-
생체삽입형 바이오센서 기술 개발
-유연한 GaN LED 기술로 암을 진단-
인간의 주름진 뇌에 부착하거나, 혈관 및 척추를 감싼 유연한 LED에서 발생된 빛으로 질병을 진단하거나 치료할 수 있는 일들이 현실로 가까워지고 있다.
우리 학교 신소재공학과 이건재 교수팀이 최근 질화물 반도체 발광다이오드(GaN-LED)를 유연한 기판 위에 구현해내고 LED에서 발생되는 빛이 암의 항원-항체반응에 의하여 감도 차이가 일어나는 것을 확인함으로써 전립선암 항체를 검출하는 실험에 성공했다.
이번 연구를 계기로 유연한 LED에서 발생하는 녹색, 파란색, 그리고 자외선 영역까지의 다양한 파장의 강한 빛을 이용하면 신경세포를 자극할 수 있어 질병을 치료하는 데에도 응용될 수 있을 것으로 기대된다.
질화갈륨(GaN)은 적은 에너지로 높은 효율의 빛을 낼 수 있는 반도체로 현재 LED TV, 조명 등 산업 전반에 쓰이고 있으나 깨지기 쉬운 성질을 갖고 있다.
연구팀은 딱딱한 기판에서 성장된 얇은 고효율 GaN-LED를 유연한 플라스틱 기판에 전사하고, 생체 친화적인 재료를 사용한 바이오센서를 개발해 인체와 유사한 조건에 적용할 수 있게 했다.
이건재 교수는 “인체에 삽입된 유연한 LED는 인간 생명 연장과 건강한 삶의 중요한 과제를 해결할 수 있는 흥미롭고 새로운 분야로 꿈같은 일들이 실현될 수 있을 것”이라고 말했다.
이번 연구결과는 나노 분야의 세계적인 석학이자 최고 권위자인 미국 조지아 공대 왕종린(Wang, Zhong Lin) 교수가 편집장으로 있는 "나노 에너지(Nano Energy)" 9월호 온라인 판에 게재됐다.
관련 연구는 2009년부터 국내외에 다수의 특허가 출원․등록되었고, 지난 3월에는 KAIST를 대표하는 브랜드 과제로 선정되기도 했다.
한편, 이 교수는 논문의 공동책임으로 참여한 ETRI 성건용 박사팀과 생체이식형 라벨프리(Label-Free) LED 바이오센서에 대해 후속 연구를 계속 진행하고 있다.(끝)
<관련 동영상>
생체 친화적이고 유연한 GaN-LED가 빛을 내는 동영상 http://www.youtube.com/watch?v=miqc-o8fOkw
<그림설명>구부러지는 유연한 GaN-LED에서 푸른빛이 발생되고 있다.
2011.09.20
조회수 13896
-
스마트 나노센서를 이용한 신약 효능 분석기술 개발
- 사람 몸속에서의 효능을 실시간 모니터링 할 수 있어 - - 나노-바이오-영상-분자화학 등이 융합 -
KAIST가 신약 효능을 분석하는 새로운 기법의 기술을 개발했다.
우리 학교 생명과학과 이상규 박사가 생체나노입자를 사람세포에 적용해 살아있는 세포에서 신약의 효능을 실시간으로 모니터링 하는 기술을 개발했다.
이 기술을 이용하면 사람 몸속에서도 신약의 효능을 보다 정확하게 파악할 수 있을 것으로 기대된다.
지금까지는 신약 후보물질을 몸속으로 투여하고 세포를 추출한 후 효과를 분석했다. 그러나 세포를 용해한 후 세포의 기능이 정지된 상태에서 분석함으로써 예상치 못했던 부작용으로 대부분의 후보물질이 탈락하게 된다. 이 때문에 엄청난 비용과 노력을 들이더라도 신약개발을 성공하기가 매우 어려웠다.
연구팀은 수많은 나노입자가 서로 연결되면 커다란 복합체를 형성할 수 있다는 아이디어에 착안했다. 나노입자를 세포 내부에 적용해 본 결과 실제로 살아있는 세포 안에서 나노입자 간의 결합을 통해 복합체가 빠르게 형성되는 것을 확인했다.
형성된 복합체는 나노센서 역할을 하게 돼 약물이 세포 내에 투여되는 과정에서 약물 타겟과의 결합을 실시간으로 관찰할 수 있었다.
연구팀은 이 나노센서 기술을 ‘스마트한 눈(InCell SMART-i)’이라고 명명했다. 살아있는 세포 안에서 일어나는 신약의 효능작용을 한 눈에 볼 수 있기 때문이다.
이상규 박사는 “이 기술은 나노-바이오-영상-분자화학 등이 융합된 차세대 원천기술로 신약개발에 효과적으로 적용 가능한 매우 중요한 기술”이라며 “신약물질의 직접 개발을 원하는 기업으로 기술이 이전돼 상용화가 멀지 않았다”고 말했다.
한편, KAIST 생명과학과 이상규 박사와 리온즈신약연구소(주) 김태국 박사가 개발한 이 기술은 최근 세계적인 화학지인 ‘앙게반테 케미(Angewandte Chemie International Edition)’ 지 9월호에 주목받는 논문(Hot Paper)으로 선정됐다.
그림1. 사람 세포 내에 도입된 스마트 나노 센서가 약물과 약물 타겟 간의 결합에 따라 세포 내에 스팟(같은 나노클러스터)을 형성하고 이를 실시간으로 탐지해 낼 수 있는 원천기술의 모식도
그림2. 약물타겟 A 또는 B가 발현되어 있는 사람세포에 약물을 처리하면 세포 내에서 약물과 약물타겟이 서서히 결합되면서 스마트 나노센서에 의해 이러한 스팟 (같은 나노클러스터) 형태로 실시간으로 센싱-감지된다. 따라서 살아 있는 사람세포 안에서 신약의 효능작용을 실시간으로 마치 비디오를 보는 것처럼 라이브로 모니터링 할 수 있는 나노-바이오-영상-분자화학 등이 융합된 차세대 원천기술이다.
2011.09.05
조회수 18130
-
KAIST 무선충전전기자동차, CNN 방영
우리 학교에서 개발한 무선충전전기자동차가 지난 8월 29일 미국 CNN방송의 "Eco Solutions"라는 프로그램에 방영됐다.
CNN은 올 7월 19일 서울대공원에서 상용서비스를 시작한 KAIST 무선충전전기자동차가 기존 디젤 "코끼리열차"에 비해 매연과 소음이 없는 친환경 전기자동차로 방문객들로부터 커다란 호응을 받고 있다고 소개했다.
CNN 링크 : http://edition.cnn.com/CNNI/Programs/eco.solutions/index.html
YouTube 링크 : http://www.youtube.com/watch?v=QLzmFFqPJfo
2011.09.04
조회수 11501
-
맞춤형 인산화 단백질 생합성 성공
- 사이언스誌 발표,“각종 질병원인 규명, 신약개발의 새로운 장을 열다”-
세포내 신호전달체계를 재설계하여 세균으로부터 맞춤형 인산화 단백질을 생산하는 기술이 세계 최초로 국내연구진에 의해 개발되었다.
이번 연구는 교육과학기술부의 “글로벌프론티어사업(탄소순환형 차세대 바이오매스 생산/전환 기술연구단)”의 지원을 받아 우리 학교 화학과 박희성 교수 주도로 수행되었다.
단백질 인산화는 생체 내에서 일어나는 단백질 변형의 일종으로, 세포내 신호전달과 그 결과 발생하는 세포의 생장․분열․사멸을 결정하는 중요한 역할을 한다.
예를들어, 성장세포가 성장호르몬 등 외부의 자극을 받으면 세포내 단백질에 인산이 첨가되고(단백질 인산화) 인산화된 단백질이 다른 단백질을 인산화 시키는 일련의 신호전달 과정을 거쳐 세포분열을 일으키게 된다.
인산화 과정에서 인산화 단백질에 돌연변이가 발생하면 세포의 정상적인 신호전달이 손상되고 세포의 무한 분열을 초래하여, 암을 포함한 각종 질병의 직접적인 원인이 된다.
이러한 인산화 과정은 매우 복잡하고 다이내믹하게 진행되므로, 세포내 신호전달의 극히 일부만 알려져 있고, 지금까지 단백질의 인산화를 조절할 수 없었다. 이 때문에 질병 원인 규명 연구와 신약개발에 많은 어려움을 겪고 있다.
박 교수는 예일대 Soll 교수팀과 공동연구를 통해 세균의 단백질 합성관련 인자들을 재설계하고, 진화방법으로 리모델링하여 인산화 아미노산(단백질 구성인자)을 단백질에 직접 첨가하는 기술을 개발하여 맞춤형 인산화 단백질을 생산하는데 성공했다.
연구팀은 이 기술을 이용하여 다양한 암을 유발시키는 단백질로 알려진 MEK1 인산화 단백질 합성에도 성공할 수 있었다.
박 교수는 “이번 연구를 통해서 단백질의 인산화 조절과 인산화 단백질의 대량 생산이 가능해 졌다.”며, “인산화 단백질을 통해 암을 포함한 각종 질병의 원인규명 연구와 차세대 암치료제 개발연구가 체계적이고 실질적으로 이루어질 것으로 기대된다.” 고 연구의 의의를 밝혔다.
연구결과는 생명과학분야 최고권위지인 사이언스誌 2011년 8월호 (8월26일자)에 게재됐다.
1. 세포의 단백질 생합성 기구 재설계 및 리모델링
○ 세균의 단백질 생합성 기구들(중합효소, 아미노산, tRNA)을 재설계하고, 자연계 모방 진화기술로 새로운 확장인자를 개발한 결과 얻어진 인공기능 세포의 그림이다. DNA로부터 단백질이 생합성 되는 과정이 보여주고 있으며, 특히 새롭게 설계된 단백질 합성기구와 자연계 모방 진화기술로 개발된 확장인자의 모식도가 나타나 있다.
2. 재설계된 세포를 이용한 맞춤형 인산화 단백질 생산
○ 그림1에서 제조된 재설계 인공기능 세포를 활용하여 복잡한 세포내 인산화과정 없이 인산화 아미노산을 단백질의 특정한 위치에 직접 첨가하는 방법으로 맞춤형 인산화 단백질을 생합성하는 그림이다. 세포내 신호전달에서 가장 중요한 역할을 하면서 돌연변이시 다양한 암을 유발시키는 인산화 단백질로 알려진 MEK1의 생합성을 보여주고 있다.
2011.08.26
조회수 14069
-
고성능 플렉시블 디스플레이 기술 개발
- 금속 나노입자 펨토초레이저 소결공정을 이용한 극미세 금속패턴 제작 -- 세계적 학술지 ‘어드밴스드 머티리얼즈’ 7월호 게재 -
국내 연구진이 플렉시블 디스플레이 전자소자 제작을 위한 차세대 금속 나노패터닝 기술개발에 성공했다.
우리 학교 기계공학과 고승환·양동열 교수팀이 공동으로 연구한 이번 성과는 기존의 광식각 증착공정을 이용하지 않고 수백나노의 고정밀도 금속 패턴을 펨토초레이저 스캐닝공정을 이용해 단일 디지털 공정으로 제작하는 기술을 개발했다.
이 기술을 이용하면 다양한 기판에서 고정밀 패터닝이 가능해져 유기 전자소자 기술 등과 결합하게 되면 성능과 집적도가 우수하면서도 자유자재로 휘어질 수 있는 고성능 플렉시블 전자소자나 디스플레이 등이 실현될 수 있을 것으로 기대된다.
일반적으로 집적도가 높은 전자소자 제작을 위해서는 고비용의 노광 혹은 광식각 공정이나 고진공 전자빔 공정을 통한 금속 패턴의 제작이 필수적이다. 최근에는 잉크젯 및 롤투롤(Roll to Roll) 프린팅 기술을 이용해 직접 금속 패턴 제작이 시도되고 있다. 그러나 공정 특성상 1㎛(마이크로미터, 100만분의 1미터) 이하의 정밀도 달성에는 한계가 있어 고집적·소형화에 불리했다.
연구팀은 3~6nm(나노미터, 10억분의 1미터) 크기의 녹는점이 낮은 은 나노 입자와 열확산을 최소화할 수 있는 금속 나노입자 펨토초레이저 소결공정 (Femtosecond laser selective nanoparticle sintering, FLSNS)을 개발했다. 더불어 유리, 웨이퍼, 고분자 필름 등 다양한 기판위에 1㎛이하의 고정밀도 금속 패턴을 단일 공정으로 제작할 수 있는 기술도 개발해, 이 기술을 이용해 최소 정밀도 380nm 선폭의 극미세 금속패턴 제작에 성공했다.
연구팀은 개발된 금속 패터닝 기술을 KAIST 전기 및 전자공학과 유승협 교수팀과의 협력을 통해 유기 전계효과 트랜지스터 제작공정에 적용해, 차세대 플렉시블 전자소자 제작에 활용될 수 있는 가능성을 제시했다.
고승환 교수는 “고가의 진공 전자빔 공정을 통해서만 제작 가능했던 기존의 디지털 직접 나노패터닝 기술을 비진공, 저온 환경에서 구현함으로써 전자빔 공정을 대체할 수 있을 뿐만 아니라 향후 다양한 플렉시블 전자소자 제작으로 적용될 수 있을 것으로 기대된다”고 말했다.
이번 연구결과는 한국연구재단의 나노원천기술개발 및 신진연구 사업지원, 지식경제부의 협동사업지원을 받아 수행됐으며, 재료과학기술 분야의 세계적 권위의 학술지인 ‘어드밴스드 머티리얼즈(Advanced Materials)’ 7월호에 게재됐다.
※ 용어설명금속 나노패터닝 : 고밀도로 집적된 전기/전자회로 구현을 위해서는 1㎛이하의 선폭을 갖는 고정밀도 금속패턴 구현 기술이 필요하다. 이에 따라 기존의 방법이 아닌 새로운 패터닝 공정에 관한 다양한 연구가 수행 중에 있다.
광식각 증착공정 : 미세 패턴 제작으로 널리 사용되어지고 있는 공정으로 빛에 반응하는 재료에 대해 선택적으로 빛을 조사하여 미세 패턴을 제작하고 원하는 물질을 고온, 진공 조건하에서 증착하는 공정으로 기존의 디스플레이, 반도체 제작 공정으로 이용되고 있다.
유기 전계효과 트랜지스터 : 전자기기 구동회로의 핵심소자인 트랜지스터는 전류의 흐름을 선택적으로 조절하는 역할을 한다. 트랜지스터의 구성에는 전류가 흐르는 채널로서 반도체가 필수적인데, 통상적으로는 고온처리가 필요한 실리콘 (Si)이 쓰이고 있다. 유기 전계효과 트랜지스터는 채널 물질로 박막의 유기반도체가 쓰이는 것으로서, 상대적으로 낮은 온도에서 플라스틱과 같은 다양한 기판에 제작 가능하여 유연한 전자 소자 제작에 이상적이며, 궁극적으로 소자 제작이 인쇄 방법으로 구현 될 경우 저비용 전자소자 제작에도 활용 가능할 것으로 예상되고 있다.
펨토초 레이저(femtosecond laser) : 긴 시간 동안 일정한 출력으로 레이저를 방출하는 연속형 레이저와는 달리 짧은 시간 동안만 레이저를 방출하는 것을 펄스형 레이저라고 한다. 이러한 펄스형 레이저의 방출 시간을 천조분의 1초, 즉 10-15초 까지 낮춘 것이 펨토초 레이저이다. 이러한 매우 짧은 펄스폭은 레이저가 조사되는 재료 내부에 열이 확산하는 시간(10-12s, 피코초)보다 짧기 때문에 가공시 열영향부가 작아 정밀 가공에 응용할 수 있다.
그림1. 선택적 금속 나노입자 펨토초 레이저 소결 공정
그림2. 극미세 금속 패턴
2011.08.02
조회수 21692
-
탄소나노튜브로 물이 스스로 빨려 들어가는 현상 원인 규명
- PNAS 발표, “효율성을 극대화한 차세대 해수 담수화막 활용 가능 기대”-
지금까지 현상만 알려졌을 뿐 그 원인이 정확히 설명되지 못했던, 물을 싫어하는 탄소나노튜브* 안으로 물이 스스로 빨려 들어가는 ‘반직관적 실험 현상’이 국내 연구진에 의해 규명되었다.
*) 탄소나노튜브 : 각 탄소가 3개의 다른 탄소와 결합되어 있는 흑연의 탄소 원자 배열과 같은 모양(6각형의 벌집모양)을 가지면서, 원통형으로 말아서 튜브 형태로 만든 나노(10억분의 1미터) 구조체
우리 학교 EEWS 대학원 정유성 교수가 주도하고, 캘리포니아공대 윌리엄 고다드 교수가 참여한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 오세정)이 추진하는 WCU(세계수준의 연구중심대학)육성사업의 지원(지속가능한 에너지 공학기술사업단)을 받아 수행되었다.
이번 연구결과는 자연과학분야의 권위 있는 학술지인 ‘미국립과학원회보(PNAS)’ 7월 19일자에 게재되었고, 한 주간에 흥미로운 연구결과들을 별도로 소개하는 "This Week in PNAS", ’C&EN News" 및 "Nature Materials"의 "Research Highlights"에 선정되는 영예를 얻었다. (논문명 : Entropy and the driving force for the filling of carbon nanotubes with water)
정유성 교수팀은 물을 싫어하는 탄소나노튜브 안으로 물이 스스로 빨려 들어가는 반직관적인 실험현상의 원인이 물 분자 간의 수소결합 때문으로, 나노채널과 같은 제한된 나노공간에서는 물의 무질서도가 증가하기 때문에 발생한다는 사실을 분자동력학 계산을 통해 밝혀냈다.
일반적으로 분자가 자유로운 액체 상태에서 제한된 나노 크기에 갇힐 경우, 무질서도와 화학결합이 감소되면서 불안정한 상태가 될 것으로 예상했지만, 연구팀은 탄소나노튜브에 갇힌 물의 경우 제한된 공간에서 물 분자 간의 수소결합이 약해지면서 밀도가 낮아지고, 오히려 무질서도가 증가하여 더욱 안정되는 특이한 현상을 나타낸다는 사실을 확인하였다.
특히 연구팀은 1.1과 1.2 나노미터의 지름을 갖는 나노튜브에서는 실온(섭씨 25도)임에도 불구하고 물이 얼음과 같은 구조를 띄는 현상도 관찰하였다.
정유성 교수는 “이번 연구는 계산과학이 실험측정만으로 설명하기 어려운 나노크기의 제한된 공간에서 나타나는 다양한 현상을 규명한 좋은 예”라고 정의하고, ‘’기존의 역삼투압 막에 비해 탄소나노튜브 내에서는 물의 수송속도가 현저히 빨라 에너지 효율적인 차세대 해수 담수화막을 효율적으로 설계하는데 기여할 것”이라고 연구의의를 밝혔다.
2011.07.27
조회수 17485
-
미래의 석유화학산업, 바이오 리파이너리 시대가 온다
- KAIST 이상엽 특훈교수팀, 생명공학동향지 표지논문 게재 -
“바이오리파이너리”란 석유화학산업에서 원유의 정제를 통해 여러가지 제품을 생산하는 것과 같이, 해조류나 비식용생물자원과 같은 바이오매스(biomass)를 원료로 이용하여 여러 제품을 생산하고자 하는 개념이다.
“시스템 대사공학”을 통해 바이오매스로부터 다양한 화학물질 및 제품을 효과적으로 생산할 수 있는 새로운 기법과 전망이 국내 연구진에 의해 제시되었다.
우리 학교 이상엽 특훈교수팀이 수행한 이번 연구는 교육과학기술부 글로벌프론티어사업 차세대 바이오매스연구단의 지원을 받아 수행되었다. ※ 특훈교수 : 한국과학기술원(KAIST)에서 세계적 수준의 연구업적과 교육성과를 이룬 교수에 부여하는 호칭
그동안 기후변화, 자원고갈 등의 문제를 해결하기 위한 방안으로 바이오리파이너리에 대한 연구가 학계를 중심으로 활발히 진행되어 왔다.
특히, 연구자들은 과거 20년간 발전되어온 대사공학을 중심으로 미생물을 활용한 바이오매스의 활용가능성을 높여왔다.
그러나 아직 바이오매스로부터 여러 가지 바이오화학물질 및 소재들을 생산하기 위해서는 이들을 생산하는 미생물의 성능을 획기적으로 개선해야하는데, 기존의 대사공학연구는 주로 직관적인 방법으로 진행되어 많은 노력과 시간이 필요한 한계가 있었다.
이교수팀은 이러한 한계를 극복하기 위해 대사공학을 중심으로 시스템생물학, 합성생물학, 진화공학을 융합한 “시스템 대사공학”이라는 새로운 기술체계를 확립했다.
시스템 대사공학은 세포 기반의 각종데이터를 통합하여 생리 상태를 다차원에서 규명하고, 이 정보를 바탕으로 맞춤형 대사조절을 함으로써 고효율 미생물 균주를 개발하는 기술이다.
시스템 대사공학을 활용할 경우, 미생물을 게놈수준에서 동시다발적으로 관찰 및 조작이 가능하여 미생물의 성능 개선을 위한 시간과 노력을 획기적으로 줄이고 그 활용 가능성을 극대화 할 수 있다.
본 논문의 제1저자인 이정욱 박사는 “시스템 대사공학을 통해 미생물의 성능을 획기적으로 향상시키는 기법을 최근의 연구흐름을 중심으로 전망하고 제시하였으며, 향후 바이오리파이너리 연구에 폭넓게 활용될 것으로 기대된다.“고 연구의 의의를 밝혔다.
연구 결과는 세계적 학술지인 ‘생명공학동향(Trends in Biotechnology)‘지 8월호 표지논문으로 선정되었다.
2011.07.27
조회수 16467
-
KAIST 무선충전전기자동차 본격 운행!
- 서울대공원 코끼리전기열차 3대 상용운행 시작 -
- ‘주행 중 무선충전방식’ 기술 세계 최초로 상용화, 관련 기술 선도 기대 -
우리 학교가 개발한 무선충전 전기자동차(Open Leading Electric Vehicle, OLEV)가 서울대공원에서 본격적인 상용운행에 들어갔다.
우리 대학은 지난 19일 오전 11시 서울대공원 동물원 입구에서 KAIST 서남표 총장, 주대준 대외부총장 등 주요 보직자들과 서울시의회 환경수자원위원회 서영갑 부위원장 등 서울시 관계자들이 참석한 가운데 ‘서울대공원 코끼리전기열차 개통식’을 가졌다.
이 열차에는 KAIST가 개발한 무선충전 기술이 적용됐다. 도로 하부 5cm 밑에 특수 전기선을 매설해 자기장을 발생시킨 후 발생된 자기력을 차량이 무선으로 공급받아 이를 전기로 변환, 동력원으로 사양하는 친환경 전기차다.
지난해 3월 KAIST는 서울시와의 시범사업으로 과천 서울대공원에서 디젤기관으로 운행되고 있는 무궤도 코끼리 열차를 무선충전 전기열차로 교체했다. 경유를 연료로 운행해 매연과 소음이 심각했던 코끼리 열차가 친환경 전기자동차로 탈바꿈한 것이다.
이후 시험운행을 실시해 시스템 안정성 및 효율성 등에 대한 검증을 완료하고, 서울시는 3대의 무선충전 전기열차를 추가 제작했다. 이로써 서울대공원을 방문하는 시민들 뿐만 아니라 동물원에 있는 동물들에게도 쾌적한 환경을 제공할 수 있게 됐다.
서울시와 추진한 시범사업 이후 KAIST는 ▲무선으로 대용량의 에너지를 안전하게 전달할 수 있는 자기장을 형상화하는 기술(SMFIR)의 원천기술을 상용수준으로 끌어올리고, ▲자기장이 인체에 미치는 전자기장(EMF) 안전성을 충분히 확보했으며, ▲주파수 배분, 전기안전 검증 등 신기술 상용운행에 대한 법제도 기반을 마련해 서울대공원 코끼리전기열차의 상용운행의 길을 열었다.
앞으로 서울대공원을 달릴 코끼리전기열차는 주행 및 정차 중 무선으로 대용량의 에너지를 실시간 전달받기 때문에 별도의 충전이 필요 없으며, 비접촉 무선충전으로 감전의 위험에서 자유롭다.
또한, 서울대공원 무궤도열차 순환구간 2.2km 중 약 16% 구간에 급전인프라를 구축해 무제한 운행하므로 경제성이 뛰어나며, 대기오염 물질을 전혀 배출하지 않는 친환경 전기열차다.
전자파 안전성 부분에서는 국내에서 규정하고 있는 기준(62.5mG)을 만족하고, 공인시험기관으로부터 성적서도 확보한 상태이다.
KAIST 조동호 온라인전기자동차사업단장은 “KAIST가 세계최초로 개발한 무선으로 대용량 에너지를 안전하게 전달하는 원천기술(SMFIR)은 다양한 분야에 적용가능하다”며 “서울대공원 코끼리전기열차 상용운행을 시작으로 버스에 이어, 철도 항만 등의 수송시스템에 우리 기술을 접목하는 연구를 진행할 계획이고, 앞으로는 가전이나 휴대기기에 대한 연구도 진행할 생각”이라고 말했다.
서울대공원 코끼리전기열차 상용운행은 냄새와 먼지 없는 아름답고 쾌적한 공원 환경을 조성한다. 더불어 국내 최대의 종합테마공원인 서울대공원을 방문하는 수많은 어린이 및 청소년에게 세계 최초로 KAIST가 개발한 전기자동차 기술을 직접 체험할 수 있는 기회를 제공함으로써 또 하나의 과학 체험 교육의 장을 마련했다는 의의도 갖게 된다.
한편, KAIST 무선충전전기자동차는 2010년 미국 시사주간지인 타임(Time)지가 꼽은 세계 50대 발명품 가운데 하나로 선정된 바 있다.
2011.07.21
조회수 20409
-
유룡 교수, 벌집 모양 규칙적 구조의 제올라이트 개발
- 사이언스誌 발표,“제올라이트 학계의 20여년 숙원 과제 해결!”-
우리 학교 화학과 유룡 교수 연구팀은 벌집모양의 메조나노기공과 보다 미세한 크기의 마이크로나노기공이 규칙적으로 배열되어 있는 ‘육방정계 구조규칙적 위계나노다공성 제올라이트’ 신물질을 개발하는데 성공하였다.
유 교수팀은 2009년 나노판상형태의 초박막 제올라이트 물질을 합성하여 세계 최고 권위의 과학 학술지인 네이처誌에 게재한데 이어, 벌집모양의 메조나노기공을 갖는 제올라이트 물질의 개발 성과로 사이언스誌 2011년 7월호(7월 15일자)에 논문을 게재하여 제올라이트 연구의 우수성과 학술적 중요성을 모두 인정받았다.
제올라이트는 가솔린 생산을 비롯하여 석유화학산업 전반에 걸쳐 세계적으로 가장 널리 이용되는 촉매물질이다. 촉매는 다양한 화학 반응에서 사용되어 반응을 촉진시킴은 물론, 반응 시간을 단축시켜 경제성을 높이는 데 활용되는 물질이다. 화학 산업 분야에서 사용되는 촉매 물질들은 사용 후 분리를 용이하게 하기 위해 주로 고체 형태로 이루어진 촉매를 사용하는데, 제올라이트는 현재 사용되고 있는 다양한 고체 촉매들 중에서 40% 이상을 차지할 정도로 매우 높은 비율로 다양한 화학 산업 전반에 걸쳐 이용되고 있는 물질이다. 때문에, 제올라이트의 촉매 효율을 높일 경우, 이에 따른 경제적 효과는 막대하다고 할 수 있다.
기존에 산업 전반 분야에 사용되고 있는 일반 제올라이트 촉매 물질들은 내부에 무수한 미세구멍(나노세공)들이 규칙적으로 뚫려 있지만 그 직경이 매우 작아 반응 대상 분자의 확산 속도가 느리기 때문에 촉매활성이 낮은 단점이 있었다. 이를 해결하기 위해 연구팀은 미세한 마이크로나노기공과 그 보다 큰 직경의 메조나노기공이 동시에 규칙적으로 배열*되어 있는 제올라이트 물질을 합성하였다. 이러한 구조의 물질은 제올라이트 학계에서 수많은 연구자들이 합성하고자 지난 20여 년 이상을 시도해온 물질로서, 이번에 유 교수팀이 드디어 제올라이트 학계의 20여 년 동안의 숙원 과제를 해결하는 방법을 제시한 것이다. * 작은 도로만 있어 교통체증이 심한 대도시에 큰 도로와 작은 도로를 유기적으로 구성하는 도시계획을 수립, 시행함으로써 원활한 교통 흐름을 만들어 내는 원리와 같다. 크고 작은 나노세공이 유기적으로 연결된 제올라이트 내부에서 분자의 흐름이 훨씬 수월해진다.
이번에 개발한 제올라이트 물질은 연구팀이 특수 설계한 계면활성제를 사용하여 합성할 수 있었다. 이 계면활성제는 머리 부분에 제올라이트 마이크로 기공 유도체를 포함하여 제올라이트 골격의 형성을 유도하고, 소수성 꼬리 부분은 제올라이트의 마이크로 기공보다 더 큰 메조 기공을 벌집 구조 모양으로 배열할 수 있도록 하였다. 지금까지 알려져 있는 제올라이트 합성 원리는 하나의 기공 유도 분자가 하나의 매우 작은 마이크로 기공을 유도했던 반면에, 본 연구팀이 개발한 방법은 하나의 분자가 서로 다른 크기의 기공을 규칙적으로 유도한다는 점에서 기존의 방법과 차별화된다.
유교수팀이 세계 최초로 2009년에 개발한 2 nm 극미세 두께의 나노판상형 제올라이트가 2차원적인 형태로 이루어진 물질이었다면, 이번에 합성에 성공한 ‘육방정계 구조규칙적 위계나노다공성 제올라이트’는 3차원적 구조 규칙성을 띤 나노구조물로 지금까지 볼 수 없었던 이상적이고 안정적인 벌집 구조를 갖고 있다.
때문에, 새로 개발한 제올라이트는 산업적으로는 중요하지만 커다란 분자 크기 때문에 기존의 제올라이트를 사용하기 쉽지 않았던 물질의 촉매로 사용할 수 있게 되었다.
유룡 교수는 “이번에 개발한 제올라이트는 지금까지 볼 수 없었던 이상적이고 안정적인 기공구조를 갖고 강한 산성을 띠고 있어 기존의 제올라이트의 단점을 충분히 보안한 물질이다. 따라서 앞으로 산업적으로 중요한 많은 고부가 가치 반응에서 고성능 촉매로 사용될 수 있을 것으로 기대한다. 뿐만 아니라, 이번 연구를 통해 본 연구단이 개발한 합성 방법이 여러 종류의 제올라이트에도 적용이 가능함을 보이면서 앞으로 200여 가지가 넘는 기존의 제올라이트들의 단점도 해결할 수 있을 것이다.”고 연구의의를 밝혔다.
이번 논문의 제1저자인 나경수 박사는 성균관대학교 화학과를 조기졸업하고 KAIST에서 석사와 박사를 4년 반만에 마친 수재다. 지난 2월에는 KAIST 우수 박사학위 논문상을 수상하기도 했으며, 현재 유룡 교수가 맡고있는 KAIST 화학과 기능성 나노물질 연구단에서 박사후 과정 중이다.
[그림1] ‘육방정계 구조규칙적 위계나노다공성 제올라이트’의 주사 전자현미경 사진. 균일한 두께와 길이의 뾰족한 바늘 모양의 결정들이 전 영역에 걸쳐 고루 존재하는 것을 볼 수 있다.
[그림2] ‘육방정계 구조규칙적 위계나노다공성 제올라이트’의 투과 전자현미경 사진
2011.07.15
조회수 21499
-
지하철 내비게이션의 종결자, 지하철 내리미 출시
- 실질적 지하철 내비게이션 최초 상용화! -
- 지하철역의 Wi-Fi 환경 변화에 적절히 대응하는 기술 적용 -- 오차를 획기적으로 줄여 보다 정확한 안내 가능해져 -
‘Wi-Fi 신호에 기반한 지하철 내비게이션’이 세계 최초로 우리나라에서 상용화됐다.
KAIST(총장 서남표) 전산학과 한동수 교수 연구팀은 지하철의 이동 상황을 스마트 폰을 이용해 탑승객에게 실시간 안내하는 Wi-Fi 신호기반 지하철 내비게이션 앱 ‘지하철 내리미’를 개발했다.
이 앱은 지난 7월 3일부터 구글 안드로이드 마켓에서 출시해 베타 테스트를 마쳤다. SKT T-Store에도 곧 출시될 예정이다.
‘지하철 내리미’는 이동경로, 이동시간 등의 정보만을 제공하는 종전의 지하철 내비게이션과는 달리, 시시각각으로 변화하는 지하철의 현재 위치를 이동 경로 상에 실시간으로 표시해 지하철의 이동 상황을 정확히 알려준다.
또한, 이용자는 하차할 역 한두 정거장 전에 도착이 가까워졌음을 실시간으로 안내받는다. 실질적인 지하철 내비게이션 시대가 도래한 것이다.
기존에는 3G 신호 정보를 활용하거나 지하철 시간표를 이용한 지하철 내비게이션 시스템이 출시되기도 했다. 그러나 3G 방식의 경우 평균 오차 거리가 수백 미터에 달해 자주 인식 오류가 발생해 널리 사용되지 못하고 있다. 지하철 시간표를 이용하는 경우에도 지하철 운행 시 발생하는 오차로 인해 적용이 용이하지 않았다.
반면, Wi-Fi에 기반한 방식은 평균 오차 범위가 수십 미터에 불과해 실시간에 정확하게 인식되는 장점을 가지고 있다.
이와 함께 이 앱에는 지하철역의 Wi-Fi 환경 변화에도 적응하는 기법이 적용됨으로써 각 지하철역의 Wi-Fi 신호 환경 변화에도 적절히 대응하면서 안정적인 서비스를 제공할 수 있다.
KAIST 한동수 교수는 “Wi-Fi 신호에 기반한 지하철 내비게이션 시스템은 기존 방식에 비해 월등히 우수한 정확도와 안정성을 보여주고 있다”며 “앞으로 동경, 뉴욕, 런던, 파리, 북경, 상하이 등의 지하철에도 적용해 신속하게 전 세계에 확산시킬 계획”이라고 말했다.
아울러 “앞으로 버스, 기차에도 적용할 수 있는 Wi-Fi신호기반 내비게이션 시스템도 개발할 예정”이라고 덧붙였다.
지난해 코엑스몰처럼 넓은 공간에서 Wi-Fi 기반 실내 내비게이션 시스템을 개발해 세계 최초로 상용화시킨 바 있는 한동수 교수는 이번에 개발된 시스템에 사용된 핵심 기술에 대한 국내 특허와 4개국 국제 특허 출원을 추진하고 있다.
2011.07.12
조회수 16181
-
꿈의 소재
- 초고성능의 차세대 전자소자 등에의 그래핀 응용가능성 높여 -
그간 개념상으로만 알려졌던 그래핀의 미세한 주름 구조와 도메인 구조, 그 구조들의 생성원리 및 열처리 공정을 통한 주름구조 제어 가능성이 우리 학교 연구진에 의해 최초로 규명되었다.
우리 학교 EEWS대학원 박정영 교수와 건국대 박배호 교수팀이 주도한 이번 연구 결과는 세계 3대 과학저널(네이처, 사이언스, 셀) 중 하나인 ‘사이언스(Science)’誌에 8월 중 게재될 예정이며, 이에 앞서 ‘사이언스 온라인 속보(Science Express)’에 7월 1일자(한국시간)로 소개되었다.
연구진은 기계적 박리법을 이용해 제작한 그래핀 박막을 원자힘 현미경을 이용하여 측정한 결과 물리적으로 똑같은 특성을 지닌 단일층 그래핀 내에서 마찰력이 현저히 다른 구역(비등방성 마찰력 도메인)이 존재하는 것을 발견하였다.
또한 연구진은 마찰력의 차이가 발생하는 원인을 밝히는 과정에서 그래핀에 잔주름의 방향이 다른 구역(domain, 도메인)이 존재함을 밝혔고, 적절한 열처리 공정을 이용하면 이런 구역구분이 없어지며 전체가 일정한 마찰력을 보이도록 재구성할 수 있음을 보였다.
연구진은 “본 연구는 주름구역의 존재를 최초로 확인하였다는 점과 주름구조의 제어 가능성을 보임으로써 휘어지는 전자소자 등에의 응용가능성을 한 단계 확장시켰다는데 의의가 있고, 향후 활발한 후속연구를 기대한다”라고 밝혔다.
본 연구의 특이한 점으로는 그래핀과 관련된 국내 최고의 전문가들인 서강대 정현식 교수팀, 성균관대 이창구 교수, KIAS 손영우 교수팀 등이 공동 연구에 참여했다는 점이다.
SiO2 기판위에 박리법으로 증착된 그래핀의 원자힘 현미경 이미지(좌), 마찰력 도메인 이미지(중앙), 마찰 도메인에서 예측한 잔주름 분포(우).
2011.07.01
조회수 16406
-
신속·간편한 유전자 진단 신기술 개발
- 독일‘스몰’지 표지논문 선정,“다양한 병원균 감염 여부 신속히 진단하는 새로운 원천기술”-
표적 DNA를 현장에서 신속, 간편하게 육안으로 진단할 수 있는 발색 진단 기술이 국내 연구자의 주도로 개발되었다.
우리 학교 박현규 교수가 주도한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 오세정)이 추진하는 중견연구자지원사업(도약연구)의 지원으로 수행되었다.
박현규 교수 연구팀은 자성 나노입자가 과산화효소 활성을 나타낸다는 최근 이론을 활용하여, PCR(중합효소 연쇄반응)에 의해 증폭된 DNA를 육안으로 쉽게 검출하는 발색 유전자 진단 신기술을 개발하였다.
이 기술은 진단하고자 하는 표적 DNA를 PCR 반응으로 증폭시키면, 증폭된 DNA가 자성 나노입자의 과산화효소 활성을 현저히 저해한다는 사실에 기반을 두고 있다.
즉, 표적 유전자가 없으면 자성 나노입자의 과산화효소 활성으로 특정한 발색 반응이 일어나 색 전이현상이 일어나지만, 표적 유전자가 있으면 PCR 반응에 의해 증폭되어 자성 나노입자의 과산화효소 활성을 막아 색 전이현상이 나타나지 않는다.
이러한 발색 반응 유무는 육안으로도 쉽게 식별할 수 있어, 기존의 복잡한 유전자 진단기술을 획기적으로 간편화시킨 새로운 유전자 진단기술로 평가된다.
경제성과 실용성을 갖춘 유전자 진단 기술 분야의 혁신적 원천기술로서, 임상적으로도 유용하게 활용될 수 있다는 것이 특징이다.
박 교수팀의 기술은 기존의 금 나노입자 기반 유전자 진단 기술과는 달리, 금 나노입자 표면에 DNA 분자를 결합하는 과정이나 색 전이 유도를 위해 염을 첨가하는 과정 등의 추가 처리가 불필요하기 때문에 값싸고 편리한 유전자 진단 기술 개발을 위한 새로운 원천기술로 기대하고 있다.
연구팀은 성병을 유발하는 병원균(클라미디아 트라코마티스)에 감염된 샘플을 대상으로 이 기술을 적용하여 원인균 감염 여부를 색 전이현상을 통해 육안으로 정확히 식별해냄으로써 임상 유용성을 훌륭하게 검증하였다.
박현규 교수는 “자성나노입자의 원리를 이용한 이 신기술은 다양한 병원균 감염을 신속히 진단하기 위한 새로운 원천기술로서, 각종 생체물질과 화학물질을 검출하는 기술로 확대되어 다각적으로 활용될 것으로 전망한다”고 연구의의를 밝혔다.
한편, 이번 연구결과는 나노과학 분야의 권위 있는 학술지인 독일의 ‘스몰(Small)’지 6월호(6월 6일자)에 표지논문으로 게재되는 영예를 얻었다.
2011.06.29
조회수 16428