< (왼쪽부터) 기계공학과 박인규 교수, 한국기계연구원 정준호 박사, 기계공학과 하지환 박사과정 >
최근까지도 다양한 웨어러블 시스템을 위한 섬유의 기능화를 위한 시도가 이뤄지고 있다. 그중에서, 나노구조체의 전사 기술은 섬유의 굴곡진 형상과 낮은 표면 접착력으로 인해 웨어러블 시스템을 위한 기능성 섬유 제조에 있어서는 한계를 마주했다.
공동연구팀은 신축성이 우수한 마이크로 스케일의 전기방사 섬유를 개발하여 웨어러블 헬스케어 응용에 접목돼, 땀의 미세한 포도당 수치 진단이 가능하고 다양한 기능성 의복의 고안 및 웨어러블 시스템 영역을 확장하게 할 기술을 개발했다.
우리 대학 기계공학과 박인규 교수와 한국기계연구원(KIMM) 정준호 박사 공동연구팀이 `전기방사 섬유 상 금속 및 금속산화물 기반 나노구조체 전사 기술'을 개발했다고 13일 밝혔다.
연구팀은 일상 속 웨어러블 헬스케어 응용을 위해 기반 고분자의 열적 거동 특성(열 변형 특성) 및 산소 플라즈마 처리를 통한 표면 특성을 고려해, 신축성이 우수한 마이크로 스케일의 전기방사 섬유 위 금속/금속산화물 나노구조체의 안정적인 전사를 처음으로 선보였다.
< 그림 1. 나노구조체가 전사된 전기방사 섬유의 개발과 웨어러블 헬스케어 응용 컨셉 >
연구팀은 금속/금속산화물 기반의 정교한 나노구조체를 수 마이크로 스케일의 곡면 형태인 전기방사 섬유 위에 전사하는 안정적인 공정을 개발했다. 나노 원형, 마이크로 원형, 나노 사각형, 나노 그물, 나노 라인, 나노 십자가와 같은 다양한 구조체의 전기방사 섬유 상 전사가 가능할 뿐 아니라, 금, 은, 알루미늄, 니켈과 같은 금속 재료부터 이산화티타늄, 이산화규소와 같은 금속산화물까지 다양한 재료의 나노구조체 전사가 가능해졌다.
연구팀은 열 성형이 가능한 열가소성 고분자를 선정해 안정적으로 섬유화했으며, 산소 플라즈마 처리를 통한 나노구조체 지지 고분자의 식각과 표면 개질로 인한 화학적 결합 증진을 유도한 바 있다. 이는 착용할 수 있는 전기방사 섬유 위에 나노구조체가 결합돼 다양한 기능성 의복의 고안 및 웨어러블 시스템 영역을 확장할 것이라는데 의미가 크다.
연구를 지도한 박인규 교수는 "개발된 차세대 전기방사 섬유상 나노구조체의 전사 공정은 본질적인 문제인 섬유 상 나노구조체의 적용 한계, 낮은 범용성, 대량 생산의 어려움을 해결할 수 있을 것으로 기대되고, 추후 웨어러블 헬스케어 응용을 포함한 다양한 웨어러블 시스템으로 확장될 수 있을 것이다ˮ라며 "이는 웨어러블 나노기술의 압도적 선도 국가가 되기 위한 발판이 될 것이다ˮ고 연구의 의의를 설명했다.
< 그림 2. (가) 다양한 형상의 나노/마이크로구조체 및 (나) 다양한 금속/금속산화물 나노구조체의 전기방사 섬유상 전사 결과 >
기계공학과 하지환 박사과정이 제1 저자로 참여한 이번 연구는 저명 국제 학술지 `어드밴스드 펑셔널 머터리얼스(Advanced Functional Materials)' 2024년 4월 온라인판에 출판됐다. (논문명: Nanotransfer Printing of Functional Nanomaterials on Electrospun Fibers for Wearable Healthcare Applications)
한편 이번 연구는 과학기술정보통신부 및 산업통상자원부의 재원으로 한국연구재단 중견연구자지원사업, 산업기술알키미스트프로젝트의 지원을 받아 수행됐다.
이산화탄소는 주요 호흡 대사 산물로서, 날숨 내 이산화탄소 농도의 지속적인 모니터링은 호흡·순환기계 질병을 조기 발견 및 진단하는 데 중요한 지표가 될 뿐만 아니라, 개인 운동 상태 모니터링 등에 폭넓게 사용될 수 있다. 우리 연구진이 마스크 내부에 부착하여 이산화탄소 농도를 정확히 측정하는데 성공했다. 우리 대학 전기및전자공학부 유승협 교수 연구팀이 실시간으로 안정적인 호흡 모니터링이 가능한 저전력 고속 웨어러블 이산화탄소 센서를 개발했다고 10일 밝혔다. 기존 비침습적 이산화탄소 센서는 부피가 크고 소비전력이 높다는 한계가 있었다. 특히 형광 분자를 이용한 광화학적 이산화탄소 센서는 소형화 및 경량화가 가능하다는 장점에도 불구하고, 염료 분자의 광 열화 현상으로 인해 장시간 안정적 사용이 어려워 웨어러블 헬스케어 센서로 사용되는 데 제약이 있었다. 광화학적 이산화탄소 센서는 형광 분자에서 방출되는 형광의 세기가 이산화탄소 농도에 따라 감소하는 점을 이용하
2025-02-10재난 및 화재의 상황은 사람이 직접 투입되기 어렵고 시야가 제한될 수 있는 극한 상황이며, 드론이 수집한 공간 데이터를 촉감형 인터페이스를 통해 입체적인 정보 그대로 전달하는 것은 매우 어렵다. KAIST 연구진이 원격 제어하는 드론이 수집한 공간 데이터를 촉각 피드백을 통해 직관적으로 조종자가 이해할 수 있도록 하는 웨어러블 햅틱 기술을 개발했다. 우리 대학 기계공학과 오일권 교수 연구팀이 형상기억합금 와이어를 직교 중첩 구조의 메타구조 패턴으로 매듭지은 독립적인 직교 방향 거동이 가능한 ‘직교 방향 제어 웨어러블 햅틱(이하 WHOA)’기술을 개발했다. 햅틱(Haptic)은 시·청각을 넘어 촉각을 이용해 정보를 전달하는 기술로, 스마트폰의 진동 알림처럼 피부로 감지할 수 있는 물리적 피드백을 제공한다. 이 기술의 핵심 소재인 형상기억합금은 특정 온도로 가열하면 변형된 상태에서 원래 형태로 돌아오는 특수 금속으로 촉각을 구현하는 작동기로
2025-01-21정신질환 팬데믹이 발생했다. 전 세계적으로 약 10억 명이 크고 작은 정신질환을 앓고 있다. 한국도 더욱 심각하여 현재 우울증 및 불안장애 환자는 약 180만 명이며 총 정신질환자는 5년 새 37% 증가하여 약 465만 명이다. 한미 공동 연구진이 웨어러블 기기를 통해 수집되는 생체 데이터를 활용해 내일의 기분을 예측하고, 나아가 우울증 증상의 발현 가능성을 예측하는 기술을 개발했다. 우리 대학 뇌인지과학과 김대욱 교수 연구팀이 미국 미시간 대학교 수학과 대니엘 포저(Daniel B. Forger) 교수팀과 공동연구로 스마트워치로부터 수집되는 활동량, 심박수 데이터로부터 교대 근무자의 수면 장애, 우울감, 식욕부진, 과식, 집중력 저하와 같은 우울증 관련 증상을 예측하는 기술을 개발했다고 15일 밝혔다. WHO에 따르면 정신질환의 새로운 유망한 치료 방향은 충동성, 감정 반응, 의사 결정 및 전반적인 기분에 직접적인 영향을 주는 뇌 시상하부에 위치한 생체시계(circad
2025-01-15생물학적 구조는 인공적으로 복제하기 어려운 정도의 복잡한 특징을 가지고 있지만 이러한 생체 구조체를 직접적으로 활용여 제작하는 생체형틀법*은 다양한 분야의 응용으로 사용됐다. KAIST 연구진이 이전에 활용할 수 없었던 생체 구조체를 활용하고, 생체형틀법을 통해 적용될 수 있는 영역을 넓히는데 성공했다. *생체형틀법: 바이러스부터 우리의 몸을 구성하는 조직과 장기에 이르기까지 이러한 생체 구조의 기능을 활용하고자, 생체 구조를 형틀로 사용하여 기능성 구조재료를 만들어내는 방식 우리 대학 신소재공학과 장재범, 정연식 교수 공동연구팀이 생체 시료 안의 특정 내부 단백질을 활용하고 높은 조정성을 지닌 생체형틀법을 개발했다고 10일 밝혔다. 기존의 생체형틀법 방법은 주로 생체시료의 외부 표면만을 활용하거나, 한정된 치수와 샘플 크기로 인해 다양한 생체 구조체들의 구조-기능 상관성을 활용하여 기능성 나노구조체를 제작하기 어렵다는 한계를 가지고 있다. 이런 문제를 해결하고자 연
2025-01-10‘인바디(InBody)’란 기기로 체성분을 분석하는 것은 이제 우리의 일상이 되었다. 이렇듯 몸에 교류 전류를 흘릴 때 전류 흐름을 방해하는 인체의 저항 특성인 생체 임피던스* 측정 기술은 웨어러블 기기에 매우 중요하다. 국제 공동 연구진이 단 두 개의 전극만을 사용하면서도 기존보다 5배 정밀하게 생체 임피던스를 측정할 수 있는 기술을 개발해 화제다. *생체 임피던스 측정 기술 : 생체 조직의 전기적 특성을 기반으로 체내의 다양한 생리적 상태를 모니터링할 수 있는 핵심 기술 우리 대학 전기및전자공학부 제민규 교수 연구팀이 뉴욕대학교 아부다비(New York University Abu Dhabi, NYUAD) 하소명 교수 연구팀과 공동연구를 통해 웨어러블 기기에 최적화된 고해상도 생체 임피던스 측정 기술을 개발했다고 26일 밝혔다. 생체 임피던스 측정 기술로 잘 알려진 기존 4개 전극 시스템*에 비해 2개 전극 기반 측정 시스템**은 소형화가 쉽다는
2024-12-26