩타이드는 구리 이온과 강하게 결합할 수 있다. 구리 이온은 아밀로이드 베타의 응집을 촉진할 뿐만 아니라, 활성산소를 과다하게 생성해 신경독성을 일으킨다. 따라서 구리-아밀로이드 베타 복합체를 표적하고 그 배위 결합을 효과적으로 막을 수 있는 화학적 접근 기법이 최근 주목받고 있다.
연구팀은 알츠하이머 발병 원리에 직간접적으로 관여하는 구리 이온이 공기 중 산소와 반응할 수 있다는 점을 이용했다. 이에 구리-아밀로이드 베타 복합체와 상호작용할 수 있도록 화합물을 합리적으로 설계하고, 해당분자가 산소가 존재하는 환경에서 구리 배위권에 위치한 특정 아미노산에 결합 및 산화에 의한 이중 변형을 일으킨 것을 확인했다.
연구팀은 연구팀이 개발한 배위권 이중 변형 기법에 따라 구리-아밀로이드 베타의 응집 과정 및 섬유 형성 정도가 확연히 달라짐을 확인했다. 이 기법을 통해 구리 이온의 병리학적 특성 중 하나인 활성산소 생성 정도 또한 두드러지게 개선된 것을 관찰했다.
나아가 기존의 기법과 비교했을 때 구리-아밀로이드 베타 복합체에 의한 세포 독성을 더욱 효과적으로 회복시키는 것으로 나타났다.
이번 연구는 산소의 유무, 전이 금속의 종류, 산화 활성 금속의 산화수, 아밀로이드성 단백질의 종류 등 다양한 변수의 통제를 통해 해당 화합물이 아밀로이드 베타의 구리 배위권을 어떻게 변형시켰는지에 대한 작용 원리를 분자적 수준에서 제안했다는 의의가 있다.
임미희 교수는 “알츠하이머 발병에 관여한다고 알려진 구리 이온이 산소와 반응할 수 있다는 점을 역으로 이용했다”라며 “이번 연구에서 최초로 발표한 단백질 내 구리 배위권 이중 변형 기법을 바탕으로, 다른 퇴행성 뇌질환의 치료제 개발에도 더욱 박차를 가할 수 있을 것이다”라고 말했다.
이번 연구는 한국연구재단과 KAIST의 지원으로 수행됐다.
2020.03.03
조회수 14624
-
저전력·고속 터널 전계효과 트랜지스터 개발
물리학과 조성재 교수 연구팀이 기존의 금속 산화물 반도체 전계효과 트랜지스터(metal-oxide-semiconductor field-effect transistor, MOSFET) 대비 작동전력 소모량이 10배 이상, 대기전력 소모량이 1만 배 가까이 적은 저전력, 고속 트랜지스터를 개발했다.
조 교수 연구팀은 2차원 물질인 흑린(black phosphorus)의 두께에 따라 밴드갭이 변하는 독특한 성질을 이용해 두 물질의 접합이 아닌 단일 물질의 두께 차이에 의한 이종접합 터널을 제작하는 데 성공했다. 이러한 단일 물질의 이종접합을 터널 트랜지스터에 활용하면 서로 다른 물질로 제작한 이종접합 트랜지스터에서 발생했던 격자 불균형, 결함, 계면 산화 등의 문제를 해결할 수 있어 고성능 터널 트랜지스터의 개발이 가능하다.
김성호 연구원이 1 저자로 참여한 이번 연구는 국제 학술지 ‘네이처 나노테크놀로지 (Nature Nanotechnology)’ 1월 27일 자 온라인판에 게재됐다. (논문명 : Thickness-controlled black phosphorus tunnel field-effect transistor fro low-power switches).
무어 법칙에 따른 트랜지스터 소형화 및 집적도 증가는 현대의 정보화 기술을 가능하게 했지만 최근 트랜지스터의 소형화가 양자역학적 한계에 다다르면서 전력 소모가 급격히 증가해 이제는 무어 법칙에 따라 트랜지스터 소형화가 진행되지 못하는 상황이다. 최근에는 자율주행차, 사물인터넷 등의 등장으로 많은 양의 데이터를 저전력, 고속으로 처리할 수 있는 비메모리 반도체의 기술 발달이 시급히 요구되고 있다.
트랜지스터의 전력 소모는 크게 작동 전력 소모와 대기 전력 소모로 나뉜다. 작동 전력과 대기 전력을 같이 낮추기 위해서는 트랜지스터의 작동 전압과 대기 상태 전류를 동시에 낮추는 것이 필수적이다. 이를 위해서는 전류를 10배 증가시키는데 필요한 전압으로 정의되는 SS 값(subthreshold swing, 단위: mV/decade = mV/dec)의 감소가 필요한데, 금속 산화물 반도체 전계효과 트랜지스터에서는 SS 값이 상온에서 60 mV/dec 이하로 낮아질 수 없다. 이를 해결하기 위해서는 상온에서 SS 값을 60 mV/dec 이하로 낮출 수 있는 새로운 트랜지스터의 개발이 필요하다. 이전에 개발되었던 낮은 SS를 가지는 저전력 터널 트랜지스터의 경우 트랜지스터 채널을 구성하는 두 물질의 이종접합 계면에서 산화막 등의 문제가 발생하여 작동 상태에서 낮은 전류를 가지는 문제가 있었다. 작동 상태 전류는 트랜지스터 작동속도에 비례하기 때문에, 낮은 작동 상태 전류는 저전력 트랜지스터의 경쟁력을 떨어뜨린다.
조 교수 연구팀이 적은 전력소모를 위한 낮은 SS 값과 고속 작동을 위한 높은 작동 상태 전류를 단일 트랜지스터에서 동시에 달성한 것은 유례없는 일로 2차원 물질 기반의 저전력 트랜지스터가 기존의 금속 산화물 반도체 전계효과 트랜지스터의 전력 소모 문제를 해결하고, 궁극적으로 기존 트랜지스터를 대체하고 미래의 저전력 대체 트랜지스터가 될 수 있음을 의미한다. 조성재 교수는 “이번 연구는 기존의 어떤 트랜지스터보다 저전력, 고속으로 작동해 실리콘 기반의 CMOS 트랜지스터를 대체할 수 있는 저전력 소자의 필요충분조건을 최초로 만족시킨 개발이다”라며 “대한민국 비메모리 산업뿐 아니라 세계적으로 기초 반도체 물리학 및 산업 응용에 큰 의의를 지닌다”라고 말했다.
이번 연구는 한국연구재단 미래반도체신소자원천기술개발사업의 지원을 받아 수행됐다.
2020.02.20
조회수 16299
-
암세포의 약물 교차저항 원리 규명
우리 대학 생명화학공학과 김유식 교수 연구팀이 암 치료의 난제 중 하나인 암세포의 다중약물 내성 원리를 규명하는 데 성공했다.
이 연구는 학부생 연구 참여 프로그램(URP: Undergraduate research program)을 통해 마크 보리스 알돈자(Mark Borris Aldonza) 학생이 참여해 그 의미를 더했다. 마크 보리스 알돈자 학부생이 1 저자로 참여한 이번 연구는 국제 학술지 ‘사이언스 어드밴시스(Science Advances)’ 2월 7일 자 온라인판에 게재됐다. (논문명 : Prior acquired resistance to paclitaxel relays diverse EGFR-targeted therapy persistence mechanisms).
암 치료과정에서 약물을 장기간 투여하면 세포는 특정 약물에 대해 내성을 갖는다. 이를 극복하기 위한 가장 흔한 방법은 다른 약물을 투여하는 것이다. 하지만 특정 암세포들은 다양한 종류의 약물에 내성을 가지는 교차저항(cross-resistance) 성질을 보인다. 실제로 교차저항으로 인해 활용 가능한 약물의 종류가 줄어들고, 이는 암 재발 원인이 돼 암 극복에 큰 걸림돌이 된다. 따라서 암 극복을 위해선 암세포의 다중 약물 내성 기전의 이해가 필요하다.
연구팀은 폐암 세포가 화학 요법 약물 중 하나인 파크리탁셀에 대한 내성을 가지는 과정에서 표적 치료제인 EGFR-TKI에도 교차저항을 갖는 현상을 발견했다. 1차 약물에 대한 적응과정에서 암세포가 줄기세포화 해 전혀 다른 표적 치료제인 2차 약물에 저항을 가진다는 현상을 확인했다. 이러한 줄기세포화로 인해 포도당 부족에 의한 대사 스트레스 상황에서 암세포는 죽지 않고 활동휴지 상태로 전환된다. 활동휴지 상태인 암세포는 약물에 반응하지 않으며 약물이 없어지고 영양분이 공급되면 다시 빠르게 증식했다.
실제로 세포자살을 주관하는 아포토시스(apoptosis) 신호체계 주요 인자인 FOXO3a가 세포자살을 유도하지 않고, 오히려 세포사멸을 억제하는 방향으로 유전자의 기능이 변화해 세포가 약물을 극복할 수 있게 했다. 연구팀은 이러한 교차저항 세포의 특성을 실제 파크리탁셀 약물을 투여받은 유방암 환자의 검사대상물을 활용해 검증했다. 특히 파크리탁셀에 저항을 갖는 재발환자의 암 조직에서 FOXO3a 유전자의 발현이 증가돼 연구의 임상적 의미를 더했다. 나아가 연구팀은 FOXO3a의 발현을 억제하면 세포가 파크리탁셀과 EGFR-TKI의 저항성을 잃게 돼 교차저항 세포를 극복할 수 있을 것이라는 새 방향을 제시했다.
연구팀이 제시한 약물 교차저항 특성 및 기전은 효과적인 암 약물치료 전략을 개발하는데 이바지할 수 있을 것으로 기대된다. 논문의 제1 저자인 마크 보리스 연구원은 “이 연구가 파크리탁셀과 EGFR-TKI뿐 아니라 다른 약물에 대한 내성 기전 연구에 돌파구를 제시할 수 있을 것으로 기대한다”라며 “암 극복에 효과적인 치료 전략을 개발하는데 적용될 것이다”라고 말했다.
이번 연구는 한국연구재단 신진연구자지원사업과 KAIST 시스템헬스케어 사업의 지원을 받아 수행됐다.
2020.02.17
조회수 11474
-
오차율 10% 이내 정확도의 소재 설계 기술 개발
우리 대학 화학과 김형준 교수 연구팀이 소재 물성의 예측 오차율을 기존 기술보다 30% 이상 줄여 정확도를 한층 높인 소재 시뮬레이션 설계 기술을 개발했다.
이번 기술 개발을 통해 기존 40%에 달했던 소재 물성 예측 오차율을 10% 내로 줄임으로써 소재 개발에 걸리는 시간과 비용을 크게 절약할 수 있을 것으로 기대된다.
김민호 박사와 창원대 김원준 교수가 공동 1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘미국 화학회지(Journal of the American Chemical Societry)’ 1월 10일 자 온라인판에 게재됐다. (논문명 : uMBD: A Materials-Ready Dispersion Correction that Uniformly Treats Metallic, Ionic, and van der Waals Bonding)
새로운 기능성 소재 개발의 중요성이 커지면서 컴퓨터 시뮬레이션을 이용해 소재 물성을 정확히 예측해 새로운 소재를 설계하는 기술이 주목받고 있다.
소재 시뮬레이션 기술은 실제로 소재를 합성하고 평가하기 전에 가상 실험으로 다양한 소재 물성을 예측 및 설계하는 기술로, 주로 밀도범함수 이론(Density functional theory)이라는 양자 이론에 바탕을 두고 있다.
기존의 밀도범함수 이론은 소재 계면에서 반데르발스 힘을 정확하게 설명하지 못한다는 문제가 있었다. 반데르발스 힘은 전하의 일시적 쏠림으로 인해 분자가 순간적으로 극성을 띠면서 나타나는 당기는 힘을 뜻하는데, 이를 정확히 기술하지 못하기 때문에 소재 물성 예측 정확도가 떨어진다는 한계가 있다.
연구팀은 반데르발스 힘을 정확하고 효과적으로 기술할 수 있는 새로운 이론을 개발하고, 이를 밀도범함수 이론에 접목해 소재 시뮬레이션 기술의 정확도를 한층 높이는 데 성공했다.
연구팀은 100여 종의 다양한 소재를 테스트한 결과 40% 정도에 달했던 기존의 소재 물성 예측 오차율이 새 기술을 통해 10% 이내로 줄어듦을 확인했다.
특히 반데르발스 힘은 분자 소재부터 금속 및 반도체 소재에 이르기까지 거의 모든 재료 내에서 소재 물성을 결정하는 데 중요한 역할을 해, 연구팀의 새로운 이론은 다양한 차세대 기능성 소재 설계 연구에 적용 가능할 것으로 기대된다.
실제로 연구팀의 새 시뮬레이션 방법을 통해 리튬 이온 배터리 물질의 전압이나 2차원 소재의 박리 에너지를 예측하는 과정에서 높은 정확도를 보인 것으로 확인됐다.
김형준 교수는 “소재 개발 연구에 있어 경쟁력 강화를 위해서 기초 연구의 중요성이 점차 커지고 있다”라며 “새로 개발한 소재 시뮬레이션 기술을 배터리 소재, 에너지 전환 촉매 소재, 2차원 나노 소재 등 다양한 기능성 소재 설계 연구에 적용할 수 있을 것이다”라고 말했다.
이번 연구는 한국연구재단의 미래소재디스커버리 사업과 선도연구센터 지원 사업 (SRC)의 지원을 통해 수행됐다.
□ 그림 설명
그림1. 새롭게 개발한 이론 (uMBD)을 이용한 소재 시뮬레이션 기술과 기능성 소재 설계
2020.01.29
조회수 11314
-
김희탁 김상욱 교수, 멤브레인 필요 없는 새로운 물 기반 전지 개발
우리 대학 생명화학공학과 김희탁 교수와 신소재공학과 김상욱 교수 공동 연구팀이 전기화학 소자의 핵심 부품인 멤브레인을 사용하지 않고도 에너지 효율 80% 이상을 유지하면서 1천 번 이상 구동되는 새로운 개념의 물 기반 아연-브롬 전지를 개발했다.
이번 연구를 통해 일본, 미국의 수입에 의존해 온 다공성 분리막이나 불소계 이온교환막을 사용하지 않는 기술로, 해당 기술에 대한 대외 의존도를 낮출 수 있을 것으로 기대된다.
이주혁 박사과정과 변예린 박사후연구원이 공동 1 저자로 참여한 이번 연구는 국제 학술지 ‘어드밴스드 머티리얼즈(Advanced materials)’12월 27일자 표지논문에 선정됐다.(논문명: High-Energy Efficiency Membraneless Flowless Zn-Br Battery: Utilizing the Electrochemical-Chemical growth of Polybromides)
최근 태양광, 풍력 등 신재생에너지의 불안정한 전력 공급을 해결하기 위해 전기 에너지를 미리 저장했다가 필요한 시간대에 사용할 수 있는 에너지저장장치(ESS)가 주목받고 있다.
현재는 리튬이온전지가 에너지저장장치용 이차전지로 사용되고 있으나 발화성 유기 전해액 및 리튬계 소재로 인한 발화의 위험성을 지니고 있다. 지난 2017년부터 올해 10월까지 총 21건의 에너지저장장치 화재사고가 발생했으며, 전체 에너지저장장치 시설 1천 490개 중 35%인 522개의 가동이 중단되기도 했다.
이러한 이유로 물을 전해질로 사용한 비 발화성 물 기반 이차전지 기술이 에너지저장장치용 차세대 이차전지로 주목받고 있다. 특히 다양한 물 기반 전지 기술 중 아연과 브롬을 활물질로 사용하는 아연-브롬 레독스 흐름 전지는 높은 구동 전압 및 높은 에너지 밀도를 가져 1970년대부터 지속해서 개발돼왔다.
그러나 아연-브롬 레독스 전지는 브롬이 아연과 반응해 전지 수명을 단축시키는 문제로 인해 상용화가 지연됐다. 이러한 반응을 억제하기 위해 펌프를 이용해 브롬이 함유된 전해질을 외부 탱크로 이송해 왔으나, 이는 펌프 구동을 위한 에너지 소모 및 브롬에 의한 외부 배관이 부식되는 문제를 동반한다.
브롬을 포획하는 전해질 첨가제 및 브롬의 이동을 차단할 수 있는 멤브레인에 대한 개발이 진행됐으나, 가격증가 및 출력 저하의 문제점이 발생했다.
김희탁 교수와 김상욱 교수 공동 연구팀은 일본, 미국에 의존하던 값비싼 멤브레인 소재와 어떠한 첨가제도 사용하지 않는 새로운 물 기반 아연-브롬 전지를 개발했다.
전해질 내의 이온과 외부 전기회로 사이의 전자를 주고받는 한정된 역할만 수행하던 전극의 기능에 멤브레인과 첨가제가 담당하던 브롬을 포획할 수 있는 기능을 추가했다.
질소가 삽입된 미세기공 구조를 전극 표면에 도입해 미세기공 내부에서 비극성 브롬을 극성 폴리브롬화물로 전환한 뒤, 질소 도핑 카본과 폴리브롬화물간 쌍극자-쌍극자 상호 작용을 통해 폴리브롬화물을 기공 내부에 고정했다.
이 기술은 멤브레인의 기능을 전극이 담당하므로 고가의 멤브레인이 필요 없으며, 브롬을 외부 탱크가 아닌 전극 내부에 저장함으로써 펌프 및 배관을 제거할 수 있어 가격 저감 및 에너지 효율을 증대했다.
연구팀이 개발한 다기능성 전극을 이용한 멤브레인을 사용하지 않는 물 기반의 아연-브롬 전지는 리튬-이온 전지보다 45배 저렴할 뿐 아니라, 에너지 효율 83% 이상을 보이며 1천 사이클 이상 운전이 가능하다.
김상욱 교수는 “차세대 물 기반 전지의 한계를 극복하기 위한 나노소재 기술을 이용한 새로운 해결책을 제시했다”라고 말했다.
김희탁 교수는 “이번 연구를 통해 기존보다 안전하고 경제적인 에너지저장장치의 개발이 가속화되기를 기대한다”라고 말했다.
이번 연구는 KAIST 나노융합연구소, 에너지클라우드 사업단, 과학기술정보통신부 리더연구자지원사업인 다차원 나노조립제어 창의연구단의 지원을 받아 수행됐다.
그림 1. 브롬 활물질을 전극내부에서 폴리브롬화물로 전환하여 저장하는 다기능성 전극의 메커니즘의 모식도와 멤브레인을 장착하지 않고 구동되는 전지의 실제 모습
그림 2. 질소가 도핑된 미세기공이 코팅된 다기능성 전극의 제조 과정
2020.01.08
조회수 17029
-
김지한 교수, 인공지능 이용한 다공성 물질 역설계 기술 개발
〈 김지한 교수 연구팀 〉
우리 대학 생명화학공학과 김지한 교수 연구팀이 인공지능을 활용해 원하는 물성의 다공성 물질을 역설계하는 방법을 개발했다.
김백준, 이상원 박사과정이 공동 1 저자로 참여한 이번 연구결과는 국제 학술지 ‘사이언스 어드밴시스(Science Advances)’ 1월 3일 자 온라인판에 게재됐다. (논문명 : Inverse Design of Porous Materials Using Artificial Neural Networks)
다공성 물질은 넓은 표면적과 풍부한 내부 공극(孔劇)을 가지고 있어 촉매, 기체 저장 및 분리, 센서, 약물 전달 등 다양한 분야에서 활용되고 있다.
기존에는 이러한 다공성 물질을 개발하기 위해 반복적인 실험을 통한 시행착오를 거치면서 시간과 비용이 많이 소모됐다. 이러한 낭비를 줄이기 위해 가상 구조를 스크리닝해 다공성 물질 개발을 가속화 하려는 시도들이 있었지만, 데이터베이스에 존재하지 않는 새로운 구조를 발견하지 못한다는 문제가 있었다.
최근에는 인공지능 기반의 역설계로 원하는 물성을 가진 물질을 개발하는 연구가 주목받고 있지만, 지금까지의 연구들은 단순한 소형 분자들 위주로 적용되고 있으며 복잡한 다공성 물질을 설계하는 연구는 보고되지 않았다.
김지한 교수 연구팀은 인공지능 기술과 분자 시뮬레이션 기술을 활용해 다공성 물질의 한 종류인 제올라이트 구조를 설계하는 방법을 개발했다.
연구팀은 인공지능 생성모델인 적대적 생성 신경망(GAN, Generative Adversarial Network)과 기존 분자 시뮬레이션에서 활용되는 3차원 그리드 데이터를 활용해 복잡한 다공성 물질의 특성을 인공지능이 학습하고 생성할 수 있도록 구조를 개발했다.
개발된 인공신경망 생성모델은 3차원 그리드로 이루어진 구조 정보와 흡착 물성 데이터를 같이 학습하게 되며, 학습 과정 안에서 흡착 물성을 빠르게 계산할 수 있다. 이를 통해 에너지 저장 소재의 특성을 효율적으로 학습할 수 있음을 증명했다.
또한, 연구팀은 인공지능 학습 과정에서 기존의 알려진 제올라이트 구조 중 일부를 제외해 학습시켰고, 그 결과 인공지능이 학습하지 않았던 구조들도 생성할 수 있음을 확인했다.
김지한 교수는“인공지능을 이용해 다공성 물질을 설계한 최초의 사례이다”라며 “기체 흡착 용도에 국한된 것이 아니라 다른 물성에도 쉽게 적용할 수 있어 촉매, 분리, 센서 등 다른 분야의 물질 개발에도 활용될 것으로 기대한다”라고 말했다.
이번 연구는 BK21, 한국연구재단 중견 연구자 지원 사업 그리고 에너지 클라우드 사업단의 지원을 받아 수행됐다.
□ 그림 설명
그림 1. 인공지능 기반 다공성 물질(제올라이트) 생성 개요도
2020.01.07
조회수 12769