본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EA%B3%B5%EA%B3%BC%EB%8C%80%ED%95%99
최신순
조회순
조영제 없이 흐르는 혈구 3차원 고속촬영 가능
생체 내 미세혈관 안에 흐르는 혈류의 여러 가지 혈류역학 정보는 관련된 장기들의 건강과 밀접하게 연결되어 있어, 이의 정확한 측정과 분석은 여러 질병 연구에 매우 중요하다. 이를 위해 가장 좋은 방법은 다양한 혈관들 안에 흐르는 혈구들을 직접 높은 시간해상도로 이미징하는 것이겠지만, 현재까지는 이러한 기술이 존재하지 않아 혈류속도와 상관관계가 있는 다른 값들을 측정해 간접적으로 유추하거나 일부 혈구들을 형광 염색한 후 주입해 이미징하는 방법 등이 사용되고 있다. 우리 대학 기계공학과/KI헬스사이언스연구소 오왕열 교수 연구팀이 세계 최초로 복잡한 3차원 혈관구조 안에서 흐르는 혈구들을 아무런 조영제 사용 없이 고속으로 이미징하는 기술을 개발했다고 1일 밝혔다. 현미경으로 생체를 이미징하면 혈구뿐만 아니라 조직으로부터도 반사 및 산란된 빛이 많기 때문에 혈구만을 선택적으로 이미징하기는 어렵다. 이번에 개발된 기술은 형광 조영제와 같은 외부 물질을 전혀 사용하지 않고 넓은 3차원 영역에 복잡하게 분포돼있는 다양한 혈관 내에 흐르는 혈구들을 직접 고속으로 이미징해(초당 1,450장의 이미지 획득) 큰 주목을 받고 있다. 오왕열 교수 연구팀은 흐르는 혈구들의 특성을 이용해 고안한 영상처리 방법 개발을 통해 현미경 이미지로부터 흐르는 혈구들만을 영상화하는 데 성공했다. 또한, 공간적으로 상관성이 없는 조명을 사용해 스페클 노이즈(반점 잡음)에 의해 혈구가 보이지 않게 되는 것을 막았으며, 속도가 빠르면서도 각 픽셀이 한 번에 획득할 수 있는 광량이 큰 카메라를 사용해 고속으로 생체 내 깊은 곳에 있는 흐르는 혈구까지 이미징할 수 있게 했다. 오왕열 교수는 “다양한 혈관 안의 혈류속도, 단위 시간당 흐르는 혈구 개수 등은 생체를 이용한 바이오메디컬 연구에서 매우 중요한 정보이기 때문에 오랫동안 많은 연구가 집중돼 왔다. 당연히, 혈관 안에 다양한 속도로 흐르는 혈구를 직접 이미징할 수 있으면 가장 좋겠지만, 그러한 영상 기기나 방법이 존재하지 않아 혈류속도와 관련있는 도플러 신호 등을 측정해 속도를 추산하거나, 혈장 혹은 일부 혈구를 형광 염색해 형광현미경으로 이미징하는 방법이 주로 사용되고 있었다. 새로 개발한 기술은 형광 조영제와 같은 아무런 물질을 생체에 주사하지 않고도, 여러 혈관 안에 흐르는 혈구들만을 고속으로 직접 영상화할 수 있어서, 현장에서의 사용이 매우 편리할 뿐 아니라 정확한 혈류역학 정보를 바로 얻어낼 수 있어, 연구 현장에서 매우 유용하게 사용될 것”이라고 강한 기대를 보였다. 우리 대학 김경환 학생과 박현상 박사가 공동 제1 저자로 참여한 이번 연구 결과는 융합연구분야 선도 저널인 스몰(Small) 10월호에 게재됐다. (논문명: Direct Blood Cell Flow Imaging in Microvascular Networks) 한편 이번 연구는 한국연구재단의 중견연구자지원사업의 지원을 받아 수행됐다.
2023.11.01
조회수 2811
변화된 데이터에서 인공지능 공정성 찾아내다
인공지능 기술이 사회 전반에 걸쳐 광범위하게 활용되며 인간의 삶에 많은 영향을 미치고 있다. 최근 인공지능의 긍정적인 효과 이면에 범죄자의 재범 예측을 위해 머신러닝 학습에 사용되는 콤파스(COMPAS) 시스템을 기반으로 학습된 모델이 인종 별로 서로 다른 재범 확률을 부여할 수 있다는 심각한 편향성이 관찰되었다. 이 밖에도 채용, 대출 시스템 등 사회의 중요 영역에서 인공지능의 다양한 편향성 문제가 밝혀지며, 공정성(fairness)을 고려한 머신러닝 학습의 필요성이 커지고 있다. 우리 대학 전기및전자공학부 황의종 교수 연구팀이 학습 상황과 달라진 새로운 분포의 테스트 데이터에 대해서도 편향되지 않은 판단을 내리도록 돕는 새로운 모델 훈련 기술을 개발했다고 30일 밝혔다. 최근 전 세계의 연구자들이 인공지능의 공정성을 높이기 위한 다양한 학습 방법론을 제안하고 있지만, 대부분의 연구는 인공지능 모델을 훈련시킬 때 사용되는 데이터와 실제 테스트 상황에서 사용될 데이터가 같은 분포를 갖는다고 가정한다. 하지만 실제 상황에서는 이러한 가정이 대체로 성립하지 않으며, 최근 다양한 어플리케이션에서 학습 데이터와 테스트 데이터 내의 편향 패턴이 크게 변화할 수 있음이 관측되고 있다. 이때, 테스트 환경에서 데이터의 정답 레이블과 특정 그룹 정보 간의 편향 패턴이 변경되면, 사전에 공정하게 학습되었던 인공지능 모델의 공정성이 직접적인 영향을 받고 다시금 악화된 편향성을 가질 수 있다. 일례로 과거에 특정 인종 위주로 채용하던 기관이 이제는 인종에 관계없이 채용한다면, 과거의 데이터를 기반으로 공정하게 학습된 인공지능 채용 모델이 현대의 데이터에는 오히려 불공정한 판단을 내릴 수 있다. 연구팀은 이러한 문제를 해결하기 위해, 먼저 `상관관계 변화(correlation shifts)' 개념을 도입해 기존의 공정성을 위한 학습 알고리즘들이 가지는 정확성과 공정성 성능에 대한 근본적인 한계를 이론적으로 분석했다. 예를 들어 특정 인종만 주로 채용한 과거 데이터의 경우 인종과 채용의 상관관계가 강해서 아무리 공정한 모델을 학습을 시켜도 현재의 약한 상관관계를 반영하는 정확하면서도 공정한 채용 예측을 하기가 근본적으로 어려운 것이다. 이러한 이론적인 분석을 바탕으로, 새로운 학습 데이터 샘플링 기법을 제안해 테스트 시에 데이터의 편향 패턴이 변화해도 모델을 공정하게 학습할 수 있도록 하는 새로운 학습 프레임워크를 제안했다. 이는 과거 데이터에서 우세하였던 특정 인종 데이터를 상대적으로 줄임으로써 채용과의 상관관계를 낮출 수 있다. 제안된 기법의 주요 이점은 데이터 전처리만 하기 때문에 기존에 제안된 알고리즘 기반 공정한 학습 기법을 그대로 활용하면서 개선할 수 있다는 것이다. 즉 이미 사용되고 있는 공정한 학습 알고리즘이 위에서 설명한 상관관계 변화에 취약하다면 제안된 기법을 함께 사용해서 해결할 수 있다. 제1 저자인 전기및전자공학부 노유지 박사과정 학생은 "이번 연구를 통해 인공지능 기술의 실제 적용 환경에서, 모델이 더욱 신뢰 가능하고 공정한 판단을 하도록 도울 것으로 기대한다ˮ고 밝혔다. 연구팀을 지도한 황의종 교수는 "기존 인공지능이 변화하는 데이터에 대해서도 공정성이 저하되지 않도록 하는 데 도움이 되기를 기대한다ˮ고 말했다. 이번 연구에는 노유지 박사과정이 제1 저자, 황의종 교수(KAIST)가 교신 저자, 서창호 교수(KAIST)와 이강욱 교수(위스콘신-매디슨 대학)가 공동 저자로 참여했다. 이번 연구는 지난 7월 미국 하와이에서 열린 머신러닝 최고권위 국제학술 대회인 `국제 머신러닝 학회 International Conference on Machine Learning (ICML)'에서 발표됐다. (논문명 : Improving Fair Training under Correlation Shifts) 한편, 이 기술은 정보통신기획평가원의 지원을 받은 `강건하고 공정하며 확장가능한 데이터 중심의 연속 학습' 과제 (2022-0-00157)와 한국연구재단 지원을 받은 `데이터 중심의 신뢰 가능한 인공지능' 과제의 성과다.
2023.10.30
조회수 3897
한빛원전의 시공 불량 문제를 해결하기 위한 시뮬레이션 개발
후쿠시마 사고 이후 원전 안전 및 관리에 대한 관심이 집중되고 있다. 한국에서는 2017년 6월경 한빛원전의 원자로 격납건물의 콘크리트 벽 속에서 대규모 공극이 발견되었다. 원자로 격납건물은 원전 사고 발생 시 방사능 유출을 막아주는 최후의 보루이기 때문에, 이러한 콘크리트 공극으로 인한 원전의 안전상 우려가 큰 상황이다. 국내 연구진들은 원자로 격납건물 시공시 콘크리트 다짐 및 채움 불량으로 인하여 격납로 내 콘크리트에 공극이 발생한 것으로 추정하고 있다. 원자로 격납건물은 일반 콘크리트 구조물과 달리 매우 높은 밀도의 철근 보강이 필요하기 때문에, 콘크리트 타설 시 진동 다짐기가 진입하지 못하는 구역이 존재할 가능성이 높아서 콘크리트 공동에 대한 위험성이 높다. 하지만 돔 형태의 벽체 내부를 감싼 6 mm 두께의 철판(콘크리트 라이너 플레이트, CLP)이 영구 거푸집으로 활용되기 때문에 내부 공동에 대한 육안 검사가 불가능하다는 점에서 공극 발생 여부의 발견에 대한 어려움이 있다. 우리 대학 건설및환경공학과 김재홍 교수 연구팀은 이러한 문제를 해결하기 위하여 콘크리트의 유동성과 다짐 불량으로 인해 발생하는 공동을 억제할 수 있는 시공 시뮬레이션 기법을 개발했다. 연구팀에서 제안한 콘크리트 유동 시뮬레이션 기법은 콘크리트의 레올로지와 진동다짐의 영향 반경을 고려하여 콘크리트 공동 발생 예상 부위를 예측하는 기술이다. 연구팀은 이번 연구를 통해 콘크리트 진동다짐의 영향 반경(감쇠계수)을 직접 측정하여 굳지 않은 콘크리트 내부의 진동 에너지 밀도 분포를 제시했다. 이어서, 진동 에너지에 따른 콘크리트의 Vibrorheology를 정량적으로 측정하여, 굳지 않은 콘크리트의 항복응력 감소를 정량적으로 모델링하여 시공 시뮬레이션을 가능하게 하였다. 새로 제안된 시공 시뮬레이션 기법은 기존 콘크리트 유동해석으로는 고려할 수 없었던 격납건물 내부 보강재의 형상과 크기, 콘크리트 레올로지, 그리고 진동다짐의 진폭과 진동수까지 고려하여 콘크리트의 채움성을 평가할 수 있게 되었다. 연구팀은 향후 보강 연구를 진행해 3D 프린팅 콘크리트의 레올로지 제어, 프리캐스트 콘크리트의 품질 관리 등에도 해당 기술을 활용할 계획이다. 이번 연구는 한국수력원자력(주)와 한국연구재단의 과학기술분야 기초연구사업의 지원으로 수행되었으며, 건설공학 분야에서 권위 있는 학술지인 ACI Materials Journal, Cement and Concrete Research 등에 출판되었다. (논문명: (1) Quantitative evaluation of energy transfer of a concrete vibrator. (2) Flow simulation of fresh concrete accounting for vibrating compaction.)
2023.10.24
조회수 4149
천 배 축소된 분광기로 과일 당도 정밀 측정
눈으로 보기에 잘 익은 사과의 당도를 휴대용 분광기로 정확하게 예측이 가능한 기술이 개발됐다. 우리 대학 바이오및뇌공학과 정기훈 교수 연구팀이 가시광선 및 근적외선 분광을 바탕으로 현장 진단에 적합한 고해상도의 휴대용 분광 센서를 개발하는 데 성공했다고 24일 밝혔다. 물질이 반사 또는 흡수하는 빛의 파장 분포를 통해 고유의 성분을 분석할 수 있다는 면에서 분광측정은 다양한 응용 분야에서 비파괴 시료 분석에 활발히 사용되고 있다. 기존 상용분광기는 실시간 성분분석을 제공하지만, 시스템의 크기가 커서 휴대용이나 현장 진단에 활용하는데 한계가 존재한다. 최근 마이크로나노공정 기술의 발전으로 소형 분광센서가 개발돼 품질 평가, 환경 모니터링, 위약 진단 및 헬스케어 등에서 활용되고 있다. 하지만 현재의 소형 분광센서들은 내부 광부품들의 간소화를 거치며 광학 성능이 크게 저하돼 시료 분석의 정확도를 낮추고 있으며, 여전히 광학 성능이 저하되지 않으면서 동시에 크기를 줄이는 데 어려움을 겪고 있다. 연구팀은 수 밀리미터 두께의 분광기 내로 들어온 가시광선이 석영(Quartz) 속에 제작된 회절판을 거치며 짧은 거리에서 넓게 분산시키는 형태인 고체잠입회절판구조를 최초로 제안하였다. 또한, 회절판과 굴절률이 유사한 렌즈를 접합하여 분산된 빛이 이미지센서에 평면 초점을 맺히도록 설계하여 가시광선 전 영역에서 균일한 분광분해능을 갖도록 제작하였다. 연구팀이 제작한 마이크로분광기 모듈은 8 mm × 12.5 mm × 15 mm의 크기를 가지고, 이는 기존 상용분광기를 1천 배 이상 축소시킨 성과이다. 또한, 상용분광기의 성능과 비슷한 평균 5.8 nm의 고해상도 및 작동 파장 범위 내 76% 이상의 고감도를 나타낸다. 연구팀은 마이크로분광기 모듈의 응용예시를 실험적으로 검증하기 위해 휴대용 분광 센서를 설계·제작하고, 분광 응용 분야 중 가장 대표적인 사례인 과일의 품질 검증을 진행했다. 제작한 마이크로분광기와 백색 LED 등을 결합한 분광 센서는 과일의 표면에 부착하여 손쉽게 분광 신호를 획득했다. 또한, 분광 신호의 형태를 분석하여 과일의 성숙도를 예측해 실제 성숙도와 비교하고, 0.91 이상의 높은 상관계수로 신뢰도 높은 예측 모델을 정립했다. 이를 통해 기존 소형 분광기에서 발생했던 광학 성능의 저하를 고체잠입회절판구조의 마이크로분광기를 이용해 해결하고, 연구팀은 휴대용 분광 센서의 현장 진단에 활용 가능함을 확인했다. 정기훈 교수는 “이 초박형 및 고해상도의 마이크로분광기는 식음료 품질검사는 물론 현장형 검사/진단이 필요한 농수산물·헬스케어 분야뿐만 아니라 고속 품질분석이 필요한 제약·바이오·반도체 검사 분야에서 정확하고 비침습적인 분석을 위한 중요한 도구 역할을 수행할 수 있을 것”이라고 연구의 의미를 설명했다. 우리 대학 바이오및뇌공학과 박정우 박사과정이 주도한 이번 연구 결과는 국제 학술지 ‘어드밴스드 사이언스 (Advanced Science)’에 게재됐다. (논문명: 휴대용 가시광선 및 근적외선 분광 응용 분야를 위한 초박형 고체잠입회절판구조 마이크로분광기, Fully Integrated Ultrathin Solid Immersion Grating Microspectrometer for Handheld Visible and Near-Infrared Spectroscopic Applications) 한편 이번 연구는 과학기술정보통신부, 재단법인 범부처전주기의료기기연구개발사업단, ㈜파이퀀트의 지원을 받아 수행됐다.
2023.10.24
조회수 4089
세계 최고 전기차 이차전지 수명 획기적 연장
전기차 시대의 가속화에 따라 1회 충전에 긴 주행거리를 가능하게 하거나 전 세계 평균 기온에 속하는 넓은 온도 범위(-20~60도)에서 충전과 방전을 할 수 있는 고용량, 고에너지밀도 이차전지 개발의 중요도가 커지고 있다. 우리 대학 생명화학공학과 최남순 교수 연구팀이 넓은 온도 범위에서 리튬금속 전지의 높은 효율과 에너지를 유지하는 세계 최고 수준의 전해액 기술을 개발했다고 4일 밝혔다. 개발된 전해액은 기존에 보고되지 않은 새로운 *솔베이션 구조를 형성했으며 안정적인 전극-전해질 계면 반응을 확보할 수 있는 첨가제 기술을 통해 리튬금속 전지의 수명 특성을 획기적으로 향상시켰다. ☞ 솔베이션 구조 : 일반적으로 염(이온성 화합물) 농도가 낮은 전해액에서는 양이온이 전하를 띠지 않은 용매에 의해 둘러싸여 동심원의 껍질(Shell)을 형성하는데 이를 솔베이션 구조라고 함. 이러한 솔베이션 구조 개선 기술은 염 농도를 증가시키지 않고 배터리의 작동 온도 범위를 넓히는 매우 중요한 인자임. 최남순 교수 연구팀은 기존에 보고된 전해액 내 리튬 이온의 이동이 제한적이고 구동할 수 있는 온도 범위의 한계가 있는 전해액들과는 달리 넓은 온도 범위(-20~60도)에서 안정적으로 작용할 수 있는 용매 조성 기술과 전극계면 보호기술을 적용해 기존 연구 결과보다 현저하게 향상된 *가역 효율 (영하 20도 300회 99.9%, 상온 200회 99.9%, 고온 45도 100회 99.8%)을 달성했다. ☞ 가역 효율 : 매 사이클마다 전지의 방전용량을 충전용량으로 나누어 백분율로 나타낸 값으로 배터리의 가역성을 의미함. 가역 효율이 높을수록 매 사이클마다 배터리 용량 손실이 적음을 의미함. 아무리 높은 용량을 구현하는 배터리라도 가역성이 높지 않다면 실용화가 어려움. 또한, 완전 충전-완전 방전조건에서 첫 사이클 방전 기준 용량 80%가 나오는 횟수까지를 배터리 수명으로 보고 있는데 개발된 전해액 기술은 상온(25도)에서 200회 충·방전 후에 첫 번째 사이클의 방전용량 대비 85.4%의 높은 방전용량 유지율을 보였다. 또한, 고온(45도)에서 100회 충·방전 후 91.5% 발현, 저온(영하 20도) 구동에서도 300회 충·방전 후 72.1% 발현하는 등 완전 충전-완전 방전조건에서 기존 상용 기술 대비 약 20% 높은 용량 유지율을 보여줬다. 이번 연구에서 개발된 새로운 솔베이션 구조를 가지는 전해액(partially and weakly solvating electrolyte; PWSE) 기술은 리튬 코발트 산화물 양극을 사용해 영하 20도에서 60도의 넓은 온도 범위에서 극대화된 성능을 얻었다는 점에서 그 의미가 크다. 여기에 더해 60도와 80도 고온 저장에서도 저장 성능이 유지됨도 확인했다. 특히 리튬금속 전지용 전해액 기준 프레임을 제시한바, 이는 리튬이차전지 전해액 시장에서 게임 체인저가 될 것이라고 연구진은 설명했다. 이번 논문의 공동 제1 저자인 우리 대학 생명화학공학과 김세훈 박사과정은 "새로운 솔베이션 구조에 의한 리튬 이온의 이동도 향상과 구동 온도 범위의 확장 그리고 전해액 첨가제에 의한 안정적인 전극-전해질 계면 형성의 시너지 효과에 의해 기존에 보고된 리튬금속 전지용 전해액 기술 개발의 한계를 뛰어넘는 기술을 개발하게 됐다ˮ라고 말했다. 최남순 교수는 "개발된 전해액 기술은 기존에 보고된 전해액들과는 달리 리튬이온을 끌어당기는 힘이 다른 두 개의 용매를 사용하여 리튬이온이 잘 이동하게 하고 전극 표면에서도 원하지 않는 부반응을 감소시키는 새로운 솔베이션 구조를 형성해 리튬금속 전지 구동 온도 범위를 넓힌 획기적인 시도ˮ라며 "이러한 솔베이션 구조 개선 기술과 전해액 첨가제에 의한 안정적인 전극-전해질 계면 형성의 시너지 효과는 고에너지 밀도 리튬금속 전지에서의 난제들을 효과적으로 해결하고 전해액 설계에 있어서 새로운 방향을 제시했다ˮ라고 연구의 의미를 강조했다. 생명화학공학과 최남순 교수와 김세훈, 이정아, 김보근, 변정환 연구원과 경상국립대학교 나노신소재융합공학과 이태경 교수, UNIST 에너지화학공학과 강석주 교수, 백경은 연구원, 이현욱 교수, 김주영 연구원 진행한 이번 연구는 국제 학술지 `에너지 & 인바이론멘탈 사이언스 (Energy & Environmental Science)'에 9월 13일 字로 온라인 공개됐다 (논문명 : Wide-temperature-range operation of lithium-metal batteries using partially and weakly solvating liquid electrolytes). 한편 이번 연구 수행은 솔베이 스페셜티 폴리머즈 코리아 (Solvay Specialty Polymers Korea)의 지원과 ㈜후성으로부터 첨가제 합성 지원을 받아 수행됐다.
2023.10.04
조회수 4958
인공지능으로 조현병 원인치료의 실마리 찾다
정신분열증으로도 알려진 조현병은 환청, 환영, 인지장애 등의 증상으로 대표되는 정신질환이다. 국내 연구진이 인공지능을 활용해 그동안 증상 억제만이 가능했던 조현병의 원인을 치료할 수 있는 실마리를 찾았다. 우리 대학 바이오및뇌공학과 이도헌 교수 및 한국한의학연구원(원장 이진용) 공동연구팀이 미국 스탠리 의과학연구소(이하 스탠리연구소) 와의 국제공동연구를 통해 인공지능으로 개인의 유전형과 조현병 사이의 선천적 병리 모델과 조현병 예측 마커를 발굴했다고 27일 밝혔다. 조현병은 2016년 강남역 살인사건, 2019년 진주 방화사건, 2023년 대전 칼부림 사건 등 일부 환자들의 강력범죄와 환자에 대한 사회적 낙인으로 인해 조현병은 심각한 사회적 문제가 되었다. 그러나 이러한 심각성에도 불구하고 조현병의 원인은 명확히 밝혀지지 않아, 리스페리돈(risperidone), 클로자핀(clozapine) 등 항정신병제에 의한 증상의 억제만이 가능한 실정이다. 이도헌 교수 연구팀은 미 스탠리연구소의 다수준 뇌 조직 데이터에 최근 주목받는 인공지능 기술인 `설명가능한 심층학습' 기술을 접목해, 선천적 유전형과 조현병 사이의 병리를 설명하는 인공신경망 모델을 구축했다. 그리고 모델을 해석하여, 선천적 유전형이 유전자·단백질 발현 조절을 통해 뇌의 전전두엽피질, 안와전두엽피질 신경세포의 발생을 변화시켜 조현병 취약성을 결정한다는 사실을 밝혀냈다. 또한, 뇌의 신경세포 밀도를 감소시키는 유전형 조합을 조현병 예측 마커로 제시해, 개인화된 조현병 예측과 세포 치료 등을 통한 조현병 원인치료의 가능성을 열었다. 이도헌 교수는 바이오의료 분야는 `속내를 알 수 없는 인공지능'보다는 `속내를 해석가능한 인공지능'이 꼭 필요한 분야라고 강조하면서, “기존의 인공지능과 비교했을 때 이번 연구에서는 인공신경망의 중간 노드에 유전자 이름, 세포의 상태와 같은 구체적인 생물학적 의미가 부여된 노드를 배치하고 그들간의 연결관계를 기계학습기법으로 분석했다”라고 말했다. 바이오및뇌공학과 이도헌 교수, 조유상 박사(現 한국한의학연구원 선임연구원), 미 스탠리연구소 김상현 박사, 마리 웹스터 박사가 공동으로 진행한 이번 연구는 영국 옥스퍼드대학교에서 발간하는 세계적 학술지인 `기능유전체학 브리핑(Briefings in Functional Genomics)'지 2023년 9월호에 게재됐다.
2023.09.27
조회수 5150
유독물질 뺀 초고해상도 QLED 신기술 개발
디스플레이 패널에 쓰이는 차세대 발광소재로 양자점(Quantum dot)이 각광을 받고 있다. 특히, 카드뮴이나 납과 같은 유독성 물질을 포함하지 않는 친환경 인듐 포스파이드(InP) 양자점이 주목을 받고 있으나 현재 기술로는 초고해상도 구현이 어려워 양자점 LED(QLED) 디스플레이 및 안경형 증강현실/가상현실 기기 적용에 있어 한계를 지닌다. 우리 대학 신소재공학과 조힘찬 교수 연구팀이 친환경 InP 양자점의 우수한 광학적 특성을 유지하며 초고해상도 패턴을 제작하는 신기술을 개발했다고 26일 밝혔다. 현재, 국제 유해물질 제한지침 (RoHS, Restriction of Hazardous Substances) 규정을 만족하지 못하는 제품은 많은 나라에서 판매가 금지되므로, 최근 많은 디스플레이 기업은 환경친화적인 특성을 갖춘 InP 양자점을 디스플레이에서의 빛 방출 소재로 채택하여 TV 등 중대형 디스플레이에 적용하기 시작하였다. 그러나 InP 양자점은 외부 환경에 매우 민감한 성질을 가지고 있어 픽셀을 만드는 패터닝 공정 적용시 소재의 광학적 특성이 크게 저하되는 단점이 있어 우수한 광학적 및 전기적 특성이 동시에 요구되는 QLED 디스플레이나, 기존 TV 대비 수십배의 초고해상도를 필요로 하는 안경형 증강현실/가상현실 기기 적용에 어려움이 있었다. 조 교수 연구팀은 자외선을 받으면 산을 발생시키는 광산 발생기(photoacid generator)의 원리를 활용하여 초미세 양자점 패턴을 제작하였다. 양자점이 자외선을 받은 경우, 생성된 산에 의해 양자점 표면이 변화하면서 자외선을 받지 않은 부분 대비 용해도 차이가 생겨 패턴 형성이 가능해지는 원리이다. 연구팀은 패터닝시 손상된 InP 양자점의 발광 효율을 획기적으로 높일 수 있는 양자점 표면 치료법을 개발하였다. 양자점에는 양자점을 둘러싸고 있는 표면 리간드(ligand)들이 있는데, 이 리간드들에 의해 양자점의 발광 효율이 큰 영향을 받는다. 연구팀은 친환경 InP 양자점의 표면 리간드를 개질할 수 있는 맞춤형 후처리 공정을 개발하였고, 이를 통해 최종적으로 높은 발광 효율을 가지는 1 마이크로미터(μm)급 초미세 양자점 패턴을 구현할 수 있었다. 이는 기존의 디스플레이 (TV, 스마트폰, 모니터 등)에서 일반적으로 요구되는 픽셀 너비와 비교했을 때 수십 배 작은 패턴으로 증강현실/가상현실 기기 적용 가능성을 크게 높였다고 할 수 있다. 또한 연구팀은 정밀한 분석을 통해 개발된 광산 발생기 기반의 패터닝 기술의 반응 원리를 규명했고, 개발된 기술이 양자점 LED나 대면적 공정에 쉽게 적용될 수 있음을 증명하였다. 조힘찬 교수는 “이번에 개발한 친환경 InP 양자점 패터닝 기술은 높은 발광 효율과 초고해상도 패턴 제작을 동시에 가능하게 하여 차세대 양자점 LED 기반 디스플레이, 증강현실 기기, 이미지 센서 등 다양한 산업에 실제로 적용될 수 있을 것으로 기대하고 있다”라고 언급했다. KAIST 신소재공학과 이재환 석사과정 학생이 제1 저자로, 미국 시카고 대학교의 Dmitri V. Talapin 교수가 공동교신저자로, KAIST 생명화학공학과 이도창 교수 연구팀이 공동저자로 참여한 이번 연구는 국제 학술지 `에이씨에스 에너지 레터스 (ACS Energy Letters)' 에 출판됐다. (논문명 : Direct Optical Lithography of Colloidal InP-Based Quantum Dots with Ligand Pair Treatment) 한편 이번 연구는 한국연구재단 및 삼성전자, 중소벤처기업부 그리고 KAIST의 지원을 받아 수행됐다.
2023.09.26
조회수 4619
교원창업기업 (주)로엔서지컬, 신장결석 수술로봇 보건복지부 혁신의료기술 지정으로 시장 진입 가시화
우리 대학 교원창업 스타트업인 ㈜로엔서지컬(대표이사 기계공학과 권동수 교수)에서 국내최초로 개발한 신장결석 수술로봇을 사용하는 연성신요관 경하 결석제거술이 보건복지부의 혁신의료기술로 지정받았다고 밝혔다. 해당 기술은 요로결석으로 인해 연성신요관경하 결석제거술이 필요한 환자를 대상으로 요로를 통해 삽입한 수술기구를 로봇 팔에 부착하여 요로결석을 제거하는 기술로 안전성 및 잠재성이 있는 혁신의료기술로 인정받은 만큼 안전하고 효과가 검증된 치료법을 뜻한다고 로엔서지컬 측은 설명했다. 지난 20일 보건복지부 고시 제2023-175호 ‘신의료기술의 안전성, 유효성 평가결과 고시’에 따르면 요로결석 제거를 위해 로봇 보조 연성신요관경하 결석제거술 기술을 이용하여 결석제거술이 필요한 환자를 대상으로 병원에서 치료가 가능해짐에 따라, 신장결석 수술로봇의 조기 시장진입이 가능하게 되었다. 이에 따라, ㈜로엔서지컬은 혁신의료기술 실시 준비를 위한 임상시험과 국내 병원 판매 계약 등을 준비중에 있다고 밝혔다. 2024년 4월 부터는 최대 3년간 의료현장에서 비급여로 사용될 수 있다. ㈜로엔서지컬은 지난 2018년 2월에 KAIST 교원 및 학생창업을 통해 유연내시경 수술로봇을 개발하고 있는 회사로 환부를 개복하지 않고 인체의 자연개구부를 통해 신장내 결석을 제거하는 신장결석 수술로봇등의 유연내시경 수술로봇을 개발하는 회사로 2021.12월 식약처 제17호 혁신의료기기 지정, 2022.10월 식약처 제조허가 획득에 이어 올해 9월에 보건복지부 혁신의료기술로 인정받게 되어, 수술로봇 개발의 독보적인 기술 우수성을 다시 입증함에 따라, 시장진입에 의미있는 계기가 마련되었다고 밝혔다.
2023.09.22
조회수 2920
인간의 뇌를 모방한 3차원 집적 뉴로모픽 반도체 개발
우리 대학 전기및전자공학부 최양규 교수, 명현 교수, 그리고 신소재공학과 이건재 교수 공동연구팀이 ‘인간의 뇌를 모방한 3차원 집적 뉴로모픽 반도체’를 개발하는 데에 성공했다. ‘인간의 뇌를 모방해 동일평면 상에 수평 집적한 뉴로모픽 반도체’를 개발(2021년 Science Advances 게재)하는 데에 성공했던 연구팀은, 뉴런 소자와 시냅스 소자를 상하부에 3차원 방식으로 수직 집적해, 보다 높은 집적도와 전력 효율을 가지는 뉴로모픽 반도체를 구현할 수 있음을 처음으로 보였다. 전기및전자공학부 졸업생 한준규 박사, 전기및전자공학부 이정우 박사과정과 김예은 박사과정, 그리고 신소재공학과 김영빈 박사과정이 공동 제1저자로 참여한 이번 연구는 저명 국제 학술지 ‘Advanced Science’ 2023년 9월 온라인판에 출판됐다. (논문명 : 3D Neuromorphic Hardware with Single Thin-Film Transistor Synapses Over Single Thin-Body Transistor Neurons by Monolithic Vertical Integration). ‘Advanced Science’는 재료과학, 물리학, 화학, 생명과학, 엔지니어링 분야의 기초 및 응용 연구를 다루는 학제 간 오픈 액세스 저널이다. (impact factor : 17.521) 뉴로모픽(neuromorphic) 하드웨어는, 인간의 뇌가 매우 복잡한 기능을 수행하지만 소비하는 에너지는 20와트(W) 밖에 되지 않는다는 것에 착안해, 인간의 뇌를 모방해 인공지능 기능을 하드웨어로 구현하는 방식이다. 뉴로모픽 하드웨어는 기존의 폰 노이만(von Neumann) 방식과 다르게 인공지능 기능을 초저전력으로 수행할 수 있어 많은 주목을 받고 있다. 뉴로모픽 하드웨어를 구현하기 위해서는 생물학적 뇌와 동일하게 일정 신호가 통합되었을 때 스파이크를 발생하는 뉴런과 두 뉴런 사이의 연결성을 기억하는 시냅스가 필요하다. 연구팀은 단일 박막 트랜지스터(thin-film transistor) 기반 시냅스 소자를 단일 트랜지스터 기반 뉴런 소자 위에 3차원 방식으로 수직 집적해, 높은 집적도와 전력 효율을 가지는 3차원 집적 뉴로모픽 반도체를 개발했다. 아래층 뉴런 소자의 손상 없이 위층 시냅스 소자를 제작하기 위해, 엑시머 레이저 어닐링(excimer laser annealing) 기법을 활용했다. 또한, 아래층 뉴런 소자의 손상 없이 위층 시냅스 소자의 내구성을 향상시키기 위해, 소자 내부의 줄열(Joule heat)을 이용한 자체 어닐링 기법도 제안했다. 이러한 뛰어난 내구성을 바탕으로, 이벤트 카메라(event camera)를 기반으로 제작된 손동작 기반의 수화 (手話) 패턴을 높은 성공률로 인식할 수 있음을 보였다.
2023.09.21
조회수 5034
10배 이상 생체신호 정밀 측정 ‘SUPPORT’ 개발
최근 유전공학 기술의 발전으로 형광현미경을 활용해 살아있는 생체조직 내 신호를 형광신호로 변환하여 연속적으로 촬영하고 측정하는 기술들이 개발되어 활용되고 있다. 그러나, 생체조직에서 방출되는 형광신호가 미약하기 때문에 빠르게 변화하는 신경세포의 전기신호 등의 신호를 측정할 경우, 매우 낮은 신호대잡음비를 가지게 되어 정밀한 측정이 어려워지게 된다. 우리 대학 전기및전자공학부 윤영규 교수 연구팀이 기존 기술 대비 10배 이상 정밀하게 생체 형광 신호 측정을 가능하게 하는 인공지능(AI) 영상 분석 기술을 개발했다고 20일 밝혔다. 윤 교수 연구팀은 별도의 학습 데이터 없이, 낮은 신호대잡음비를 가지는 형광현미경 영상으로부터 데이터의 통계적 분포를 스스로 학습해 영상의 신호대잡음비를 10배 이상 높여 생체신호를 정밀 측정할 수 있는 기술을 개발했다. 이를 활용하면 각종 생체 신호의 측정 정밀도가 크게 향상될 수 있어 생명과학 연구 전반과 뇌 질환 치료제 개발에 폭넓게 활용될 수 있을 것으로 기대된다. 윤 교수는 “이 기술이 다양한 뇌과학, 생명과학 연구에 도움이 되길 바라는 마음을 담아 ‘서포트(SUPPORT, Statistically Unbiased Prediction utilizing sPatiOtempoRal information in imaging daTa)라는 이름을 붙였다”며, “다양한 형광 이미징 장비를 활용하는 연구자들이 별도의 학습 데이터 없이도 쉽게 활용가능한 기술로, 새로운 생명현상 규명에 폭넓게 활용될 수 있을 것”이라고 말했다. 공동 제1 저자인 엄민호 연구원은 "서포트(SUPPORT) 기술을 통해 관측이 어려웠던 생체 신호의 빠른 변화를 정밀하게 측정하는 것에 성공하였고, 특히 밀리초 단위로 변하는 신경세포의 활동전위를 광학적으로 정밀하게 측정할 수 있어 뇌과학 연구에 매우 유용할 것이다”라고 하였으며, 공동 제1 저자인 한승재 연구원은 “서포트 기술은 형광현미경 영상 내 생체 신호의 정밀 측정을 위해 개발됐지만, 일반적인 타임랩스 영상의 품질을 높이기 위해서도 폭넓게 활용가능하다”라고 말했다. 이 기술은 전기및전자공학부 윤영규 교수팀의 주도하에 신소재공학과 장재범 교수, 의과학대학원 김필한 교수, 충남대학교, 서울대학교, 하버드대학(Harvard University), 보스턴대학(Boston University), 앨런 연구소(Allen Institute), 웨스트레이크대학(Westlake University) 연구진들과 다국적, 다학제간 협력을 통해서 개발됐다. 이번 연구는 한국연구재단의 지원을 받아 수행됐으며 국제 학술지 `네이처 메소드(Nature Methods)'에 9월 19일 자로 온라인 게재되었으며 10월호 표지 논문으로 선정됐다. (논문명 : Statistically unbiased prediction enables accurate denoising of voltage imaging data)
2023.09.20
조회수 3503
고용량 배터리 수명 증대 영상화하다
전기자동차에서 볼 수 있는 고용량 배터리에 사용되고 있는 실리콘 활물질은 기존 음극 활물질인 흑연 대비 높은 용량 값(4200 mAh/g)을 갖고 있으나, 충전 및 방전 간 400%에 달하는 높은 부피 팽창/수축률이 배터리 수명에 악영향을 미치고 있다. 이를 해결하기 위해서 단일벽 탄소나노튜브를 소량 첨가해 수명 특성이 향상되는 결과를 얻었는데, 이런 향상이 어떻게 가능한지 나노스케일에서 영상화한 연구 결과가 공개됐다. 우리 대학 신소재공학과 홍승범 교수 연구팀이 LG에너지솔루션과 협업해 배터리의 수명 특성 향상 메커니즘 영상화 결과를 국제학술지‘에이씨에스 에너지 레터스(ACS Energy Letters, Impact Factor: 22)’에 게재했다고 19일 밝혔다. (논문명: Spatially Uniform Lithiation Enabled by Single-Walled Carbon Nanotubes) 연구팀은 이전에는 실리콘 활물질이 충·방전을 거치면서 전자 전도 네트워크가 열화되는 과정을 영상화하였는데, 이번 연구에서는 단일벽 탄소나노튜브의 존재로 인해서 그 형태를 유지하고 있는 전자전도 네트워크가 활물질 내에 균일한 충·방전이 가능하도록 기능하고 있음을 보여 수명 증대 메커니즘을 검증했다. 구체적으로 연구팀은 원자간력 현미경(Atomic Force Microscopy) 기반의 켈빈 프루브 현미경(Kelvin Probe Force Microscopy)를 이용해 1회 및 90회 충·방전 싸이클 후의 전극 내 천연흑연과 실리콘 산화물 입자에서의 표면 전위를 측정 및 영상화했다. 이를 통해 단일벽 탄소나노튜브(Single-Walled Carbon Nanotube, SW-CNT)가 첨가된 전극에서는 활물질 내 표면 전위가 균일하게 분포하고 있는 반면, 첨가되지 않은 기존 전극의 경우에는 90회 충·방전 후에 불균일한 표면전위를 보여, 전자 전도 네트워크가 제대로 기능을 발휘하지 않아 불균일한 충·방전이 됨을 연구팀은 확인했다. 이처럼 활물질 내부의 표면 전하를 영상화할 수 있는 기술은 실리콘 활물질 뿐만 아니라, 다양한 전극 시스템에 적용될 수 있으며, 향후 배터리 충전 및 방전 상태 균일성을 확인하고 수명 향상 연구로 발전할 수 있다. 이번 연구의 제1 저자인 신소재공학과 박건 연구원은 “충·방전 시 수반되는 실리콘 계열 활물질의 급격한 부피 변화에도 불구하고 가느다란 탄소나노튜브가 전자 전도 채널을 유지하고 이로 인해 전극 내에 균일한 충·방전을 가능케하는 것이 매우 신기한 일이었는데, 이를 나노스케일에서 직접 영상화해 그 역할을 미시세계에서 이해할 수 있었던 것이 큰 의미가 있다”라고 말했다. 교신 저자인 홍승범 교수는 “원자간력 현미경을 활용해서 나노스케일에서 일어나는 전기화학적인 현상을 영상화하고 이를 통해서 배터리 성능 및 수명을 향상할 수 있는 혁신적인 아이디어를 창출할 수 있게 되어 매우 기쁘다”라고 말했다. 이번 연구는 LG에너지솔루션, LG에너지솔루션-KAIST Frontier Research Lab.과 KAIST 글로벌 특이점 사업의 지원을 받아 수행됐다.
2023.09.19
조회수 4112
겨울왕국을 내 눈앞에서 생생하게
스티로폼 입자들이 작은 눈보라를 만들었다가 관람객이 가까이 다가오면 순간적으로 큰 눈보라로 소용돌이쳤다. 마치 눈 내리는 공간에 있는 듯한 몰입적 경험을 할 수 있는 미디어아트 작품이 개발되어 화제다. 우리 대학 산업디자인학과 이우훈 교수 연구팀이 공기의 흐름을 제어해 스티로폼 알갱이의 집산(흩어짐과 모임)을 통해 그래픽 이미지를 표시하는 신개념 기계식 디스플레이‘스노우 디스플레이’를 개발했다고 14일 밝혔다. 연구팀이 개발한 디스플레이 시스템은 스티로폼 입자들을 수용하는 챔버(공간), 챔버 안에서 스티로폼 입자를 날려 흩트리는 부양 팬, 입자들을 흡착하여 거르는 검정색 메쉬 패브릭 스크린, 공기 통로 개폐장치, 배기 팬 등으로 구성된다. 부양 팬들을 작동시켜 스티로폼 입자의 흩어짐과 모임을 반복하며 원하는 그래픽 이미지를 표시한다. 무작위한 입자의 흩날림으로부터 일순 질서 있는 이미지가 생성되는 시각효과는 기존 대안 디스플레이에서는 보기 드문 마법 같은 관람 경험을 제공한다. 이번 연구를 수행한 우리 대학 산업디자인학과 김명성(석사 졸업), 백선우(석사과정) 학생은 새로운 대안 디스플레이 기술을 기반으로 <타임 투 스노우(Time to Snow)>라는 미디어아트 작품을 제작했다. 관람객이 없을 때는 작은 눈보라를 일렁이며 관람객의 관심과 접근을 유도한다. 관람객이 가까이 다가오면 순간적으로 큰 눈보라가 일었다 잦아들면서 검은 벽면에 눈처럼 쌓인 스티로폼 알갱이가 현재 시각을 표시한다. 관람객은 손동작으로 눈보라를 일으킬 수도 있는데 이를 통해 마치 눈 내리는 공간에 있는 듯한 몰입적 경험을 할 수 있다. 이 작품은 올해 8월 6일부터 11일까지 미국 로스앤젤레스에서 개최된 컴퓨터 그래픽스 및 상호작용기술 분야 최대 규모 국제학술대회인 ‘ACM 시그래프(SIGGRAPH)’ 아트갤러리에 전시돼 관람객들의 이목을 끌었다. 또한 2023년 레드닷 디자인 어워드 디자인 컨셉 부문에서 최우수상(Best of the Best)을 수상기도 했다. 이우훈 교수는 “ 우수한 성능의 LCD나 LED 기반의 디스플레이가 있음에도, 미디어 아티스트나 디자이너들은 나무, 종이, 플라스틱, 솜털 등 손에 잡히는 물리적 픽셀을 이용하는 기계식 대안 디스플레이를 꾸준히 제안해 왔다. 물리적 픽셀이 표현하는 그래픽 이미지가 일상에서 경험하기 불가능한 심미적 감동을 제공하기 때문이다. 스노우 디스플레이도 향후 다양한 시각 콘텐츠를 전달하는 아날로그 감성의 대안 표시장치로 널리 활용될 것으로 기대된다.”라고 말했다. 연구팀은 개발한 기계식 디스플레이 기술을 바탕으로 현재 도트매트릭스 방식의 가로 약 2m, 세로 1m 크기의 대형 사이니지(signage)를 제작하고 있다. 이 대형 사이니지는 오는 9월 말경 대전 신세계 아트앤사이언스 6층에 있는 과학관(넥스페리움) 입구에 설치될 예정이다.
2023.09.14
조회수 3969
<<
첫번째페이지
<
이전 페이지
11
12
13
14
15
16
17
18
19
20
>
다음 페이지
>>
마지막 페이지 83