본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%83%9D%EB%AA%85%ED%99%94%ED%95%99%EA%B3%B5%ED%95%99%EA%B3%BC
최신순
조회순
핵산중합효소의 비정상적인 활성 유도 규명
- 금속이온의 고감도 검출 및 새로운 유전자 분석기술로 적용 가능- 화학분야 세계적 학술지 ‘앙게반테 케미誌’12월호 표지논문 선정 우리학교 생명화학공학과 박현규 교수가 핵산중합효소의 비정상적인 활성을 금속이온을 통해 조절하고 이를 이용해 바이오 컴퓨터를 포함하는 미래 바이오 전자 분야의 핵심기술인 로직 게이트를 구현하는 기술을 개발했다고 23일 밝혔다. DNA를 새롭게 생성해 증폭시키는 효소인 핵산중합효소는 증폭 대상인 목적 DNA와 프라이머(primer)의 염기쌍이 서로 상보적인 짝(A와 T, C와 G)을 이룰 경우에만 가능하다고 알려져 왔었다. 박 교수는 이러한 기존의 개념을 뛰어넘어 특정 금속이 있을 경우에는 상보적인 염기쌍이 아닌 T-T 및 C-C 염기쌍으로부터도 핵산중합효소의 활성을 유도해 핵산을 증폭할 수 있다는 사실을 규명해냈다. 이는 수은 및 은 이온과의 결합을 통해 안정화 된 비 상보적인 T-T와 C-C 염기쌍을 상보적인 염기쌍으로 인식하는 핵산중합효소의 착각 현상에 기인한 것으로, 박 교수는 이를 ‘중합효소 활성 착오(Illusionary polymerase activity)’로 묘사했다. 연구팀은 이 현상을 기반으로 바이오 컴퓨터 등 초고성능 메모리를 가능하게 하는 미래 바이오전자 구현을 위한 핵심기술인 로직게이트를 구현했다. 박현규 교수는 “이번 연구는 기존에 연구되어온 금속 이온과 핵산의 상호작용연구에서 한 걸음 더 나아가 이를 효소활성 유도와 연관시킨 최초의 시도로써, 금속이온의 초고감도 검출 및 새로운 단일염기다형성(single nucleotide polymorphism) 유전자 분석 기술로 적용될 수 있다”고 말했다. 특히, “기존 핵산 기반 기술들과 비교해 비용이 저렴하고 간단한 시스템 디자인을 통해 정확한 로직 게이트 구현이 가능함으로써 분자 수준의 전자소자 연구에 큰 진보를 가져왔다”고 덧붙였다. 한편, 이번 연구는 한국연구재단(이사장 박찬모)이 시행하는 ‘중견연구자지원사업(도약연구)’의 지원을 받아 수행됐으며, 연구의 중요성을 인정받아 화학 분야의 세계적인 학술지인 ‘앙게반테 케미(Angewandte Chemie International Edition)’ 12월호(12월 10일자) 표지논문으로 선정됐다.
2010.12.23
조회수 14406
10nm대의 초미세 나노패터닝 新기술 개발
- 나노 레터스 誌 발표, 대면적 10nm대 나노패턴의 실용화 가능성 열어 - 복잡하고 다양한 10nm대의 고분해능 나노패턴을 대면적에 효율적으로 제작할 수 있는 기술이 국내연구진에 의해 개발되었다. KAIST 정희태 교수가 주도한 이번 연구결과는 나노분야 세계적인 학술지인 ‘나노 레터스(Nano Letters)’에 온라인으로 최근 (8. 17) 게재되었다. 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 박찬모)이 시행하는 ‘세계수준의 연구중심대학(WCU) 육성사업’과 ‘중견연구자지원사업 도약연구’의 지원을 받아 수행되었다. 정희태 교수 연구팀은 차세대 반도체, 디스플레이 및 나노전자 소자개발에 핵심기술인 10nm대의 고분해능 패턴을 원하는 모양과 크기로 쉽게 대면적에 제작할 수 있는 기술을 개발하였다. 연구팀은 전압차를 이용하여 아르곤(Ar) 입자를 가속시켜, 원하는 목적층에 물리적 충격을 줌으로써 목적층의 물질을 제거하는 이온충격(ion-bombardment) 공정 중에서 나타나는 2차 스퍼터링 (secondary sputtering)이라는 현상을 적용하였다. 이 현상은 이온충격(ion-bombardment)으로 물리적 식각을 할 때 목적층의 물질이 다양한 각분포로 이탈하여 마스크 패턴의 옆면에 흡착하는 현상을 이용한 것으로서, 선 모양, 컵 모양, 가운데가 비어있는 실린더(Hole-cylinder) 모양, 삼각 터널(triangle tunnel) 등 다양한 모양을 가지며, 최대 종횡비(high-aspect-ratio) 20까지 높이를 간단하게 제어할 수 있다. 이렇게 제작된 패턴은 웨이퍼, 유리기판, 쿼츠(Quartz), 금속판 뿐만 아니라 PET필름과 같은 플렉서블 기판에서도 공정이 가능하기 때문에 범용적으로 사용되어 질 수 있다. 연구팀은 투명한 쿼츠셀 위에 금 선 패턴을 제작하여 ITO기판을 대체할 수 있을 만큼 높은 성능을 갖는 투명전극을 제작하여 태양전지에 응용함으로써 다양한 광학/전기적 나노소자에 응용할 수 있음을 보였다. 동 연구는 기존의 리소그라피기술로 제작된 패턴의 해상도를 능가하는 10nm급 패턴을 제작할 수 있는 신기술로 거의 모든 금속(금, 은, 알루미륨, 크롬)과 무기물(ZnO, ITO, SiO2)에 적용가능하며, 기존의 패터닝 방법과 비교하여 낮은 공정비용과 간단한 실험공정으로 고해상도 패턴을 대면적에 균일하게 제작할 수 있다는 장점이 있다. 정희태 교수는 “10nm급의 고해상도 미세패턴 제작기술은 미래산업 전반에 걸쳐 매우 중요한 기술군으로, 그동안 나노분야에서 극복해야 할 핵심과제였습니다. 본 연구는 이러한 문제점을 비교적 간단한 방법으로 극복하고 향후 태양광 발전, 반도체 및 바이오소자의 효율증대에 적용가능한 기술”이라고 연구의의를 설명하였다.
2010.09.08
조회수 17079
이상엽 교수, 가상세포 방법론 개발
- 미국 국립과학원회보 게재, "가상세포 시스템 활용 대사특성 예측 기술 개발" - 우리학교 이상엽 교수 연구팀이 생명체의 세포를 체계적으로 분석하여 세포 전체의 대사적 특성을 정확하게 예측할 수 있는 "가상세포 방법론"을 개발했다. 이 연구는 교육과학기술부 "미래기반기술사업(시스템생물학 연구개발)의 지원을 받아 수행되었으며, 연구결과는 세계적 저명 학술지인 「미국 국립과학원 회보 (PNAS)」誌" 8월 2일자 온라인판에 게재되었다. 환경문제와 질병에 대한 관심도가 나날이 높아짐에 따라 의학적인 용도 및 일상생활에 널리 쓰이는 화학물질이나 바이오연료 등을 바이오기반으로 생산하는 것이 더욱 중요해 지고 있다. 이러한 유용한 물질들은 상당수 미생물을 사용하여 개발하는데, 이를 위해 미생물의 체계적인 분석과 개량 연구가 필요하다. 이에, 전체적인 관점에서 복잡한 생명체의 대사를 체계적으로 파악할 수 있는 방법의 개발이 요구되어 왔다. 가상세포는 컴퓨터시스템으로 실제세포를 모사하여 연구하고자하는 생명체의 세포를 체계적으로 분석하는 중요한 도구이다. 이상엽교수 연구팀은 생명체의 정확한 모사를 위한 가상세포 시스템을 개발하였다. 이를 이용하여 얻어진 가상세포 예측 결과들은 실제 세포 실험으로 측정된 결과와 비교하여 정확도가 획기적으로 개선되었다. 이로써 보다 정확한 가상세포 예측이 가능하여 실제 생명체의 분석연구에서 시간과 비용을 큰 폭으로 줄일 수 있게 되었다. 이번 가상세포 방법론의 개발은 국내뿐 아니라 세계생명공학 분야에서 새로운 패러다임을 제공하여, 생명체의 분석과 개량연구에 소모되는 시간과 비용을 절감할 수 있게 되었으며, 또한 이번에 개발한 방법론은 게놈 염기서열이 분석된 모든 생명체에 적용이 가능하기 때문에 다양한 산업적, 의학적 응용을 위한 미생물 개발에 활용될 수 있을 것으로 기대된다.
2010.08.04
조회수 13819
이상엽 교수, 초고분자량 거미 실크 단백질 생산기술 개발
- 초고분자량의 거미 실크 단백질이 거미줄을 강하게 만든다는 사실 밝혀 -- 첨단 초강력 섬유소재로의 활용 기대 - 우리학교 이상엽 특훈교수는 서울대 박명환 교수팀과 공동으로 세계적으로 이제까지 생산하지 못했던 ‘초고분자량의 거미 실크 단백질’을 대사공학으로 개량된 대장균을 이용하여 생산하였다고 발표하였다. 이 초고분자량의 단백질로 만든 거미 실크 섬유는 강철보다 강한 성질을 나타냄을 밝혔다.이 연구는 교육과학기술부가 2009년부터 추진하고 있는 ‘신기술융합형 성장동력사업(바이오제약 사업본부장 수원대 임교빈 교수, 분자생물공정 융합연구단장 KAIST 김정회 교수)의 지원을 받아 수행되었으며, 연구결과는 특허 출원 중으로 세계적 저명 학술지인 「미국 국립과학원 회보 (PNAS)」誌’ 7월 26일자 온라인판에 게재되었다. 거미가 만드는 초고분자량의 실크 섬유는 미국 듀폰(Dupont)社의 고강력 합성섬유인 케블라(Kevlar)에 견줄 강도를 갖고 있으며, 탄성력이 뛰어나 의료산업 등 다양한 분야에서 활용될 수 있는 것으로 알려져 있다. 거미 실크 섬유의 우수한 특성 때문에 그동안 효모, 곤충, 동물세포, 형질전환식물, 대장균을 비롯한 여러 생체 시스템을 활용하여 거미실크를 대량 생산하는 기술을 개발하려는 많은 시도가 있어 왔다.그러나 지금까지는 글리신 등 특정 아미노산이 반복적으로 많이 존재하는 거미 실크 단백질의 특수성으로 인해 고분자량의 거미실크를 인공적으로 생산할 수 없었다. 이러한 기존 기술의 한계와 달리, 우리학교 생명화학공학과 이상엽 교수 연구팀은 고분자량의 거미실크 단백질 (황금 원형 거미; Nephila clavipes 유래)을 생산하는 대장균을 대사공학적으로 새로이 개발하고, 이를 활용함으로써 고성능의 거미실크섬유를 인공적으로 합성하는데 성공하였다. 우선, 연구팀은 비교 단백체 분석 등 시스템 대사공학 기법을 이용하여 거미 실크 단백질을 생산할 때 대장균 내에 글리실-tRNA의 부족 현상이 일어남을 밝혀냈다. 그리고 이 문제의 해결을 위해 관련 유전자들을 증폭 또는 제거 하는 등 대장균의 대사를 재구성함으로써 대장균으로부터 세계 최고 수준의 반복단위수를 가진 285 kDa에 달하는 거미실크 단백질을 성공적으로 합성해 낼 수 있었다. 또한, 대장균에서 생산된 거미 실크 단백질을 분리‧정제한 후에 생체 모방 기술을 이용한 스피닝 작업을 통해 실크 섬유 형태로 제작하였다. 이렇게 만들어진 거미 실크 섬유의 물성을 측정한 결과 강도 (tenacity) 508 MPa, 인장탄성율 (Young"s modulus) 21 GPa를 보여 케블라 수준의 강도를 가지게 된다는 사실을 확인하였다. 기존에는 285 kDa이나 되는 큰 거미 실크 단백질의 생산이 불가능하여 고강도의 거미 실크 섬유를 만들 수 없었는데, 이번 연구를 통해 가능하게 되었다. 이상엽 교수는 “이번 연구는 바이오기반 화학 및 물질 생산시스템 개발의 핵심기술인 시스템 대사공학적 방법을 통해 기존의 석유화학 제품과 대체 가능한 고성능의 섬유를 생산하는 기반기술을 확립하였다는 데 그 의의가 있으며, 향후 생산시스템 향상과 물성 연구를 계속 수행하여 실용화하고 싶다.”라고 밝혔다.
2010.07.28
조회수 22209
양승만 교수, 인조오팔로부터 초소형 분광분석기 제조
- Advanced Materials 3월 5일자 표지 논문으로 소개 돼 - 초정밀 극미량 물질 인식센서로 활용 오팔은 크기가 수백 나노미터(머리카락 굵기의 약 100 분의 1정도)의 유리구슬이 차곡차곡 쌓여 있는 것으로서, 그것이 아름다운 색을 띄는 것은 오팔이 선택적으로 반사하는 파장영역대의 빛만을 우리가 볼 수 있기 때문이다. 이렇게 오팔보석이 발산하는 아름다운 색깔은 색소에 의한 것이 아니라 이 물질을 이루는 구조가 규칙적인 나노구조로 되어 있기 때문이며 이러한 구조를 광결정이라 한다. 이러한 구조의 광결정은 특정한 파장 영역대의 빛만을 완전히 선택적으로 반사시키는 기능을 보유하게 된다. 생명화학공학과 양승만 교수팀 (광자유체집적소자 창의연구단)은 파장이 서로 다른 빛들을 반사하는 오팔 광결정을 미세소자에 연속적으로 도입하여 무지개 같은 띠 모양으로 제작할 수 있는 기술을 확보했으며 이를 이용해 극미량의 물질을 정밀하게 분석할 수 있는 칩 크기 수준의 미세분광기를 최근 제조했다. 사람마다 고유한 지문을 갖듯이 물질을 이루는 분자도 고유한 지문을 갖는데 이는 분자마다 특정 파장의 빛만을 선택적으로 흡수하거나 방출하는 독특한 스펙트럼을 갖기 때문이다. 따라서, 물질을 구성하는 분자를 광학적으로 인식하기 위해서는 분광분석기 (spectrometer)라는 기기가 필요하며 이는 물질이 갖고 있는 다양한 광정보 처리를 위해 광자소자 및 분석소자를 구성하는데 꼭 필요한 요소 중 하나이다. 그러나 기존의 분광기는 파장에 따른 빛의 공간적 분할을 위한 격자(grating) 및 빛의 진행에 필요한 공간을 요구하므로 고가의 큰 장치로만 제작이 가능하였다. 최근에 많은 주목을 받고 있는 생명공학의 산업적 이용이나 신약개발을 위해서는 부피가 나노리터(10-9L)~펨토리터(10-15L) 정도의 극미량의 샘플을 처리해야 하므로 분석실험실을 반도체 칩과 같이 초소형화한 소위 ‘칩위의 실험실: Lab on a Chip’이 필연적으로 요구된다. 이를 구현하기 위해서는 칩 내부에 분광분석기와 같은 분석소자를 설계해 도입해야 하나 기존의 기술로는 현실적으로 불가능 했다. 이번 연구 결과는 초소형 분석소자의 실용성을 구현하는데 크게 기여한 점을 인정받아 국제적 저명학술지인 어드밴스드 머티리얼스(Advanced Materials) 3월호 표지논문(cover paper)으로 게재됐다. 또한, 나노기술 분야의 세계적 포털사이트인 Nanowerk (http://www.nanowerk.com/)는 이번 연구결과를 ‘광결정으로 미세 분광기를 만들다(Photonic crystals allow the fabrication of miniaturized spectrometers)’라는 제목의 스포트라이트(Spotlight)로 소개하기도 했다. 칩규모의 초소형 물질감지소자는 세계적인 연구그룹들이 활발히 개발 중이다. 이번 연구의 결과는 초소형 분광분석기 구조를 자기조립법으로 만든 최초의 사례로서 이 분야의 국제경쟁에서 우위를 확보하는데 필요한 핵심요소이다. 그림1. 반사색이 연속적으로 변하는 광결정 분광기의 저배율 및 고배율 사진 (분광기가 손톱크기로 초소형화 되었음을 확인할 수 있다) 기본 원리는 아래 그림과 같이 다른 반사스펙트럼을 갖는 콜로이드 광결정을 패턴화하면 미지의 빛이 입사할 경우 반사하는 빛의 세기만을 통해 입사한 미지의 빛의 스펙트럼을 알아낼 수 있다는 것이다. 이러한 아름다운 반사색을 보이는 광결정은 오팔보석, 공작새 깃털, 나비날개, 딱정벌레 등 자연계에 많이 존재하는데 양 교수 연구팀에서는 이를 규칙적으로 패턴화하여 전체 가시광 영역에서 배열한 것이다. 이러한 광결정을 이용하면 공간에 따른 빛의 세기분포를 파장에 따른 빛의 세기분포 즉 스펙트럼으로 물질을 이루는 분자를 재분석해낼 수 있다. 이는 기존의 분광기와는 달리 긴 진행거리를 요구하지 않기 때문에 소형화가 가능하고 신호의 검출은 미세검출기 배열을 통해 가능할 것으로 예상된다. 그림2. 가시광 영역에서 반사스펙트럼을 갖는 콜로이드 광결정 (내부의 나노구조는 나비날개와 공작새 깃털 구조의 광결정와 유사하다) <용어설명>○ 콜로이드 : 물질의 분산상태를 나타내는 것인데, 보통의 분자나 이온보다 크고 지름이 1nm~100nm 정도의 미립자가 기체 또는 액체 중에 분산된 것은 콜로이드 상태라고 부른다. 예를 들어, 생물체를 구성하는 물질 대부분이 콜로이드 상태로 존재한다.
2010.03.16
조회수 22325
가상세포를 이용한 병원균의 약물표적 예측기술 개발
- 가상세포 시스템 활용한 새로운 항생제 개발에 큰 파급효과 기대 - 분자 바이오시스템(Molecular BioSystems)지 표지 논문으로 게재 생명화학공학과 이상엽(李相燁, 46세, LG화학 석좌교수, 생명과학기술대학 학장)특훈교수팀이 항생제에 내성을 가지는 병원성 미생물의 가상세포를 구축하고 이를 이용해 병원균의 성장을 효과적으로 억제할 수 있는 약물 표적을 예측하는 기술을 최근 개발했다. 김현욱(생명화학공학과 박사과정)연구원의 학위 논문연구로 수행한 이번 연구 결과는 유럽 화학 관련 학술단체 RSC(The Royal Society of Chemistry)에서 발간하는 분자 바이오시스템(Molecular BioSystems)지의 2월호 표지 논문으로 게재됐다. 예전에는 병원성 세균들을 항생제로 쉽게 치유할 수 있었지만 이제는 항생제의 오남용으로 인해서 병원균들은 항생제에 대한 내성을 가지게 됐으며, 따라서 한 번 감염이 되면 치유가 이전보다 쉽지 않다. 그 대표적인 병원균이 바로 아시네토박터 바우마니(Acinetobacter baumannaii)다. 본래 흙이나 물에서 쉽게 발견되는 이 미생물은 항생제에 내성을 갖지 않아 치료가 쉽고 건강한 사람은 잘 감염되지 않는 균이었다. 그러나 지난 10년 동안에 항생제에 내성을 갖는 슈퍼박테리아로 변했으며, 이라크 전쟁에 참전한 다수의 미군과 프랑스군도 이 균에 감염되면서 상처가 낫질 않아 많은 희생을 야기했다. 李 교수 연구팀은 아시네토박터 바우마니의 게놈과 전체적인 대사특성을 알아보기 위해 각종 데이터베이스에 산재해 있는 생물정보와 문헌정보를 컴퓨터에 입력, 분석, 디자인하여 가상세포를 구축하고, 다양한 네트워크 분석기법, 필수 대사반응 및 대사산물 분석 등 융합 방법론을 이용해 이 병원균의 성장을 효과적으로 차단할 수 있는 약물표적을 예측했다. 인간에게는 영향을 미치지 않으면서 병원균에게만 작용하는 최종 약물표적들이다. 필수 대사반응은 생명체가 대사활동을 정상적으로 하기 위하여 반드시 필요한 효소반응을 말하며, 필수 대사산물이란 생명체가 생존하기 위해 대사에 반드시 필요로 하는 화학물질로서 이들을 제거할 경우 이와 반응을 하는 효소들을 모두 억제되는 효과가 있다. 이 약물표적은 가상세포를 구성하고 있는 대사 유전자, 효소 반응, 신진대사들의 기능을 짧은 시간 안에 빠짐없이 체계적으로 검토해 예측함으로써 그 신뢰성을 높였다. 이번 연구 결과는 최근 많은 관심을 받고 있는 시스템 생물학 연구기법을 이용하여, 처음으로 필수 대사물질의 체계적인 발굴을 통해 효과적인 약물표적을 찾고, 나아가 새로운 항생제 개발의 가능성을 열었다는 점에서 높이 평가받고 있다. 또한 병원균에 의한 감염 현상과 신약개발에 큰 공헌을 할 것으로 기대를 모으고 있다. 李 교수는 “현재 수많은 생물의 게놈 정보가 쏟아지고 있지만 이것을 실질적으로 유용한 정보로 전환하는 데에는 아직도 많은 어려움이 있다. 아시네토박토 바우마니의 게놈 정보로부터 의학적으로 실용성이 있는 정보를 재생산했다는 점에서 의의가 있다”며 “특히 이 병원균의 가상세포 개발은 특정 환경에서 필수 유전자나 효소 반응에 대한 대량의 새로운 생물정보를 제공할 수 있는 계기를 마련했다.”고 말했다. 李 교수팀은 교육과학기술부 시스템 생물학 연구개발사업의 지원으로 이번 연구를 수행했으며, 다양한 병원성 균주의 가상세포 개발 및 항생제 약물표적 예측 방법을 특허 출원했다. ▣ 용어설명 ○ 약물표적 : 차단 시 병원성 미생물의 성장을 효과적으로 억제할 수 있는 단백질 효소 및 그와 관련된 화학물질 ▣ (자료1) 가상세포. (자료2) 가상세포로부터 필수대사산물을 예측한 후에, 병원균을 가장 효과적으로 죽일 수 있으면서 동시에 인간에게는 영향을 미치지 않는 약물표적만을 추리는 과정
2010.02.18
조회수 16150
홍원희교수팀, 다양한 나노구조유도 기술개발
생명화학공학과 홍원희교수팀, 이온성액체를 이용한 다양한 나노구조 유도 기술 개발 -무기산화물, 탄소나노튜브, 그래펜, 유무기 하이브리드 등 다양한 재료의 나노구조를 유도--상용 산화철보다 10배 이상의 흡착 및 광촉매 효율 높여- 공과대학 생명화학공학과 홍원희 교수팀(62)은 이온성액체를 이용한 자기조립기술을 이용해 탄소나노튜브, 그래펜, 무기산화물, 유무기 복합체에 이르기까지 다양한 재료의 나노구조를 유도할 수 있는 기술을 최근 개발했다. 이 연구결과는 ‘광촉매 응용을 위한 이온성액체를 이용한 무기산화물 하이브리드의 에너지 전달(Energy Transfer in Ionic-Liquid-Functionalized Inorganic Nanorods for Highly Efficient Photocatalytic Applications)’이라는 제목으로 나노분야의 저명 학술지인 스몰(Small)지에 지난 11월 게재됐다. 이 기술은 이온성 액체의 구조 유도와 용매 기능을 이용한 무기산화물 하이브리드 나노재료를 제조할 수 있는 ‘청정 한 반응기 이온열 합성법(Green One-Pot Ionothermal Synthesis)’이다. 대기압하의 열린반응기내에서 제조된 무기산화물 나노재료는 쉽게 물이나 다양한 유기 용매에서 분산된다. 홍교수팀은 이 합성법을 산화철 계열의 무기산화물 나노재료에까지 적용해 0차원에서 1차원에 이르기까지 구조를 제어했고, 계면에서의 에너지 전이현상을 통해 상용 산화철보다 10배 이상의 흡착 및 광촉매 효율을 높였다. 이 기술을 바탕으로 제조된 나노재료는 유기물 산화 및 분해기능이 뛰어나 태양광만으로 폐수처리가 가능하다. 이로써 페수처리 과정에서 에너지 소비와 이산화탄소의 배출량을 줄일 수 있고, 광촉매가 가지는 우수한 항균 및 탈취기능은 건축재료 분야에 응용될 것으로 기대된다. 또한, 태양광을 이용한 물의 광분해로 수소 에너지원 생산도 가능하다. 홍교수는 “이번 연구는 이온성 액체의 청정용매로써의 기능을 이용해 나노기술이 가지는 인간과 환경에 대한 악영향을 감소시키고, 동시에 디자인된 나노재료에 새로운 기능을 부여해 기존 기술의 한계를 극복할 수 있는 새로운 대안을 마련했다”는데 의미가 있다고 말했다. 현재 홍교수팀은 친환경 합성법으로 제조된 무기산화물, 탄소나노튜브, 그래펜, 유.무기 하이브리등의 나노재료를 환경 및 에너지 분야에 적용하는 연구를 진행하고 있다. ※ 보충자료나노 스케일에서의 재료나 현상을 연구하고 구조나 구성 요소를 제어해서 새로운 소재‧소자‧시스템을 개발하는 나노 기술 역시, 환경 유해성이나 인체 독성에 대한 연구 결과가 발표되면서 친환경 기술에 대한 관심이 급증하고 있다. 이온성 액체는 소금과 같이 양이온과 음이온의 이온결합으로 이루어진 이온성 염 화합물로써 상온에서부터 넓은 온도에 걸쳐 액체로 존재할 수 있는 ‘청정용매(Green Solvent)’라고 불리면서 각광을 받고 있다. 특히, 이론적으로 1018가지 정도의 조합에 의해서 비휘발성, 비가연성, 열적 안정성, 높은 이온전도도, 전기화학적 안정성, 높은 끓는점 등의 물리화학적 특성을 쉽게 변화시킬 수 있어서 다기능성(multifunctional) ‘디자이너용매(Designer Solvent)’로 사용가능하다. 세계적으로 아직 초기단계이긴 하지만, 미국 국방관련 연구소 (US Air Force, US Naval Research Laboratory) 및 국가 연구소 (Argonne 연구소, Oak Ridge 연구소, Brookhaven 연구소), 독일의 Max Planck 연구소, 스위스 EPFL의 Gratzel 그룹, 일본의 도쿄대, G24i & BASF 등이 최근 이온성 액체를 이용한 나노기술 응용 분야에 주목하면서 집중 투자와 연구를 진행하고 있는 반면, 국내에서는 아직 시작 단계에 불과할 정도로 뒤쳐져 있다. 홍 교수 팀의 연구결과는 기존 산업뿐만 아니라, 전 세계적으로 주목 받고 있는 ‘녹색 성장기술’과 21세기를 선도할 ‘첨단 나노기술’을 융합한 ‘청정 나노기술(Green Nanotechnolgy)’의 원천기술로써 활용될 수 있으며 이 분야의 국제경쟁에서 우위를 확보할 수 있을 것으로 전망된다. 현재까지 이온성액체는 유기합성, 전기화학, 화학공학, 생물공학 및 분리공정 등을 포함하는 여러 분야에서 유기 용매를 대체하기 위한 ‘지속가능기술(sustainable technology)’로써 향후 산업 전 분야에 걸쳐서 엄청난 파급효과가 있을 것으로 기대되고 있다. ※ 용어설명 ○ 열린반응기 : 고압,저압의 용기가 아닌 대기압하의 일반용기 즉, 비이커 등. <그림1> 대표적인 이미다졸륨계 이온성액체의 분자 구조 <그림2> Green One-Pot Ionothermal Synthesis에 의한 물에 분산되는 산화철 나노 막대기의 합성 과정 모식도.
2009.12.14
조회수 25352
대사공학적으로 개량된 박테리아로 범용 플라스틱 생산기술 개발
- 이상엽 교수팀과 LG 화학 연구팀 공동개발 - 바이오테크놀로지 바이오엔지니어링(Biotechnology and Bioengineering)지 게재예정 생명화학공학과 이상엽(李相燁, 45세, LG화학 석좌교수, 생명과학기술대학 학장) 특훈교수팀과 LG화학 기술연구원(원장 유진녕) 박시재, 양택호박사팀이 4년여 간의 공동연구를 통해 박테리아를 이용하여 재생 가능한 바이오매스로부터 플라스틱을 생산하는 기술을 최근 개발했다. 교육과학기술부 시스템생물학 연구개발 사업과 LG화학 석좌교수 연구비로 지원된 이번 연구에서는 시스템 대사공학과 효소공학 기법을 접목, 자연적으로는 생성되지 않는 플라스틱(unnatural polymer)의 일종으로 최근 각광을 받고 있는 폴리유산(Polylactic acid, PLA)을 효율적으로 생산할 수 있는 대장균을 개발한 것이다. 이번 연구 결과는 바이오공학 분야 최고 전통의 바이오테크놀로지 바이오엔지니어링(Biotechnology and Bioengineering)지에 게재 승인됐으며 스포트라이트 논문(Spotlight paper)으로 선정돼 2010년 1월호에 두 편의 연속 논문으로 게재될 예정이다. 두 논문의 제목은 ‘개량된 프로피오네이트 코엔자임 에이 트랜스퍼레이즈와 폴리하이드록시알카노에이트 중합효소를 이용한 폴리유산과 그의 공중합체의 생합성(Biosynthesis of Polylactic acid and its Copolymers Using Evolved Propionate CoA Transferase and PHA Synthase)’과 ‘폴리유산과 그의 공중합체의 생산을 위한 대장균의 대사공학(Metabolic Engineering of Escherichia coli for the Production of Polylactic Acid and its Copolymers)’이다. 19건의 특허가 전 세계 출원 중이다. 기존의 복잡한 2단계 공정을 통해 생산되던 폴리유산을 재생가능한 원료로부터 미생물의 직접 발효에 의해 생산이 가능하도록 한 혁신적인 본 연구 전략은 앞으로 석유 유래 플라스틱을 대체할 수 있는 다양한 비자연 고분자(unnatural polymer)들의 생산에 활용될 획기적인 기술로 평가되고 있다. 폴리유산 (Polylactic acid, PLA)은 많은 바이오매스 유래 고분자들 중에서도 생분해성, 생체적합성, 구조적 안정성, 그리고 낮은 독성과 같은 뛰어난 물성으로 인해 석유 유래 플라스틱의 대체물로서 대두되고 있다. 그러나, 폴리유산은 현재 두 단계 공정으로 합성된다. 우선, 미생물 발효를 통해 유산(락트산, Lactic acid)을 생산, 정제한 후 여러 가지 시약, 용매 및 촉매가 첨가되는 복잡한 공정의 화학적 중합반응에 의해 폴리유산이 합성된다. 또한, 폴리유산의 물성을 다양하게 개선하기 위해 폴리하이드록시알카노에이트 (Polyhydroxyalkanoate, PHA)와 같은 다른 고분자들과의 공중합이나 혼합반응 등의 연구가 이루어지고 있다. 이러한 노력에도 불구하고, 공중합 반응에 사용되는 락톤계 모노머들의 가용성과 비용을 고려했을 때, 기존의 화학적 합성 방법은 효과적이지 않다. 이에, 미생물 유래 고분자인 폴리하이드록시알카노에이트의 생합성 시스템을 기반으로, 폴리유산과 그의 공중합체들의 생합성이 가능할 수 있는 대사경로를 효소공학을 통해 구축했다. 그러나, 외래 대사경로의 도입 및 조작만으로는 폴리유산 단일 중합체와 유산의 함량이 높은 공중합체의 생산이 효율적이지 않아, 시스템 수준으로 세포 내 대사흐름을 증가시킬 필요성을 인지했다. 이에, 대장균 균주의 인실리코 게놈 수준의 시뮬레이션을 이용한 대사흐름분석 기법을 활용하여 고분자 생산을 위한 주요 전구체의 대사 흐름을 논리적으로 강화시킴으로써, 세포성장과 함께 목적 고분자의 효율적 생산이 가능하도록 했다. 따라서, 효소공학을 통한 고분자 합성 경로의 직접적 조작 및 강화 뿐 아니라, 시스템 대사공학을 통한 논리적 접근으로 조작된 대사흐름을 바탕으로 다양한 폴리유산 플라스틱을 보다 효율적으로 생산할 수 있었다. 이는 시스템 대사공학과 효소공학을 접목시킨 고기술 전략으로 비자연 고분자를 효율적으로 생산한 최초의 성공적인 예로서, 재생가능한 자원으로부터 폴리유산뿐 아니라 석유유래 플라스틱을 대체할 수 있는 다른 비자연 고분자들의 일단계 생산을 위한 기반 기술을 마련해줌으로써, 플라스틱 생산 공정에 있어 새로운 전략을 제시했다. 李 교수는 “자연계에 없는 고분자를 미생물로 생산하는 것이 과연 될까? 라는 의문을 갖고 시작했다. 우리 KAIST 연구실의 정유경박사와 LG화학 기술연구원 연구팀원 10여명이 4년간의 끈질긴 노력 끝에 성공했다”며, “이번 연구는 대장균의 가상세포 시뮬레이션을 통해 세포 내 대사흐름을 목적한 고분자 생산에 유리하도록 논리적으로 조작하고, 고분자 생합성 경로를 구성하는 외래 효소들을 새롭게 만들어 도입함으로써, 강화된 대사흐름을 이용해 보다 효율적으로 목적 고분자를 생산할 수 있는 균주를 개발하는데 성공한 세계 첫 번째 케이스다. 특히, 유산이 단량체로 함유된 공중합체의 경우에는 세계최초로 만든 것이 되어 물질특허들로 출원중이다”라고 밝혔다. 한편, 이 혁신적인 연구 성과는 22일 미국 CNN 홈페이지의 Top기사 등 해외언론의 주요기사로 소개됐다. 주요내용은 한국의 KAIST 이상엽 교수팀과 LG화학 연구팀이 전 세계적으로 석유고갈, 지구온난화 및 환경오염 문제로 재생가능한 자원을 이용한 바이오매스 기반 기술의 개발이 시급한 현 시대의 흐름에 부응하면서, 재생가능한 자원으로부터 효율적으로 바이오공학을 통한 플라스틱 (Bioengineered plastics) 폴리유산의 생산이 가능한 대장균 균주를 개발했다는 내용이다.
2009.11.24
조회수 22247
양승만 교수, 액체 방울을 이용한 초소형 인조곤충눈 구조 제조
- 초정밀 극미량 물질 인식센서로 활용 - 네이처 포토닉스에서‘미세패턴기술-광자돔’이라는 제목의 하이라이트로 소개 곤충 및 갑각류 등의 눈은 포유류의 눈과는 달리 수백~수만개의 홑눈(또는 낱눈)이 모여 생긴 겹눈 구조를 갖고 있다. 각각의 홑눈은 투명한 볼록렌즈로서 빛을 모아 명암, 색깔(파장)과 같은 빛 정보를 뇌에 전해 주며 뇌에서 전달된 정보를 재조합하여 사물을 감지한다. 각 홑눈은 육방밀집구조로 서로 빈틈없이 배열되어 돔 형태의 겹눈 표면을 메우고 있다. (파리와 잠자리의 눈 사진참조) 생명화학공학과 양승만 교수의 광자유체집적소자 창의연구단은 다양한 기능을 갖는 나노입자를 제조하고 이들 입자들이 스스로 조립되는 자기조립 원리를 규명하는 연구를 수행하여 실제 곤충눈의 수백분의 일 크기의 초소형 인조겹눈구조를 실용적으로 제조할 수 있는 방법을 최근 개발했다. 이 연구결과는 최근 국제적 저명학술지인 어드밴스드 머티리얼스(Advanced Materials) 誌 10월호 표지논문(cover paper)으로 게재 됐으며 인조곤충눈 구조의 실용성을 구현하는데 크게 기여한다고 인정받아 특별히 주목해야할 논문(Advances in Advance)으로 선정됐다. 특히, 네이처 포토닉스(Nature Photonics)지는 10월호에서 양 교수팀 연구의 중요성과 응용성에 주목하여 이 연구결과를 "미세패턴기술-광자돔(Micropatterning–Photonic domes)"이라는 제목으로 "뉴스와 논평(News & Views)"란에 하이라이트로 선정하여 비중있게 게재했다. 지난 20여 년 동안 곤충눈, 오팔, 나비날개 등 빛정보를 처리할 수 있는 자연계에 존재하는 구조를 인공적으로 제조하기 위한 연구가 많은 과학자들에 의하여 시도되어 왔으나, 실용적인 구조를 얻는 데에는 한계가 있었다. 양 교수팀은 2006년부터 교육과학기술부의 ‘창의적연구진흥사업’으로부터 지원을 받아 초소형 인조곤충눈 구조를 실용적으로 제조할 수 있는 기술을 확보하기 위한 연구를 수행해 왔다. Nature Photonics지 10월호가 하이라이트로 선정하여 주목한 양 교수팀의 이번연구에서는 실제 곤충눈 크기의 수백분의 일 정도로 초소형이며 균일한 크기와 모양을 갖는 인조곤충눈 구조를, 크기가 수십 마이크로미터인 균일한 기름방울을 이용하여 성공적으로 제조하여 규칙적으로 배열하였다. 특히 주목할 것은 제조공정이 손쉽고 빠른 나노구슬의 자기조립 원리를 이용한 점이다. 우선 크기가 수백 나노미터인 균일한 유리구슬(낱눈렌즈)을 물속에 분산시킨 후, 크기가 수십 마이크로미터인 균일한 기름방울을 주입하고 물-기름-유리구슬 사이의 표면화학적 힘의 균형을 유지시키면 유리구슬이 물과 기름방울 사이의 경계면으로 이동한다. 그 후 물-유리-기름방울의 혼합물을 기판 위에 뿌리면 기름방울이 반구의 돔 모양으로 변형되고 유리구슬렌즈는 저절로 기름방울 표면 위에 촘촘히 육방밀집구조로 배열하게 된다 (전자현미경사진 참조). 이 때 자외선을 기름방울에 쪼여서 고형화시킴으로써 종래에 수십 시간이 소요되는 인조곤충눈 조립공정을 불과 수분 만에 제조할 수 있다. 수 천개의 미세렌즈가 장착된 돔 구조의 초소형 인조곤충눈은 인간의 눈에 비해 시야각이 넓고 빛을 모으는 능력도 매우 높다. 따라서, 환경의 미세한 변화를 감지할 수 있는 능력을 보유하므로 신약개발을 비롯하여 극미량의 물질을 인식할 수 있는 초고감도 감지소자를 요구하는 다양한 분야에 응용될 수 있다. 특히 최근에 신약개발 등 바이오 산업의 실용화에 사용되고 있는 극미량의 시료를 처리할 수 있는 반도체칩 규모의 실험실인 랩언어칩(Lab on a Chip)에 초소형 인조곤충눈을 도입할 경우 높은 정밀도를 갖는 물질 감지소자로 활용될 수 있다. 이러한 인조곤충눈 구조는 세계적인 연구그룹들이 활발히 개발 중이며 최근에 수 밀리미터 크기의 실제 곤충눈 크기의 인조곤충눈은 보고된 바 있다. 그러나, 본 연구의 결과는 초소형 인공곤충눈 구조를 자기조립법으로 만든 최초의 사례로서 이 분야의 국제경쟁에서 우위를 확보하는데 필요한 핵심요소다.
2009.10.06
조회수 25042
유룡 교수, 나노판상 제올라이트 촉매 물질 합성 성공
화학과 유룡(54)교수가 특수한 계면활성제 분자와 실리카를 조립하는 새로운 방법으로 세계 최초로 2나노미터(nm) 극미세 두께의 나노판상형 제올라이트 촉매 물질을 합성하는데 성공했다. 이 연구결과는 세계 최고 권위의 과학저널인 ‘네이처(Nature)지’ 10일자에 게재됐으며, 이 논문은 세계 과학계에서 저자의 위상과 연구결과의 과학적 중요성을 인정받아 네이처 인터뷰 기사로 소개되는 영예를 얻었다. 이번에 합성된 제올라이트는 2nm두께의 판상으로, 제올라이트 물질에 대해 이론적으로 예상할 수 있는 최소 두께다. 또한 이렇게 얇은 두께임에도 불구하고, 이 물질은 섭씨 700도의 고온에서도 높은 안정성을 나타냈다. 연구를 주도한 유교수는 “이처럼 극미세 두께의 제올라이트 물질은 분자가 얇은 층을 뚫고 쉽게 확산할 수 있기 때문에 석유화학공정에서 중질유 성분처럼 부피가 큰 분자를 반응시키는 촉매로 사용될 수 있다. 특히 이 제올라이트 촉매는 메탄올을 가솔린으로 전환시키는 화학공정에서 기존의 제올라이트 촉매에 비해 수명이 5배 이상 길어, 촉매 교체 주기를 연장시킬 수 있기 때문에 경제효과가 매우 높다.”라고 연구의의를 설명했다. 이번 연구결과는 앞으로 대체에너지 자원개발과 녹색성장에 적합한 친환경 고성능 촉매 개발연구에 직접적으로 활용될 수 있을 것으로 기대된다. 유교수팀이 독창적으로 설계한 계면활성제 분자는 머리 부분에 제올라이트 마이크로 기공(micropore)유도체를 포함하여 제올라이트 골격의 형성을 유도하고, 꼬리 부분에 긴 알킬(alkyl) 그룹이 연결되어 제올라이트의 마이크로 기공보다 더 큰 메조 기공(mesopore)을 규칙적으로 배열할 수 있도록 했다. 이러한 독창적인 물질 설계는 제올라이트 합성 메커니즘에 대한 과학적 지식을 넓히는 획기적인 연구 결과로서, 향후 다양한 구조의 다른 물질을 합성하는 새로운 분야를 개척한 선구적인 성과라고 평가할 수 있다. 유교수는 2000, 2001년에 국내 최초로 2년 연속 ‘Nature’지에 메조다공성 실리카와 메조다공성 탄소에 대한 논문을 게재했고, 2003년과 2006년에 ‘Nature Materials"지에 고분자-탄소 복합물질과 메조다공성 제올라이트에 관한 논문을 게재한 후, 이번에 세 번째로 ’Nature"지에 책임저자(교신저자)로 논문을 게재하는 쾌거를 올렸다. 이것은 국내 과학자도 세계 과학을 선도하는 그룹의 반열에 올랐다는 것을 의미하며, 우리나라 과학의 우수성을 전 세계에 알리는 기회가 됐다. 이 연구는 교육과학기술부(장관 안병만)와 한국연구재단(이사장 박찬모)이 추진하는 ‘국가과학자지원사업’의 지원을 받아 이뤄졌다. 또한 교육과학기술부와 한국연구재단이 추진하는 ‘세계수준의 연구중심대학(WCU, World Class University)육성사업’과 나노기술육성사업(나노팹사업)에 따른 결실이다. 이번 연구에서 유 교수팀은 KAIST 부설 나노팹센터와 테라사키교수 연구팀의 협조로, 전자현미경을 통해 물질의 세부구조를 분석하였다. 특히 나노팹의 높은 기술력은 연구시간을 최대로 단축시켜 단시간에 훌륭한 연구 성과를 도출할 수 있도록 했다. 2007년 국가과학자로 임명된 유교수의 주도 하에, KAIST 최민기 박사, 나경수연구원(화학과 박사과정), 김정남연구원(화학과 박사과정)이 연구를 수행하고, 분해능이 높은 현미경 사진으로 구조를 확인하기 위해 스웨덴 스톡홀름대학교의 오사무 테라사키 교수와 야수히로 사카모토 박사가 추가로 참여했다. 테라사키 교수는 현재 스웨덴 스톡홀름대학교 석좌교수로, WCU사업의 지원을 받아 올해부터 KAIST EEWS(Energy, Environment, Water and Sustainability)학과에 겸임교수로 재직하고 있다. 이번 연구결과는 세계 수준의 연구중심대학과 세계적인 나노과학기술 육성을 위한 정부의 지원으로, 우리나라 과학기술의 수준을 한 단계 발전시킨 결과로서, 국내 기술력과 해외 우수 연구자들의 연구능력과 기술력을 통합한 국제공동연구의 모범사례로 평가된다.
2009.09.10
조회수 23657
이상엽 특훈교수팀, 대사공학기술로 바이오매스로부터 나일론 원료를 생산하는 녹색기술 개발
- 화석원료 기반의 화학산업에서 바이오 기반 녹색 화학산업으로 - 우리대학 생명화학공학과 이상엽 특훈교수(45, 생명과학기술대학 학장, 바이오융합연구소 공동소장, LG화학 석좌교수)팀이 대사공학 기술을 이용하여 대장균으로부터 나일론의 원료가 되는 다이아민(diamine)을 효율적으로 생산하는 시스템을 최근 개발했다. 이 연구결과는 미국 와일리-블랙웰(Wiley-Blackwell)사가 발간하는 가장 오랜 전통의 공학계열 생명공학 학술지인 바이오테크놀로지 바이오엔지니어링지(Biotechnology and Bioengineering) 27일자 온라인 판으로 소개됐다. 현재, 의약을 제외하고도 1,800조원 시장 규모의 화학 물질들은 주로 화석원료에 기반한 석유화학 공정으로 생산돼 왔다. 이 연구결과는 세계에서 처음으로 나일론 등의 원료로 쓰이는 1,4-다이아미노부탄 (1,4-diaminobutane), 일명 푸트레신 (putrescine)을 석유화학공정이 아닌 포도당이나 설탕과 같은 바이오매스 유래 원료로부터 대사공학으로 개량된 대장균을 이용하여 생산하는 기술을 제공하고 있다. 와일리(Wiley)사는 이 연구결과를 향후 석유화학 산업을 환경 친화적인 바이오기반 화학산업으로 바꾸는데 핵심이 되는 대사공학의 적용 예를 잘 보인 것으로 높이 평가하여 지난 27일 보도자료를 통해 언론에 소개하기도 했다. 李 교수는 “본 연구는 교육과학기술부의 시스템생물학 연구개발 사업의 결실 중에 하나로서, 다이아민을 바이오 기반 환경 친화적인 공정으로 생산할 수 있다는 것을 보여준 좋을 예라고 생각한다. 본 기술에 이용된 시스템대사공학 기법은 다른 화학물질의 바이오 기반 생산도 효율적으로 가능하게 할 것이다. 현재 특허 출원된 본 기술 관련하여 박사학위 주제로 잘 수행한 취안지강(Qian Zhi Gang) 박사와 시아샤시아(Xia Xiao Xia) 박사와 함께 다른 다이아민 생산 공정도 개발 중이다”고 밝혔다. 바이오테크놀로지 바이오엔지니어링지의 50주년 기념해를 맞이하여 투고한 본 논문은 학술지의 표지논문, 스포트라이트 논문, 그리고 편집장 우수 논문으로 동시에 선정되기도 했다. KAIST 관계자는 “이 교수팀은 세계적인 대사공학 연구 전문그륩으로서 이 기술을 이용한 산업바이오텍 기술 개발에서 탁월한 연구 결과들을 내 놓고 있다. 우리나라에서 주도하고 있는 녹색성장의 핵심 전략으로 바이오 기반 화학산업을 발전시키는데 크게 기여할 수 있을 것으로 생각한다.”고 했다. 李 교수는 내년 6월 제주도에서 개최되는 세계 대사공학 학술회의의 의장으로 최근 추대됐으며, 지난 달 미국 듀퐁사, 델라웨어주립대학교, 마이크로소프트사, 스탠포드대학교, 캘리포니아 버클리 주립대학교, 시스템생물학연구소 등에서 시스템대사공학을 통한 산업바이오텍을 주제로 초청강연을 하는 등 대사공학 연구를 선도하고 있다.
2009.08.31
조회수 19018
생명화학공학과 양승만교수 광자유체 신기술개발
생명화학공학과 양승만(梁承萬, 58세, 교육과학기술부 지정 광자유체집적소자 창의연구단 단장) 교수 연구팀이 다양한 기능을 갖는 나노입자를 제조하고 이들 입자들이 스스로 조립되는 ‘자기조립원리’를 규명하는 연구를 수행하여, 방대한 량의 정보를 처리할 수 있는 프로토타입(prototype)의 광․바이오 기능성 광자결정(photonic crystal)구조체를 개발했다. 자연계에 존재하는 대표적인 광자결정은 오팔보석, 나비의 날개, 공작새의 깃털 등이 있다. 이들 광자결정 물질들이 발산하는 아름다운 색깔은 색소에 의한 것이 아니라 이 물질들을 이루는 구조 자체가 규칙적인 나노구조로 되어 있기 때문이다. 즉, 광자결정은 굴절률이 다른 물질들이 규칙적으로 쌓여 조립된 3차원 구조체로 특정한 영역의 파장에 해당하는 빛만 완전히 반사시킨다. 이 성질을 이용하면 반도체가 전자의 흐름을 제어하듯 빛의 흐름을 제어할 수 있다. 이러한 광자결정의 특수한 기능 때문에 나노레이저, 다중파장의 광 정보를 처리할 수 있는 슈퍼프리즘(superprism), 빛을 원하는 위치로 가이드 할 수 있는 광도파로(waveguide) 등 차세대 광통신 소자와 현재의 컴퓨터 속도를 획기적으로 높일 수 있는 수십 테라급 초고속 정보처리능력을 갖춘 광자컴퓨터의 개발 등에 필요한 소재로 주목 받아왔다. 광자결정은 광자(빛)가 정보를 처리하는 미래에 오늘날의 반도체와 같은 역할을 할 것이므로 ‘빛의 반도체’라 불린다. 지난 20여 년 동안 자연 상태에 존재하는 광자결정의 나노구조를 인공적으로 제조하기 위한 연구가 많은 과학자들에 의하여 시도되어 왔지만 실용적인 구조를 얻는 데에는 한계가 있었다. 梁 교수팀은 2006년부터 교육과학기술부와 한국과학재단의 ‘창의적연구진흥사업’으로부터 지원을 받아 광자결정소재의 실용성을 확보하기 위한 연구를 수행하여 최근 해외 저명학술지로부터 크게 주목 받는 일련의 연구 성과를 거뒀다. 첫 번째 연구 성과로 굴절률 조절이 가능한 미세입자 대량 생산기술을 개발했다. 지금까지 구현된 3차원 광자결정은 결정을 이루는 물질의 굴절률이 1.5-2.0 정도로 낮고, 굴절률을 다양하게 조절할 수 있는 입자를 제조할 수 없어서 광자결정의 실용성에 한계가 있었다. 최근 梁 교수 연구팀은 굴절률을 1.4-2.8까지 마음대로 조절할 수 있는 입자를 대량으로 제조할 수 있는 실용적 방법을 개발했다. 제조된 고 굴절률 입자는 나노레이저, 광 공명기, 마이크로렌즈, 디스플레이 등 각종 광학소자와 광촉매 등으로 활용될 수 있다. 이 연구결과는 최근 어드밴스드 머티리얼스 인터넷판(6. 19)과 제 17호(2008. 9)의 표지논문으로 게재 예정이다. 특히, 이 논문은 저명 학술지인 네이처 포토닉스(Nature Photonics)誌 8월호(8. 1)에 리서치 하이라이트(Research Highlights)로 선정되어 연구의 중요성과 응용성에 대하여 특별기사로 조명했다. 그림 1. 초고굴절률 타이타니아 입자의 전자 현미경 사진 두 번째 연구 성과로 광자유체 기술을 이용한 광결정구 연속생산 기술을 개발했다. 균일한 크기와 모양을 갖는 광자결정구를 빛을 매개로 반응시킴으로써 종래에 수십 시간이 소요되는 공정을 불과 수십 초 만에 연속적으로 제조할 수 있는 기술을 확보했다. 이들 광자결정구는 차세대 반사형디스플레이 색소나, 나노바코드, 생물감지소자 등으로 활용될 수 있다. 특히 주목할 것은 몇 개의 다른 색을 반사하는 야누스 광자결정구슬을 제조하였는데 이들은 전자종이와 같은 접거나 말 수 있는 차세대 디스플레이 소자에 활용될 수 도 있다. 이러한 광자결정 표시소재는 세계굴지의 화학회사인 독일 머크(Merck)社 등에서도 개발 중이며 이번 연구 결과는 이 분야의 국제경쟁에서 우위를 확보하는데 필요한 핵심요소이다. 주요 연구결과는 국제적저명학술지인 미국화학회지(JACS)와 어드밴스드 머티리얼스(Advanced Materials)誌에 6편의 논문을 최근 4개월(5~8월) 동안 연속 게재하여 광자결정의 실용성을 구현하는데 크게 기여했다고 인정받았다. 특히, 이들 논문들은 해당 학술지 편집인(Editor)과 심사위원들에 의하여 가장 앞선 연구결과로서 주목해야 할 논문(Advances in Advance)으로 선정됐으며, 9호(5. 5) 표지논문에 게재됐다. 그림 2. 3원광 광자결정구와 다색상 야누스 광자결정구의 현미경사진과 휘어지는 기판 위에 픽셀화된 3원광 광자결정. 세 번째 연구 성과로 광자유체 기술을 이용한 광결정 나노레이저를 개발했다. 현재까지 개발된 나노레이저는 발생하는 고열로 인하여 발진하는 레이저의 파장을 변화시키기 어려운 단점이 있었다. 梁 교수 연구팀은 KAIST 물리학과의 이용희 교수 연구팀과 공동으로 연속가변파장 나노레이저를 최초로 개발했다. 레이저를 발진하는 광자결정과 매우 미세한 유량을 도입할 수 있는 미세유체소자를 결합한 후 물과 같은 액체를 흘려줌으로써 온도를 낮추어 연속파 레이저 발진을 가능케 하였다. 또한 굴절률이 다른 액체를 흘려주어 광밴드갭을 조절함으로써 레이저의 파장을 조절 할 수 있었다. 가변파장 나노레이저는 신약개발 등 생명공학에서 요구되는 극미량의 시료로부터 방대한 량의 바이오정보를 광학적으로 신속하게 처리하는데 필요한 광원으로 사용될 수 있다. 이 연구 결과는 광물리 분야의 저명학술지인 옵틱스 익스프레스(Optics Express)에 게재(4. 9) 됐으며 이 논문의 독창성과 실용성은 영국왕립화학회(Royal Society of Chemistry)에서 발간하는 저명학술지 랩온어칩(Lab on a Chip) 8월호(8. 1)에 해설과 함께 “리서치 하이라이트”로 소개됐다. 그림 3. 나노레이저 발진모드
2008.08.19
조회수 22722
<<
첫번째페이지
<
이전 페이지
11
12
13
14
15
16
17
18
>
다음 페이지
>>
마지막 페이지 18