-
정기훈 교수, 눈물 성분 분석해 통풍 예방하는 기술 개발
우리 대학 바이오및뇌공학과 정기훈 교수 연구팀이 종이에 금속 나노입자를 증착한 저렴하고 정교한 통풍 종이 검사지(Strip)를 개발했다.
이 기술은 눈물 속의 생체 분자를 분석해 비침습적 진단이 가능하고 소요 시간을 크게 단축시킬 수 있다. 진단 의학, 약물 검사 뿐 아니라 현장 진단 등 특정 성분의 신속하고 정확한 진단이 필요한 다양한 분야에 응용 가능할 것으로 기대된다.
박문성 박사과정이 1저자로 참여한 이번 연구는 나노분야 국제 학술지 ‘에이씨에스 나노(ACS Nano)’ 2016년 12월 14일 온라인 판에 게재됐다.
통풍은 바늘 모양의 요산 결정이 관절에 쌓이면서 통증을 유발하는 병이다. 일반적으로 통증의 완화와 요산 배출, 요산 강하제 복용 등이 치료법으로 이용된다.
이러한 치료법은 일시적인 통풍 증상 완화에는 도움이 되지만 완치에는 한계가 있어 지속적인 요산 농도 측정과 식이요법이 병행돼야 한다.
따라서 간편하게 요산을 측정할 수 있다면 통풍 예방율을 크게 높일 수 있고 통풍 환자의 병 관리에 큰 도움을 줄 수 있다.
하지만 기존의 통풍 진단 기술은 혈액을 채취해 요산 농도를 측정하거나 관절 윤활액을 채취해 요산 결정을 현미경으로 관찰하는 방식이다. 이처럼 침습적 시술이 대부분이고 시간이 오래 걸리는 등의 한계가 있다.
연구팀은 문제 해결을 위해 눈물을 쉽게 채집할 수 있는 종이의 표면에 나노플라즈모닉스 특성을 갖는 금 나노섬을 균일하게 증착했다.
나노플라즈모닉스 기술은 금속의 나노구조 표면에 빛을 모으는 기술로 질병 및 건강 진단 지표, 유전 물질 검출 등에 응용할 수 있다.
또한 금과 같은 금속은 빛을 조사했을 때 기존보다 강한 빛을 받아들이는 특성을 갖기 때문에 종이의 특성을 유지하면서도 기판 표면의 빛 집광도를 최고 수준으로 끌어올릴 수 있었다.
연구팀이 개발한 금속 나노구조 제작 기술은 넓은 면적에 자유자재로 나노구조를 제작할 수 있기 때문에 빛의 집광도를 자유롭게 조절할 수 있다.
연구팀은 종이 검사지에 표면증강 라만 분광법(Surface-enhanced Raman spectroscopy)을 접목시켜 별도의 표지 없이도 눈물 속 요산 농도를 측정하고 이를 혈중 요산 농도와 비교해 통풍을 진단했다.
1저자인 박문성 박사과정은 “통풍 진단을 위한 새로운 방법으로 눈물을 이용해 진단이 가능한 종이 통풍 검사지를 제작했다”며 “신속하고 간단하게 현장 진단이 가능하고 일반적인 반도체 공정을 이용한 대면적 양산이 가능하다”고 말했다.
정 교수는 “이번 결과를 바탕으로 향후 눈물을 이용해 낮은 가격의 무표지 초고감도 생체분자 분석 및 신속한 현장 진단이 가능할 것이다”며 “눈물 뿐 아니라 다양한 체액을 이용해 질병 진단, 생리학적 기능 연구 등에 기여할 수 있을 것이다”고 말했다.
□ 그림 설명
그림1. 금으로 덮인 종이 통풍 검사지의 광학 사진
그림2. 종이 통풍 검사지의 주사전자현미경 사진
그림3. 금나노섬으로 코팅된 셀룰로오스 섬유의 주사전자현미경 사진
그림4. 눈물을 이용한 통풍 진단표
2017.01.17
조회수 18944
-
배병수, 이도창 교수, 고온 및 고습 견딜 수 있는 퀀텀닷 기술 개발
우리 대학 신소재공학과 배병수 교수와 생명화학공학과 이도창 교수 연구팀이 차세대 디스플레이 발광 소재인 퀀텀닷을 고온, 고습 환경에서도 안정적으로 보호할 수 있는 퀀텀닷 실록산 수지(실리콘 기반의 고분자)를 개발했다.
이 기술을 통해 퀀텀닷을 차세대 고화질 디스플레이 제품에 다양하게 응용할 수 있을 것으로 기대된다.
이번 연구 결과는 화학 분야 학술지인 ‘美 화학회지(Journal of the American Chemical Society, JACS)’ 의 2016년 12월 21일자 최신호에 게재됐다.
퀀텀닷은 수 나노미터 크기의 반도체 나노 결정이다. 크기 변화에 따라 발광 파장을 쉽게 조절할 수 있고 넓은 색 표현 범위를 갖고 있어 초고화질의 디스플레이를 구현할 수 있다.
이러한 특성 덕분에 퀀텀닷은 고분자 수지에 분산된 형태로 필름에 코팅되거나 LED 광원에 도포돼 차세대 디스플레이 핵심 소재로 떠오르고 있다.
그러나 퀀텀닷은 우수한 발광특성에도 불구하고 고온이나 고습 환경에서 쉽게 산화돼 고유의 발광특성(양자효율)이 급격히 저하되는 문제가 있다.
현재 상용화된 퀀텀닷 디스플레이 제품은 고온의 원인인 LED 광원과 거리를 둘 수 있는 퀀텀닷 필름을 사용한다. 그리고 퀀텀닷의 산화를 방지하기 위해 산소, 수분을 차단시키는 별도의 차단 필름으로 퀀텀닷 필름을 감싸서 사용한다.
하지만 차단 필름의 높은 단가는 퀀텀닷 디스플레이 제품의 금액을 상승시켜 시장에서의 가격 경쟁력을 떨어트린다.
연구팀은 문제 해결을 위해 자체적으로 개발한 솔-젤 합성공정을 이용했다. 이 기술을 통해 퀀텀닷이 열에 강한 실록산 분자구조에 의해 보호돼 별도의 산소, 수분 차단 필름 없이도 퀀텀닷의 성능을 유지할 수 있다.
화학적으로 균일하게 분산된 퀀텀닷 실록산 수지를 사용해 제작된 퀀텀닷 실록산 재료는 85℃의 고온, 85℃/85%의 고온고습 뿐 아니라 강산성과 강염기성의 환경에서도 발광특성이 저하되지 않았다. 또한 오히려 고습 환경에서는 발광특성이 상승하는 현상을 발견했다.
연구팀의 퀀텀닷 실록산 수지를 이용하면 별도의 차단필름 없이도 안정적인 퀀텀닷 필름을 제작해 가격을 낮출 수 있다. 향후 LED 광원에 직접 도포해 퀀텀닷의 사용량을 줄이는 동시에 성능을 높일 수 있는 퀀텀닷 디스플레이의 개발이 가능할 것으로 기대된다.
배 교수는 “퀀텀닷이 차세대 디스플레이 소재로 나아가는 시점에서 퀀텀닷의 한계를 극복하고 널리 활용될 수 있는 방안을 제시했다”며 “원천소재를 기반으로 하는 국내 디스플레이 산업의 발전에 크게 기여할 수 있을 것이다”고 말했다.
또한 “현재는 기술의 가능성을 제시한 수준으로서 향후 국내외 업체들과 협력해 퀀텀닷의 신뢰성을 향상시켜 상용화에 주력할 계획이다”고 말했다.
연구팀은 관련 특허를 국내외에 출원 중이고, KAIST 교원창업기업인 ㈜솔잎기술에 이전해 사업화를 추진할 계획이다.
□ 그림 설명
그림1. 끓는 물속에도 안정성을 보이는 퀀텀닷 실록산 재료
그림2. 균일한 분산을 갖는 퀀텀닷 실록산 수지와 기존 퀀텀닷 상용고분자 수지 비교
그림3. 본 연구에서 개발된 퀀텀닷 실록산 수지 및 퀀텀닷 실록산 재료 개념도
2017.01.10
조회수 17651
-
최양규 교수, 실리콘 반도체보다 5배 빠르고 저렴한 탄소나노튜브 반도체 개발
우리 대학 전기및전자공학부 최양규 교수 연구팀이 국민대학교 최성진 교수와의 공동 연구를 통해 탄소나노튜브를 위로 쌓는 3차원 핀(Fin) 게이트 구조를 이용해 대면적의 탄소나노튜브 반도체를 개발했다.
이동일 연구원이 제 1저자로 참여한 이번 연구는 나노 분야 학술지 ‘에이씨에스 나노(ACS Nano)’ 12월 27일자에 게재됐다. (논문명: Three-Dimensional Fin-Structured Semiconducting Carbon Nanotube Network Transistor)
탄소나노튜브로 제작된 반도체는 실리콘 반도체보다 빠르게 동작하고 저전력이기 때문에 성능이 훨씬 뛰어나다.
그러나 대부분의 전자기기는 실리콘 재질로 만들어진 반도체를 이용한다. 높은 순도와 높은 밀도를 갖는 탄소나노튜브 반도체의 정제가 어렵기 때문이다.
탄소나노튜브의 밀도가 높지 않아 성능에 한계가 있었고 순도가 낮아 넓은 면적의 웨이퍼(판)에 일정한 수율을 갖는 제품을 제작할 수 없었다. 이러한 특성들은 대량 생산을 어렵게 해 상용화를 막는 걸림돌이었다.
연구팀은 문제 해결을 위해 3차원 핀 게이트를 이용해 탄소나노튜브를 위로 증착하는 방식을 사용했다. 이를 통해 50나노미터 이하의 폭에서도 높은 전류 밀도를 갖는 반도체를 개발했다.
3차원 핀 구조는 1마이크로미터 당 600개의 탄소나노튜브 증착이 가능해 약 30개 정도만을 증착할 수 있는 2차원 구조에 비해 20배 이상의 탄소나노튜브를 쌓을 수 있다.
그리고 연구팀은 이전 연구를 통해 개발된 99.9% 이상의 높은 순도를 갖는 반도체성 탄소나노튜브를 이용해 고수율의 반도체를 확보했다.
연구팀의 반도체는 50나노미터 이하의 폭에서도 높은 전류밀도를 갖는다. 실리콘 기반의 반도체보다 5배 이상 빠르면서 5배 낮은 소비 전력으로 동작 가능할 것으로 예상된다.
또한 기존의 실리콘 기반 반도체에 쓰이는 공정 장비로도 제작 및 호환이 가능해 별도의 비용이 발생하지 않는다.
제 1저자인 이동일 연구원은 “차세대 반도체로서 탄소나노튜브 반도체의 성능 개선과 더불어 실효성 또한 높아질 것이다”며 “실리콘 기반 반도체를 10년 내로 대체하길 기대한다”고 말했다.
이번 연구는 미래창조과학부 글로벌프론티어사업 스마트IT융합시스템 연구단과 미래유망융합파이오니아 사업의 씨모스 THz 기술 융합 연구단의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 3차원 구조의 탄소나노튜브 전자소자의 모식도 및 실제 SEM 이미지
그림2. 개발된 8인치 기반의 대면적 3차원 탄소나노튜브 트랜지스터 전자 소자의 사진 및 단면을 관찰한 투과 전자 현미경 사진
2017.01.04
조회수 17167
-
최양규 교수, 10초 내 물에 녹는 보안용 메모리 소자 개발
우리 대학 전기및전자공학부 최양규 교수 연구팀이 물에 녹여 빠르게 폐기할 수 있는 보안용 메모리 소자를 개발했다.
연구팀이 개발한 보안용 비휘발성 저항변화메모리(Resistive Random Access Memory : RRAM)는 물에 쉽게 녹는 종이비누(Solid Sodium Glycerine : SSG) 위에 잉크젯 인쇄 기법을 통해 제작하는 방식이다. 소량의 물로 약 10초 이내에 용해시켜 저장된 정보를 파기시킬 수 있다.
배학열 박사과정이 1저자로 참여한 이번 연구는 네이처 자매지 ‘사이언티픽 리포트(Scientific Reports)’ 12월 6일자 온라인 판에 게재됐다. (논문명 : Physically transient memory on a rapidly dissoluble paper for security application)
과거에는 저장된 정보를 안정적으로 오랫동안 유지하는 능력이 비휘발성 메모리 소자의 성능을 가늠하는 주요 지표였다. 하지만 최근 사물인터넷 시대로 접어들며 언제 어디서든 정보를 쉽게 공유할 수 있게 돼 정보 저장 뿐 아니라 정보 유출을 원천적으로 차단할 수 있는 보안용 반도체 개발이 요구되고 있다.
이를 위해 용해 가능한 메모리 소자, 종이 기판을 이용해 불에 태우는 보안용 소자 등이 개발되고 있다. 그러나 기존의 용해 가능한 소자는 파기에 시간이 매우 오래 걸리고 불에 태우는 기술은 점화 장치와 고온의 열이 필요하다는 한계가 있다.
연구팀은 문제 해결을 위해 물에 매우 빠르게 반응해 녹는 SSG 기판 위에 메모리 소자를 제작해 용해 시간을 수 초 내로 줄이는데 성공했다.
이 메모리 소자는 알칼리 금속 원소인 소듐(Sodium)과 글리세린(Glycerine)을 주성분으로 하고 친수성기를 가져 소량의 물에 반응해 분해된다.
용해 가능한 전자소자는 열과 수분에 취약할 수 있어 공정 조건이 매우 중요하다. 연구팀은 이 과정을 잉크젯 인쇄 기법을 통해 최적화된 점성과 열처리 조건으로 금속 전극을 상온 및 상압에서 증착했다.
또한 메모리 소자의 특성을 결정하는 저항변화층(Resistive Switching Layer)인 산화하프늄(HfO2)도 우수한 메모리 특성을 얻도록 150도 이하의 저온에서 증착했다. 이를 통해 평상시 습도에서는 안정적이면서도 소량의 물에서만 반응하는 소자를 제작했다.
연구팀은 휘어지는 종이비누 형태의 SSG 기판을 이용하고, 잉크젯 인쇄기법을 이용해 ‘금속-절연막-금속’ 구조의 2단자 저항 변화메모리를 제작하기 때문에 다른 보안용 소자보다 비용 절감 효과가 매우 크다고 밝혔다.
1저자인 배학열 박사과정은 “이 기술은 저항변화메모리 소자를 이용해 기존 실리콘 기판 기반의 기술 대비 10분의 1 수준의 저비용으로 제작 가능하다”며 “소량의 물로 빠르게 폐기할 수 있어 향후 보안용 소자로 응용 가능할 것이다”고 말했다.
이번 연구는 미래창조과학부 한국연구재단과 나노종합기술원의 지원을 통해 수행됐고, 배학열 박사과정은 한국연구재단의 글로벌박사펠로우십에 선정돼 지원을 받고 있다.
□ 그림 설명
그림1. 메모리 소자가 물에 용해되는 과정
그림2. 최양규 교수팀이 개발한 보안용 메모리 소자
그림3. 보안용 메모리 소자 모식도
2016.12.22
조회수 19778
-
이건재, 최성율 교수, 고체 상분리 현상에 의한 그래핀 생성원리 발견
우리 대학 신소재공학과 이건재 교수와 전기및전자공학부 최성율 교수 연구팀이 초단시간의 레이저를 조사해 단결정 탄화규소(SiC)의 고체 상분리 현상을 발견하고 이를 활용한 그래핀 생성원리를 밝혔다.
기존에 활용되고 있는 화학기상증착(Chemical Vapor Deposition, CVD) 기반의 그래핀 합성법이 상당시간의 고온 공정을 필요로 하는 것과 달리 새로운 레이저 열처리법은 상온환경에서 단시간의 공정으로 그래핀을 합성할 수 있어 향후 그래핀 활용의 폭을 넓힐 수 있을 전망이다.
연구진은 단결정 탄화규소 소재 표면에 나노초(10억분의 1초) 단위의 극히 짧은 시간 동안 레이저를 쪼여 표면을 순간적으로 녹였다가 다시 응고시켰다. 그러자 탄화규소 표면이 두께 2.5나노미터의 탄소(C) 초박막층과 그 아래 두께 5나노미터의 규소(Si, 실리콘)층으로 분리되는 상분리 현상이 나타났다. 여기에 레이저를 다시 쪼이자 안쪽 실리콘층은 증발하고, 탄소층은 그래핀이 됨을 확인했다.
특히 탄화규소와 같은 이종원소 화합물과 레이저의 상호작용에 대한 연구는 아주 짧은 시간에 일어나는 복잡한 상전이 현상으로 지금까지 그 규명이 쉽지 않았다. 그러나 연구진은 레이저에 의해 순간적으로 유도된 탄소 및 실리콘의 초박막층을 고해상도 전자현미경으로 촬영하고, 실리콘과 같은 반도체 물질이 고체와 액체 상태일 때 나타나는 광학 반사율이 다르다는 점에 착안해 탄화규소의 고체 상분리 현상을 성공적으로 규명해낼 수 있었다.
연구에 활용된 레이저 열처리기술은 AMOLED(능동형 유기발광다이오드) 등 상용 디스플레이 생산공정에 널리 활용되고 있는 방법으로, CVD 공정과 달리 레이저로 소재 표면만 순간적으로 가열하기 때문에 열에 약한 플라스틱 기판 등에도 활용이 가능하여, 향후 플렉시블 전자 분야로 응용의 폭을 넓힐 수 있을 것으로 기대된다.
이 교수는 "이번 연구 결과를 통해 레이저 기술이 그래핀과 같은 2차원 나노소재에 보다 폭넓게 응용될 수 있을 것이다”고 말했다.
최 교수는 "앞으로 다양한 고체 화합물과 레이저의 상호작용을 규명해 이들의 상분리 현상을 활용하면 새로운 나노소재 개발을 기대할 수 있을 것이다”고 말했다.
이번 연구결과는 자연과학 및 응용과학 분야 학술지 '네이처 커뮤니케이션즈(Nature Communications)' 최신호에 게재됐다.
□ 그림 설명
그림1. 단결정 탄화규소의 용융을 통한 상분리 현상의 원리를 밝혀내는 분자동역학 시뮬레이션의 모식도
그림2. 레이저에 의해 순간적으로 유도된 단결정 탄화규소의 용융 및 응고 현상을 증명하는 실시간 시간 분해능 반사율 (In-situ time-resolved reflectance) 측정 스펙트럼
그림3. 레이저가 조사된 탄화규소 표면의 전체적인 전자현미경 사진(a) 및 이로 의한 탄소와 실리콘으로의 상분리 현상을 촬영한 고해상도 전자현미경 사진(b)
2016.12.05
조회수 21240
-
윤동기 교수, 붓으로 DNA의 모양을 조절하는 기술 개발
우리 대학 나노과학기술대학원 윤동기 교수 연구팀이 일상생활에서 흔히 쓰이는 화장용 붓을 이용해 일정한 지그재그 형태를 갖는 DNA 기반의 나노 구조체 제작 기술을 개발했다.
차윤정 박사과정 학생이 1저자로 참여한 이번 연구 성과는 재료분야 저명 학술지 ‘어드밴스드 머티리얼즈(Advanced materials)’ 11월 15일자 온라인 판에 게재됐고 액정(liquid crystal) 분야 핫 토픽으로 선정됐다.
기존에도 DNA를 빌딩블록으로 사용해 다양한 나노 구조체를 만드는 기술은 많이 존재했다. 그러나 이 방식은 복잡한 설계과정이 필요하고 특히 염기서열이 조절된 값비싼 DNA를 이용해야 하는 단점이 있다.
연구팀은 연어에서 추출한 DNA 물질을 이용해 기존보다 1천 배 이상 저렴한 비용으로 잘 정렬된 지그재그 형태의 나노 구조체를 구현했다.
연구팀은 화장품 가게에서 구매한 화장용 붓으로 연어에서 추출한 DNA를 물감처럼 이용해 그림 그리듯 기판에 한 방향으로 문질렀다. 수 센티미터 크기의 붓을 이용해 지름이 약 2 나노미터인 DNA 분자들을 붓질 방향으로 나란히 정렬시켰다.
얇게 퍼진 진한 상태의 DNA 필름이 공기 중에 노출돼 건조되며 이 때 기판의 바닥에서 잡아주는 힘 때문에 팽창력이 작용한다. 이 팽창력은 DNA의 탄성력과 상호작용해 일렬로 향하던 DNA의 분자에 파도모양의 기복이 생기면서 일정한 지그재그 패턴이 형성된다.
형성된 DNA 지그재그 패턴은 생물체에서 추출한 저렴한 DNA를 사용했기 때문에 그 내부정보(sequence)까지는 조절되지 않았지만, DNA 물질의 구조적 정교함은 변하지 않아 아주 일정한 구조체가 된다.
이렇게 정밀하게 구조가 조절된 DNA 막 위에 다른 물질을 바르면 DNA 구조에 따라 정밀하게 그 물질이 정렬하기 때문에 다양한 분야에 이용 가능하다.
예를 들어 액정 디스플레이에 사용되는 다른 액정을 정렬시킬 수 있고 금속 입자, 반도체 물질 역시 정렬이 가능하다. 이러한 기능을 통해 새로운 개념의 광전자 소자로의 응용에 기여할 수 있을 것으로 기대된다.
윤 교수는 “DNA 뿐 아니라 자연계에 존재하는 단백질, 근육 세포, 뼈의 구성물질 등 다양한 생체 물질을 광전자 분야에 사용할 수 있다는 점에서 큰 의의를 갖는다”고 말했다.
이번 연구는 한국연구재단의 나노소재 원천기술개발사업 및 미래유망융합기술 파이오니아 사업을 통해 수행됐다.
□ 그림 설명
그림1. 규칙적인 DNA 지그재그 구조체의 이미지와 내부 분자의 배향을 설명하는 모식도
그림2. 정렬되지 않던 DNA(좌)가 붓질 및 건조시킨 후 정렬된 과정(우)
그림3. 마이크로 채널 기판을 이용한 DNA 지그재그 구조체의 제어
그림4. DNA 지그재그 구조체 표면 위에 형성된 액정 물질의 배향제어 모식도 및 편광 현미경 이미지
2016.12.01
조회수 17171
-
최경철 교수, 직물위에 유기발광다이오드(OLED) 형성 기술 개발
〈 학술지에 게재된 표지논문 〉
옷처럼 편하게 입으면서도 디스플레이 기능을 수행할 수 있는 OLED 기술이 개발됐다.
우리 대학 전기및전자공학부 최경철 교수 연구팀이 직물 기판 위에 유기발광다이오드(OLED)를 형성해 웨어러블 디스플레이를 실현할 수 있는 원천기술을 개발했다.
연구팀의 직물 OLED는 다층 박막봉지 기술(Thin-film Encapsulation)을 적용한 상태에서도 유연함을 잃지 않았고 1천 시간 이상의 동작 수명을 유지했다.
㈜코오롱글로텍과 공동으로 진행된 이번 연구는 나노전자 기술 분야 국제 학술지 ‘어드밴스드 일렉트로닉 머티리얼즈(Advanced Electronic Materials)’ 11월 16일 표지논문으로 선정됐다.
플라스틱 기판을 기반으로 한 유연 디스플레이는 플라스틱 기판이 얇을수록 뛰어난 유연성을 보인다. 하지만 얇게 만들수록 쉽게 찢어지는 문제가 발생하고 내구성이 약해지게 된다.
반면 직물은 씨실과 날실로 이뤄진 구조로 전체 직물은 두껍지만 여러 가닥의 수 마이크로미터 두께의 섬유들이 엮여있어 매우 유연하면서도 뛰어난 내구성을 갖는다. 연구팀은 이 점에 주목해 직물 OLED 형성 기술을 연구했다.
일반 옷감에 쓰이는 직물은 표면이 거칠고 온도 상승에 따라 부피가 팽창하는 열팽창계수(Coefficient of Thermal Expansion)가 커 열 증착 과정을 거치는 OLED 소자 형성 과정에서 문제가 발생한다.
연구팀이 개발한 평탄화 공정은 이러한 문제를 해결했다. 직물의 유연한 성질을 잃지 않으면서도 유리 기판과 같이 평평한 형태의 직물을 구현했다. 또한 이 평탄화된 직물은 동일 두께의 플라스틱 기판보다 더 유연했다.
연구팀은 평탄화 된 직물 위에 진공 열 증착 공정으로 OLED를 형성했고 OLED를 보호하기 위해 수분과 산소의 침투를 막는 다층 박막봉지 기술을 적용했다.
다층 박막봉지 기술이 적용된 직물 OLED는 1천 시간 이상의 동작 수명과 3천 500시간 이상의 유휴 수명을 갖는 것으로 확인됐다. 결과적으로 플라스틱보다 유연하면서 소자의 신뢰성까지 보장할 수 있는 디스플레이 소자를 구현했다.
연구팀은 이번 연구 결과가 산업적으로 플라스틱 OLED에서 진보된 패브릭 기판의 OLED 기술을 제시할 것이라고 예상했다.
최 교수는 “플라스틱보다 유연하면서 뛰어난 신뢰성을 보인 직물 OLED는 옷처럼 편한 웨어러블 디스플레이를 구현할 수 있을 것이다”며 “작년 실 한 올마다 OLED를 구축했던 성과에 이어 보다 실현 가능한 기술을 개발했다는 데 의미가 있다”고 말했다.
김우현 박사와 권선일 박사과정이 공동 1저자로 참여한 이번 연구는 산업통상자원부의 산업기술혁신사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 제작된 직물 기판 위에 형성된 OLED 구동 사진
그림2. 직물 위에 형성된 OLED 구조
그림3. 단면 SEM 사진
2016.11.22
조회수 21223
-
전상용, 임성갑 교수, 신경세포의 안정적 배양 가능한 플랫폼 개발
우리 대학 생명과학과 전상용 교수와 생명화학공학과 임성갑 교수 공동 연구팀이 신경세포를 장기적, 안정적으로 배양할 수 있는 아세틸콜린 유사 고분자 박막 소재를 개발했다.
특히 이 연구는 KAIST의 ‘학부생 연구 참여 프로그램(URP : Undergraduate research program)’을 통해 유승윤 학부생이 참여해 더욱 큰 의미를 갖는다.
유승윤 학부생을 포함해 백지응 박사과정, 최민석 박사가 공동 1저자로 참여한 이번 연구 성과는 나노분야 학술지 ‘에이시에스 나노(ACS Nano)’ 10월 28일자 온라인 판에 게재됐다.
신경세포는 알츠하이머, 파킨슨병, 헌팅턴병 등의 신경퇴행성 질환 및 신경 기반 바이오센서 등 전반적인 신경관련 응용연구에 꼭 필요한 요소이다.
대부분의 신경 질환이 노인성, 퇴행성이기 때문에 신경세포가 오래됐을 때 어떤 현상이 발생하는지 관찰할 수 있어야 한다. 하지만 신경세포는 장기 배양이 어려워 퇴행 상태가 되기 전에 세포가 죽게 돼 관찰이 어려웠다.
기존에는 특정 수용성 고분자(PLL)를 배양접시 위에 코팅하는 방법을 통해 신경세포를 배양했다. 그러나 이 방법은 장기적, 안정적인 세포 배양이 불가능하기 때문에 신경세포를 안정적으로 장기 배양할 수 있는 새로운 플랫폼이 필요하다.
연구팀은 문제 해결을 위해 ‘개시제를 이용한 화학 기상 증착법(iCVD : initiated chemical vapor deposition)’을 이용했다. iCVD는 기체 상태의 반응물을 이용해 고분자를 박막 형태로 합성하는 방법으로, 기존 세포 배양 기판 위에 손쉽게 얇고 안정적인 박막을 형성시킬 수 있다.
연구팀은 이러한 기체상 공정의 장점을 이용해 신경세포를 장기적으로 배양할 수 있는 기능을 가진 공중합체 고분자 박막을 합성하는 데 성공했다. 새로 합성된 이 고분자 박막은 신경전달물질로 알려진 아세틸콜린과 유사한 물질로 이뤄져 있다.
또한 신경세포가 고분자 박막에서 배양될 수 있는 최적화된 조건을 발견했고, 이 조건에서 생존에 관여하는 여러 신경관련 유전자를 확인했다.
연구팀은 생명과학과 손종우 교수 연구팀의 도움을 통해 새로 배양된 신경세포가 기존의 신경세포보다 전기생리학적 측면 및 신경전달 기능적 측면에서 안정화됨을 확인했다.
연구팀은 “신경세포를 장기적으로 배양할 수 있는 이 기술은 향후 신경세포를 이용한 바이오센서와 신경세포 칩 개발의 핵심 소재로 활용될 것이다”며 “다양한 신경 관련 질병의 원리를 이해할 수 있는 역할을 할 것으로 기대된다”고 말했다.
이번 연구는 한국보건산업진흥원과 한국연구재단의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 본 연구에서 개발된 표면(pGD3) 및 폴리라이신 코팅 위에서 장시간 배양된 신경세포
그림2. 신경전달물질 유사 작용기를 도입한 표면 형성 과정
2016.11.17
조회수 22948
-
김상욱, 신종화 교수, 가시광선 굴절률 5 이상으로 높일 수 있는 메타소재 개발
우리 대학 신소재공학과 신종화 교수, 김상욱 교수 공동연구팀이 분자가 스스로 규칙적으로 배열하는 ‘분자조립제어’ 원리를 이용해 빛의 굴절률을 광범위하게 조절 할 수 있는 ‘메타소재’를 개발하는 데 성공했다고 밝혔다.
이 연구결과는 네이처 자매지 ‘네이쳐 커뮤니케이션즈(Nature Communications)’ 9월 29일자 온라인 판에 게재됐다.
메타소재란 자연계에 존재하지 않는 신기한 특성을 가지는 소재를 의미하며 특히빛의 굴절률이 음수를 갖거나 5이상으로 매우 큰 새로운 개념의 신소재를 뜻한다. 굴절률은 물질내에서 빛의 진행속도, 산란, 흡수 등의 현상을 결정하는 중요인자로, 이를 조절하면 물질 내 빛의 거동을 원하는 형태로 설계할 수 있다. 예컨대, 투명망토 등과 같은 SF 영화에서 나오는 신기한 현상을 가능하게 하기 위해서는 가시광선의 굴절률을 폭넓게 조절할 수 있는 메타소재 개발이 필수적이라 할 수 있다.
공동연구진은 분자조립제어 원리를 통해 금속 나노입자간의 간격을 수 나노미터 수준으로 매우 정밀하게 조절하여 메타소재를 설계했고 이를 통해 가시광선에 대해 5이상의 높은 굴절률을 가질 수 있음을 증명했다. 더불어 연구진은 금속 나노입자간의 거리를 임의로 조절함으로 다양한 굴절률의 신소재를 형성할 수 있음을 확인했다.
신종화 교수는 “이 기술이 우리가 눈으로 볼 수 있는 가시광선 대에서 빛의 거동을 조절할 수 있기 때문에 태양전지나 LED와 같은 디스플레이장치의 성능을 상승시킬 뿐만 아니라, 지금까지 불가능했던 초고배율의 현미경이나 초고해상도 반도체장비 등 새로운 광학장치를 위한 아이디어를 제시할 수 있을 것으로 기대된다”고 말했다.
제 1저자로 신소재공학과 김주영 박사, 공동 저자로 김효욱 박사과정생, 김봉훈 박사, 장태용 박사과정생 등이 참여한 이번 연구는 한국연구재단의 나노조립제어 창의연구단 사업과 나노∙소재원천기술개발 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 새로운 메타물질을 제조하는 공정에 대한 모식도
그림2. 수축공정을 실시하기 전 분자제어조립 기술을 통해 형성된 금속나노입자와 수축공정 후 매우 근접한 금속나노입자에 대한 주사 전자 현미경 이미지
그림3. 가시광선-적외석 영역대에서의 메타물질의 굴절률 측정 결과
2016.10.07
조회수 12934
-
최철희, 최경선 교수, 빛을 이용한 치료용 단백질 전달시스템 개발
우리 대학 바이오및뇌공학과 최철희 교수, 최경선 교수 공동 연구팀이 빛을 이용해 치료용 단백질을 체내로 정확하고 안전하게 전달할 수 있는 기술을 개발했다.
이는 체내 세포에서 자연적으로 생산되는 나노입자인 엑소솜과 단백질 약물이 빛을 받으면 자석처럼 서로 결합하는 기술로 우수한 기능과 안전성이 확보됐다는 의의를 갖는다.
이번 연구 결과는 국제 학술지인 ‘네이처 커뮤니케이션즈(Nature Communicaitons)’ 7월 22일자 온라인 판에 게재됐다.
최근 바이오 신약의 중요성이 커지면서 바이오 신약의 대부분을 차지하는 단백질 의약을 효과적으로 신체 내 표적 세포에 전달할 수 있는 약물전달시스템 개발이 활발히 이뤄지고 있다.
특히 나노입자는 그 특성 상 종양으로 더 많은 양이 침투할 수 있다는 장점이 있다. 따라서 새로운 물리, 화학 및 광학적 특성을 갖는 나노소재의 입자를 이용해 단백질 등의 바이오 신약을 전달하려는 시도가 진행 중이다.
하지만 현재 기술은 표적 세포에 이르기까지 생체 단백질 활성을 유지시키기 어렵고 면역 반응의 발생을 억제시켜야 하는 문제 등의 한계를 갖는다. 또한 치료용 단백질은 그 크기가 매우 커 기존 방법으로는 실용화가 매우 어렵다. 무엇보다도 가장 큰 문제는 독성 발생 가능성 등 인체 안전성이 해결되지 않았다는 않다는 점이다.
연구팀은 문제 해결을 위해 인간의 세포에서 자연적으로 발생하는 나노입자인 엑소솜(세포외 소낭)을 단백질 약물의 운송 수단으로 사용했고, 빛을 받으면 서로 결합하는 특징을 갖는 CRY2와 CIBN 단백질(CRY2, CIBN : 애기식물장대에서 유래한 서로 결합하는 특성을 갖는 단백질)을 이용했다.
엑소솜에는 CIBN을, 단백질 약물에는 CRY2를 융합시킨 뒤 450~490nm 파장의 푸른빛을 쏘면 CIBN과 CRY의 결합하는 특성으로 인해 자연스럽게 엑소솜에 단백질 약물의 탑재가 유도된다.
이 기술은 기존의 수동적인 탑재에 비해 두 가지 장점을 갖는다. 우선 세포 바깥에서 정제된 단백질을 엑소솜에 넣는 기술에 비해 치료용 단백질의 적재율이 천배 가까이 높아졌다. 그리고 단백질을 정제할 필요가 없어져 효율성, 성공률은 높아지고 비용은 적어진다.
연구팀은 기존보다 낮은 비용으로 보다 쉽게 치료용 단백질이 탑재된 엑소솜을 생산하면서 효율 및 안정성이 향상된 치료용 단백질 전달시스템을 개발했다.
이 기술은 기존 단백질 약물이 세포 외부에서만 작용한다는 한계를 극복함으로써 향후 바이오의약 분야의 새로운 패러다임을 제시하는 원천 기술이 될 것으로 기대된다.
연구팀은 현재 다양한 난치성 질환 치료를 위한 표적 단백질이 탑재된 치료용 엑소솜을 개발 중이며 효능 및 임상 적용 가능성을 검증하고 있다.
최철희 교수는 “이번 기술은 생체에서 만들어지는 나노입자인 엑소솜에 치료용 단백질을 효율적으로 탑재시켰다”며 “안전하고 기능이 우수한 단백질 약물을 대량 생산할 수 있는 획기적인 원천기술이다”고 말했다.
이 기술은 KAIST 교원창업기업인 ㈜셀렉스라이프사이언스 사에 기술이전 돼 엑소솜 약물 제조 기술의 최적화 및 전, 임상 시험을 위한 개발 단계 중이다.
□ 그림 설명
그림1. 엑소솜 내부에 치료용 단백질이 함유된 것을 묘사한 개념도
그림2. 개발한 기술의 개념도
2016.08.09
조회수 14159
-
박정영 교수, 촉매 비밀의 핵심인 '핫 전자' 검출 및 전류 측정 성공
〈 박 정 영 교수 〉
우리 대학 EEWS 대학원 박정영 교수 연구팀이 과산화수소 수용액에 금속 나노 촉매를 넣어 액상 환경 속 촉매반응에서 핫전자를 검출하고 전류를 측정하는 데 성공했다.
대다수 상용 화학공정과 동일한 액체 환경에서 핫전자를 검출해낸 것은 이번이 처음이다.
이번 연구 성과는 국제 학술지 앙게반테 케미(Angenwandte Chemi International Edition)에 7월 4일자 온라인 판에 게재됐다.
촉매는 원유 정제, 플라스틱 합성 등 다양한 화학공정에서 반응 효율을 높여 작업시간을 줄이고 비용을 낮춰주는 핵심요소다.
청정 동력원으로 떠오른 수소연료전지, 이산화탄소 제거를 위한 인공광합성 장치 등 새로운 환경기술영역에서도 큰 역할이 기대되고 있다.
학계에서는 고효율 촉매 개발을 위해 촉매의 작동원리를 규명하기 위한 연구가 활발히 진행되고 있다. 특히 반응 시 촉매에서 발생하는 ‘핫전자’가 촉매의 원리를 규명할 수 있는 열쇠로 주목받고 있다.
연구팀은 나노 두께의 금속박막 촉매를 실리콘 기판 위에 붙여 둘 사이에 낮은 전위장벽을 생성했다. 이후 촉매반응으로 만들어진 핫전자가 전위장벽을 넘어 전류로 흐르는 것을 측정, 액체 내 촉매반응에서 생긴 핫전자를 검출했다.
연구팀은 반응에서 생긴 산소 기체를 기체크로마토그래피로 분석, 핫전자 측정값으로 계산해 낸 이론값이 실제 실험값과 일치함을 확인했다.
특히 금속박막 나노촉매의 소재를 백금, 금, 은으로 다양화하고 박막 두께와 과산화수소 수용액의 농도를 조절, 다양한 조건에서 핫전자 전류를 측정함으로써 액상 환경의 고체 촉매 반응 원리 규명에 한 발짝 더 다가섰다.
연구팀은 앞서 그래핀을 이용한 핫전자 촉매센서를 개발, 수소산화반응시 백금 나노촉매 표면에서 발생하는 핫전자를 처음으로 검출하는 데 성공한 바 있다.
당시 기체-고체 계면에서 발생한 핫전자 검출 효율은 1% 미만에 그쳤으나, 이번 액상 환경에서의 검출 효율은 훨씬 높은 10%에 달했다.
이에 액상 환경의 핫전자 검출기술이 보완돼 고온·고압 환경에 적용된다면, 에너지 및 환경 분야를 포함한 화학산업 전반의 고효율 나노촉매 개발이 활기를 띌 전망이다.
박정영 교수는 “액체에서 작동하는 ‘촉매 핫전자 탐지기’를 이용해, 액상 촉매 반응 핫전자를 세계 최초로 검출했다”라며 “핫전자 검출 효율이 기상 화학반응보다 액상 화학반응 시 월등히 높아, 촉매 작동 원리 규명파악이 가능해졌다. 이로써 새로운 형태의 고효율 나노촉매 시스템 개발을 앞당길 것”이라고 전했다.
□ 그림 설명
그림1. 은나노촉매 표면에서 과산화수소 분해 촉매 반응 중에 발생하는 핫전자의 측정 원리 및 모식도
그림 2. 다양한 나노 촉매 다이오드에서 측정된 화학 전류와 촉매 물질의 두께와의 상관관계
2016.08.02
조회수 13356
-
박병국 교수, 차세대 자성메모리의 성능 향상 기술 개발
〈 박 병 국 교수 〉
우리 대학 신소재공학과 박병국 교수와 고려대학교 이경진 교수 공동 연구팀이 차세대 자성메모리(MRAM)의 속도 및 집적도를 동시에 향상시키는 소재기술을 개발했다.
이번 연구결과는 나노기술 분야 학술지 ‘네이처 나노테크놀로지(Nature Nanotechnology)’ 7월 11일자에 게재됐다.(논문명 : Field-free switching of perpendicular magnetization through spin-orbit torque in antiferromagnet/ferromagnet/oxide structures)
자성메모리(MRAM)는 실리콘을 기반으로 한 기존 반도체 메모리와 달리 얇은 자성 박막으로 만들어진 새로운 비휘발성 메모리 소자이다. 외부 전원 공급이 없는 상태에서 정보를 유지할 수 있으며 고속 동작과 집적도를 높일 수 있다.
이러한 특성 때문에 메모리 패러다임을 바꿀 새로운 기술로 각광받고 있으며 전 세계 반도체 업체에서 개발 경쟁을 벌이고 있는 차세대 메모리이다.
개발 경쟁의 대상이 되는 핵심 기술 중 하나는 메모리 동작 속도를 더 높이면서도 고집적도를 동시에 구현 하는 기술이다. 현재까지 개발 된 자성메모리 기술에 의하면 동작 속도를 최고치로 유지하는 경우 집적도가 현저히 떨어지는 문제가 있었다.
연구팀은 문제 해결을 위해 동작 속도를 기존 자성메모리 기술보다 10배 이상 빠르고 고집적도를 달성 할 수 있는 새로운 기술을 개발했다.
일반적 스핀궤도토크 기반의 자성메모리는 정보기록을 위해 중금속-강자성 물질의 스핀궤도결합을 이용한다. 하지만 기존에 사용되는 백금(Pt) 또는 텅스텐(W)의 경우 외부 자기장을 걸어 주어야 하는 제약이 있었다.
연구팀은 이리듐-망간(IrMn) 합금과 같은 새로운 반강자성 소재를 도입해 반강자성-강자성 물질의 교환결합을 이용했고, 외부자기장 없이 빠르고 저전력 동작이 가능한 기술을 개발했다.
스핀궤도토크 자성메모리는 컴퓨터 또는 스마트폰에 쓰이는 정적 기억장치(SRAM) 보다 10배 이하로 전력소모를 낮출 수 있다. 또한 비휘발성 특성으로 저전력을 요구하는 모바일, 웨어러블, 사물인터넷 메모리로 활용가능성이 높다.
박 교수는 “이번 연구는 차세대 메모리로써 각광받고 있는 자성메모리의 구현 가능성을 한 걸음 더 발전시켰다는 의미를 갖는다”며 “추가 연구를 통해 기록성능이 뛰어난 신소재 개발에 주력할 예정이다”고 말했다.
이번 연구는 미래소재디스커버리사업 스핀궤도소재연구단의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 스핀궤도토크(SOT) 기반 자성메모리(MRAM)의 개략도
그림2. 스핀궤도토크에 의해 강자성 물질의 스핀 방향을 제어하는 소자개략도 및 주요 실험 결과
2016.07.14
조회수 13517