본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%84%A4%EC%9D%B4%EC%B2%98
최신순
조회순
김은성 교수팀, 초고체 헬륨에서 숨겨진 상(Hidden Phase) 존재 규명
- 초고체 헬륨에서 나타나는 이력현상과 동적 분산현상의 설명이 가능해져 - 세계적 권위지인‘Nature Physics’4월 5일자 온라인 게재 우리는 평소에 고체, 액체, 기체라는 세가지 대표적인 물질상태에 대해 배운다. 하지만 지난 100년간 물리학자들은 수많은 노력으로 그 외에서 초전도체, 초유체 등 많은 새로운 상태가 있다는 것을 밝혀냈고 이런 발견들은 종종 노벨상으로 이어지기도 했다. 2004년에는 -273℃(200 mK)의 극저온으로 가면 일부 고체 헬륨의 점성이 완전히 사라진다는 놀라운 사실이 발견되었고 이 새로운 상태는 초고체라 불린다. KAIST 물리학과 김은성 교수(39)는 이 초고체 상태를 세계 최초로 보고한 장본인이다. 하지만 왜 초고체가 생기는지 그 근본원인은 아직 베일에 싸여있었다. 최근 김은성 교수와 최형순 박사(30)팀은 교육과학기술부 창의적 연구진흥사업의 지원을 받아 비틀림진동자라는 초정밀 분석장치를 이용해 초고체 상태에 숨겨진 상(像)의 발견에 성공했다. 초고체가 진동의존성과 온도의존성을 보인다는 사실은 김 교수 자신에 의해 이미 밝혀져 있었다. 이번 연구에서는 초고체를 특정 온도에서 약하게 진동시키다가 갑자기 강하게 진동시킬 때 나오는 반응으로 초고체의 동역학을 실시간으로 분석했다. 이 때 김교수팀은 시간에 따른 초고체의 반응이 온도에 따라 크게 달라진다는 사실을 알아냈다. 더불어 연구팀은 진동 세기를 변화시켰을 때 바뀌기 이전 상태의 특성이 어느 정도 지속되는 이력 현상을 발견했다. 이는 초고체 상태에도 여러 단계의 서로 다른 안정한 상태가 존재한다는 것을 뜻한다. 이번 연구결과는 4월 5일 세계적 학술지인 ‘네이처 피직스(Nature Physics)’ 온라인판에 게재됐다. 김 교수는 “이번 연구결과로 21세기 순수물리의 최대 발견 중 하나로 꼽히는 초고체 상태에 대한 이해를 넓혀 초고체 연구분야에서 세계를 주도하는 위치에 서게 됐다”고 의미를 부여했다. ○ 용어해설 : 초유체는 2.17 K에서 액체 헬륨의 점성이 완전히 사라지는 상태를 말함. 초전도체는 저항 없이 전기가 흐를 수 있는 물질임. <김은성 교수> KAIST 물리학과 김은성 교수는 ‘초고체’ 현상 이라는 새로운 물질상태를 세계최초로 발견해 이 연구 분야를 개척하였고 이 결과를 인정받아 2008년에는 Lee Osheroff Richardson상을 수상하였다. 현재 교육과학기술부 창의적 연구진흥 사업의 지원을 받아 초고체 현상 규명에 대한 연구에 매진하고 있다. (042-350-2547,eunseong@kaist.edu)
2010.04.05
조회수 16257
양승만 교수, 물위를 걷게 하는 스마트 나노구조 입자 제조
- 스스로 세정하는 초소수성 연꽃잎 구조를 생체모방한 최초의 나노입자 제조기술로 Nature와 Nature Nanotechnology에서 동시에 하이라이트 흙탕물 속에서도 아름답고 깨끗한 모습을 지키는 연꽃잎, 건조한 사막에서도 물 걱정 안 하는 딱정벌레, 영양분 공급 걱정 안 하는 끈끈이주걱, 물위를 자유자재로 걷는 소금쟁이, 물이 젖지 않는 나비날개는 모두 나노구조를 지니고 있어서 신기/한 생존현상을 만들어 낸다. KAIST 생명화학공학과 양승만 교수팀(광자유체집적소자 창의연구단)은 연꽃잎 나노구조를 표면에 갖고 있는 미세입자를 균일한 크기로 연속적으로 생산하여 다양한 응용분야에 적용할 수 있는 기술을 개발해 최근 Nature와 Nature Nanotechnology등 해외 저명학술지로부터 크게 주목 받는 연구성과를 거뒀다. 국제적으로 가장 권위 있는 두 학술지에 동시에 하이라이트로 실린 것은 극히 이례적인 일로, 이 연구결과가 나노과학의 진보성과 실용성이 크게 이바지한 것임을 입증한다. 양 교수팀의 이번 연구는 2006년부터 교육과학기술부의 ‘창의적연구진흥사업’의 지원을 받아 수행했다. 연꽃잎 나노구조로 발생하는 소위 연꽃잎효과(Lotus Effect)의 응용분야는 무궁무진하여 세계적인 연구그룹들이 활발히 개발 중이나 현재의 기술수준은 연꽃잎 효과를 지니는 실용성 있는 제품을 개발하는 데는 성공하지 못하고 있다. Nature지(3월 25일호)와 Nature Nanotechnology지(4월호)가 비중 있게 하이라이트한 양 교수팀의 이번 연구에서는 감광성 액체방울을 이용하여 연꽃잎의 나노구조를 생체 모방하여 크기가 균일한 미세입자를 대량으로 만들 수 있는 기술을 성공적으로 개발하였다. 특히 주목할 것은 나노구슬이 스스로 구조를 형성하는 자기조립 원리를 이용함으로써 제조공정이 손쉽고 빨라 경제적이란 점이다(제조 공정도 참고). 우선 크기가 수백 나노미터인 균일한 유리구슬을 감광성 액체 속에 분산시킨 후, 크기가 수십 마이크로미터로 균일한 액체방울로 만들어 물에 주입하고, 물-감광성 액체-유리구슬 사이의 표면화학적 힘의 균형을 유지시키면 유리구슬은 저절로 감광성 액체방울 표면 위에 촘촘히 육방밀집구조로 배열하게 된다. 이 때 자외선을 감광성 액체방울에 쪼여서 고형화 시킴으로써 수 천개의 유리 나노구슬이 박혀있는 입자를 얻게 된다. 그 후 유리구슬을 불산으로 녹여내면 마치 골프공 같이 분화구가 촘촘하게 파진 미세입자를 만들 수 있고 여기에 플라즈마(높은 에너지를 갖는 기체이온)를 쪼여주면 분화구가 깊게 깎이면서 연꽃잎과 같은 나노구조가 형성된다. 이러한 연꽃잎 구조는 세계적인 연구그룹들이 활발히 개발 중이며 최근에 나노식각공정을 사용하여 평판 위에 연꽃잎 효과를 구현한 결과는 보고된 바 있다. 그러나 본 연구의 결과는 머리카락 보다 가는 미세한 입자표면에 연꽃잎 구조를 자기조립법으로 만든 최초의 사례로서 이 분야의 국제경쟁에서 우위를 확보하는데 필요한 핵심요소이다. Nature와 Nature Nanotechnology에서 언급한 바와 같이, 이렇게 제조된 연꽃잎 효과를 나타내는 미세입자의 응용은 다양하다. 세차가 필요없는 자동차, 김이 서리지 않는 유리, 비에 젖지 않는 섬유, 스스로 세정하는 페인트 그리고 비나 눈물에 얼룩이 지지 않는 화장품 등도 개발할 수 있다. 또한, 화학 및 바이오센서 등의 마이크로 분석소자, 물위를 걸을 수 있는 마이크로로봇, LCD 차세대 대형 디스플레이에서도 연꽃잎 효과를 이용한 코팅 기술이 사용될 것으로 기대된다. 이 연구결과는 화학분야 최고의 저명학술지인 안게반테 케미(Angewandte Chemie International Edition) 4월호 표지논문으로 하이라이트 되었고 연꽃잎 구조의 실용성을 구현하는데 크게 기여한다고 인정받아 그 호의 VIP(Very Important Paper: 매우 중요한 논문)로 선정되었다. 특히, Nature지는 3월 25일호에서 양 교수팀 연구의 중요성과 응용성에 주목하여 ‘표면과학: 물방울로 만든 구슬(Surface Science: Liquid Marbles)’이라는 제목으로 ‘뉴스와 논평(News & Views)’란에 하이라이트로 선정해 첨부한 자료와 같이 비중있게 게재했다. 또한, Nature Nanotechnology지는 4월호에서 ‘주목해야 할 연구(Research Highlights)’로 선정해 해설을 함께 실었다. <그림1> 연꽃잎의 나노구조를 생체모방한 미세입자제조 공정모식도 <그림2> 연꽃잎의 나노구조를 갖는 미세입자를 물표면에 뿌리면 막이 형성되고 이 막은 유리 막대를 찔러도 뚫리지 않고 유리막대에 물이 묻지 않는다. <그림3> Nature Nanotechnology에 실린 물 위에 뜬 물방울 사진: 연꽃잎 나노구조를 갖는 미세입자를 물표면에 뿌리면 막이 형성되고 이 막 위에 물을 뿌리면 방울로 맺히게 된다. 이것은 미세입자를 이용하면 물위로 물체를 띠울 수 있음을 보여준다. <그림4> Nature에 실린 물방울로 만든 구슬을 집게로 잡고 있는 모습: 연꽃잎 나노구조를 갖는 미세입자가 물을 포획하여 물방울 구슬을 만든 모습. 이 물방울구슬은 집게로 찌그러트려도 안 터지며 떨어뜨려도 깨지지 않는다. <그림5> 연꽃잎에 맺힌 물방울 사진과 나노구조의 전자현미경 사진과 봉우리의 모식도 <그림6> 사막의 딱정벌레와 나노구조의 전자현미경 사진 <그림7> 끈끈이 주걱과 나노구조의 전자현미경 사진
2010.03.24
조회수 24775
양승만 교수, 액체 방울을 이용한 초소형 인조곤충눈 구조 제조
- 초정밀 극미량 물질 인식센서로 활용 - 네이처 포토닉스에서‘미세패턴기술-광자돔’이라는 제목의 하이라이트로 소개 곤충 및 갑각류 등의 눈은 포유류의 눈과는 달리 수백~수만개의 홑눈(또는 낱눈)이 모여 생긴 겹눈 구조를 갖고 있다. 각각의 홑눈은 투명한 볼록렌즈로서 빛을 모아 명암, 색깔(파장)과 같은 빛 정보를 뇌에 전해 주며 뇌에서 전달된 정보를 재조합하여 사물을 감지한다. 각 홑눈은 육방밀집구조로 서로 빈틈없이 배열되어 돔 형태의 겹눈 표면을 메우고 있다. (파리와 잠자리의 눈 사진참조) 생명화학공학과 양승만 교수의 광자유체집적소자 창의연구단은 다양한 기능을 갖는 나노입자를 제조하고 이들 입자들이 스스로 조립되는 자기조립 원리를 규명하는 연구를 수행하여 실제 곤충눈의 수백분의 일 크기의 초소형 인조겹눈구조를 실용적으로 제조할 수 있는 방법을 최근 개발했다. 이 연구결과는 최근 국제적 저명학술지인 어드밴스드 머티리얼스(Advanced Materials) 誌 10월호 표지논문(cover paper)으로 게재 됐으며 인조곤충눈 구조의 실용성을 구현하는데 크게 기여한다고 인정받아 특별히 주목해야할 논문(Advances in Advance)으로 선정됐다. 특히, 네이처 포토닉스(Nature Photonics)지는 10월호에서 양 교수팀 연구의 중요성과 응용성에 주목하여 이 연구결과를 "미세패턴기술-광자돔(Micropatterning–Photonic domes)"이라는 제목으로 "뉴스와 논평(News & Views)"란에 하이라이트로 선정하여 비중있게 게재했다. 지난 20여 년 동안 곤충눈, 오팔, 나비날개 등 빛정보를 처리할 수 있는 자연계에 존재하는 구조를 인공적으로 제조하기 위한 연구가 많은 과학자들에 의하여 시도되어 왔으나, 실용적인 구조를 얻는 데에는 한계가 있었다. 양 교수팀은 2006년부터 교육과학기술부의 ‘창의적연구진흥사업’으로부터 지원을 받아 초소형 인조곤충눈 구조를 실용적으로 제조할 수 있는 기술을 확보하기 위한 연구를 수행해 왔다. Nature Photonics지 10월호가 하이라이트로 선정하여 주목한 양 교수팀의 이번연구에서는 실제 곤충눈 크기의 수백분의 일 정도로 초소형이며 균일한 크기와 모양을 갖는 인조곤충눈 구조를, 크기가 수십 마이크로미터인 균일한 기름방울을 이용하여 성공적으로 제조하여 규칙적으로 배열하였다. 특히 주목할 것은 제조공정이 손쉽고 빠른 나노구슬의 자기조립 원리를 이용한 점이다. 우선 크기가 수백 나노미터인 균일한 유리구슬(낱눈렌즈)을 물속에 분산시킨 후, 크기가 수십 마이크로미터인 균일한 기름방울을 주입하고 물-기름-유리구슬 사이의 표면화학적 힘의 균형을 유지시키면 유리구슬이 물과 기름방울 사이의 경계면으로 이동한다. 그 후 물-유리-기름방울의 혼합물을 기판 위에 뿌리면 기름방울이 반구의 돔 모양으로 변형되고 유리구슬렌즈는 저절로 기름방울 표면 위에 촘촘히 육방밀집구조로 배열하게 된다 (전자현미경사진 참조). 이 때 자외선을 기름방울에 쪼여서 고형화시킴으로써 종래에 수십 시간이 소요되는 인조곤충눈 조립공정을 불과 수분 만에 제조할 수 있다. 수 천개의 미세렌즈가 장착된 돔 구조의 초소형 인조곤충눈은 인간의 눈에 비해 시야각이 넓고 빛을 모으는 능력도 매우 높다. 따라서, 환경의 미세한 변화를 감지할 수 있는 능력을 보유하므로 신약개발을 비롯하여 극미량의 물질을 인식할 수 있는 초고감도 감지소자를 요구하는 다양한 분야에 응용될 수 있다. 특히 최근에 신약개발 등 바이오 산업의 실용화에 사용되고 있는 극미량의 시료를 처리할 수 있는 반도체칩 규모의 실험실인 랩언어칩(Lab on a Chip)에 초소형 인조곤충눈을 도입할 경우 높은 정밀도를 갖는 물질 감지소자로 활용될 수 있다. 이러한 인조곤충눈 구조는 세계적인 연구그룹들이 활발히 개발 중이며 최근에 수 밀리미터 크기의 실제 곤충눈 크기의 인조곤충눈은 보고된 바 있다. 그러나, 본 연구의 결과는 초소형 인공곤충눈 구조를 자기조립법으로 만든 최초의 사례로서 이 분야의 국제경쟁에서 우위를 확보하는데 필요한 핵심요소다.
2009.10.06
조회수 25111
유룡 교수, 나노판상 제올라이트 촉매 물질 합성 성공
화학과 유룡(54)교수가 특수한 계면활성제 분자와 실리카를 조립하는 새로운 방법으로 세계 최초로 2나노미터(nm) 극미세 두께의 나노판상형 제올라이트 촉매 물질을 합성하는데 성공했다. 이 연구결과는 세계 최고 권위의 과학저널인 ‘네이처(Nature)지’ 10일자에 게재됐으며, 이 논문은 세계 과학계에서 저자의 위상과 연구결과의 과학적 중요성을 인정받아 네이처 인터뷰 기사로 소개되는 영예를 얻었다. 이번에 합성된 제올라이트는 2nm두께의 판상으로, 제올라이트 물질에 대해 이론적으로 예상할 수 있는 최소 두께다. 또한 이렇게 얇은 두께임에도 불구하고, 이 물질은 섭씨 700도의 고온에서도 높은 안정성을 나타냈다. 연구를 주도한 유교수는 “이처럼 극미세 두께의 제올라이트 물질은 분자가 얇은 층을 뚫고 쉽게 확산할 수 있기 때문에 석유화학공정에서 중질유 성분처럼 부피가 큰 분자를 반응시키는 촉매로 사용될 수 있다. 특히 이 제올라이트 촉매는 메탄올을 가솔린으로 전환시키는 화학공정에서 기존의 제올라이트 촉매에 비해 수명이 5배 이상 길어, 촉매 교체 주기를 연장시킬 수 있기 때문에 경제효과가 매우 높다.”라고 연구의의를 설명했다. 이번 연구결과는 앞으로 대체에너지 자원개발과 녹색성장에 적합한 친환경 고성능 촉매 개발연구에 직접적으로 활용될 수 있을 것으로 기대된다. 유교수팀이 독창적으로 설계한 계면활성제 분자는 머리 부분에 제올라이트 마이크로 기공(micropore)유도체를 포함하여 제올라이트 골격의 형성을 유도하고, 꼬리 부분에 긴 알킬(alkyl) 그룹이 연결되어 제올라이트의 마이크로 기공보다 더 큰 메조 기공(mesopore)을 규칙적으로 배열할 수 있도록 했다. 이러한 독창적인 물질 설계는 제올라이트 합성 메커니즘에 대한 과학적 지식을 넓히는 획기적인 연구 결과로서, 향후 다양한 구조의 다른 물질을 합성하는 새로운 분야를 개척한 선구적인 성과라고 평가할 수 있다. 유교수는 2000, 2001년에 국내 최초로 2년 연속 ‘Nature’지에 메조다공성 실리카와 메조다공성 탄소에 대한 논문을 게재했고, 2003년과 2006년에 ‘Nature Materials"지에 고분자-탄소 복합물질과 메조다공성 제올라이트에 관한 논문을 게재한 후, 이번에 세 번째로 ’Nature"지에 책임저자(교신저자)로 논문을 게재하는 쾌거를 올렸다. 이것은 국내 과학자도 세계 과학을 선도하는 그룹의 반열에 올랐다는 것을 의미하며, 우리나라 과학의 우수성을 전 세계에 알리는 기회가 됐다. 이 연구는 교육과학기술부(장관 안병만)와 한국연구재단(이사장 박찬모)이 추진하는 ‘국가과학자지원사업’의 지원을 받아 이뤄졌다. 또한 교육과학기술부와 한국연구재단이 추진하는 ‘세계수준의 연구중심대학(WCU, World Class University)육성사업’과 나노기술육성사업(나노팹사업)에 따른 결실이다. 이번 연구에서 유 교수팀은 KAIST 부설 나노팹센터와 테라사키교수 연구팀의 협조로, 전자현미경을 통해 물질의 세부구조를 분석하였다. 특히 나노팹의 높은 기술력은 연구시간을 최대로 단축시켜 단시간에 훌륭한 연구 성과를 도출할 수 있도록 했다. 2007년 국가과학자로 임명된 유교수의 주도 하에, KAIST 최민기 박사, 나경수연구원(화학과 박사과정), 김정남연구원(화학과 박사과정)이 연구를 수행하고, 분해능이 높은 현미경 사진으로 구조를 확인하기 위해 스웨덴 스톡홀름대학교의 오사무 테라사키 교수와 야수히로 사카모토 박사가 추가로 참여했다. 테라사키 교수는 현재 스웨덴 스톡홀름대학교 석좌교수로, WCU사업의 지원을 받아 올해부터 KAIST EEWS(Energy, Environment, Water and Sustainability)학과에 겸임교수로 재직하고 있다. 이번 연구결과는 세계 수준의 연구중심대학과 세계적인 나노과학기술 육성을 위한 정부의 지원으로, 우리나라 과학기술의 수준을 한 단계 발전시킨 결과로서, 국내 기술력과 해외 우수 연구자들의 연구능력과 기술력을 통합한 국제공동연구의 모범사례로 평가된다.
2009.09.10
조회수 23757
이효철 교수팀, 물에 녹은단백질 모양 변화 실시간 관찰 성공
- 관련 논문, 9월 22일(일)자 네이처 메서드(Nature Methods)誌 게재- 단백질의 작동메커니즘 규명에 중요한 도구 역할 및 신약개발에도 큰 도움 줄 것으로 기대 KAIST(총장 서남표) 화학과 이효철(李效澈, 36) 교수팀이 ‘물에서 변하는 단백질 분자구조를 실시간으로 규명’ 하는데 성공했다. 관련 논문은 네이처 자매지인 네이처 메서드(Nature Methods)誌 9월 22일자 온라인 판에 게재됐고 10월호에 출판될 예정이다. 논문의 제목은 “시간분해 엑스선 산란을 이용한 용액상의 단백질의 구조동역학 추적(Tracking the structural dynamics of proteins in solution using time-resolved wide-angle X-ray scattering)”으로 온라인에 게재되는 논문들 중에서도 특히 주목받는 하이라이트 논문으로 소개될 예정이다. 李 교수는 이 논문의 교신저자다. 이번 연구결과는 李 교수팀의 집념의 산물이라 할 수 있다. 李 교수팀은 지난 2005년 5월, 소금처럼 딱딱하게 고체상으로 굳어 있는 상태에서의 단백질의 안정적인 구조만을 볼 수 있는 기존의 방법을 시간분해 엑스선 결정법으로 발전시켜, 정지되어 있는 단백질의 구조뿐 만 아니라 움직이는 단백질의 동영상을 촬영하는데 성공했다. 관련 논문은 미국 국립과학원회보(PNAS, Proceedings of National Academy of Science)에 발표되었으며, 학계의 큰 주목을 받았다. 그러나 이 방법으로도 해결할 수 없는 치명적인 문제는 우리 몸에서 작용하는 일반적인 단백질은 고체상으로 있지 않고 물에 녹아있는 용액상태라는 점이다. 마치 고체 소금이 물에 녹아 소금물이 되는 것과 같은 원리다. 물은 인간의 몸의 약 70% 이상을 차지하고 있고 생명 유지에 필수적인 단백질들은 물에 녹아 있는 상태로 존재한다고 볼 수 있다. 따라서 단백질이 어떻게 기능을 발휘하는 지를 실시간으로 관측하기 위해서는 물에 녹아 있는 단백질 분자의 모양 변화를 실시간으로 추적할 수 있는 기술이 필요하다. 이러한 목표를 향한 첫 열매로 물에 녹아 있는 간단한 유기분자의 구조변화를 실시간 측정하는 데 성공하였으며, 관련 연구논문이 2005년 7월 사이언스(Science)誌에 발표된 바 있다. 당시 이 연구결과는 용액상에서 분자의 움직임을 실시간 추적할 수 있다는 점 때문에 많은 관심을 불러 일으켰는데, 李 교수는 그 기술을 더욱 발전시키면 단백질에도 응용 가능할 것으로 전망했다. 그러나 일반적으로 단백질은 그 당시 성공한 유기분자보다 적어도 1,000배 정도 크고 구조가 훨씬 더 복잡할 뿐 아니라 훨씬 적은 양으로 존재하기 때문에 물에 녹아 있는 단백질에서도 성공할 수 있다는 것에는 많은 과학자들이 회의적으로 생각했다. 이번 네이처 메서드誌에 발표한 연구결과는 그러한 부정적인 생각을 깨고 기존에 성공한 유기분자보다 ‘1,000배 더 큰 단백질 분자가 물에 녹아 있을 때에 이들의 3차원 구조변화를 실시간으로 관측하는데 성공’한 획기적인 연구성과다. 논문에서는 3가지 종류의 단백질에 대한 연구결과를 발표했는데, 우리 몸에서 산소를 이동하는데 중요한 헤모글로빈 단백질과, 근육에서의 산소공급에 관여하는 미오글로빈 단백질 등이다. 이 외에도 단백질은 주로 접혀있어 특정한 구조를 형성하는데 환경이 바뀌면 이 구조가 풀리게 된다. 풀려 있는 단백질은 일반적으로 제 역할을 할 수 없어 이러한 단백질의 접힘-풀림 현상을 이해하는 것은 매우 중요한데 씨토크롬씨라는 단백질이 풀린 상태에서 접히는 과정도 실시간으로 추적하는데 성공하였다. 이 새로운 기술을 사용하면 물에서 움직이는 단백질의 동영상을 촬영할 수도 있어 단백질의 작동메커니즘을 밝히는 데에 중요한 도구가 될 것이며, 앞으로 신약개발을 하는 데에도 큰 도움을 줄 것으로 기대된다. 또한 이 기술은 단백질은 물론이고 나노물질에도 응용이 가능하므로 BT뿐만 아니라 NT분야에도 기여할 수 있을 것으로 전망된다. 이 연구는 교육과학기술부의 창의적연구진흥사업의 연구비 지원으로 진행되었다. 연구결과는 유럽연합방사광가속기센터에서 측정되었으며, 李 교수의 주도하에 이뤄진 국제적인 공동연구의 성과다. 李 교수는 “현재 포항에 있는 제3세대 가속기에 이어 한국에서도 차세대 광원으로 건설이 논의되고 있는 제4세대 방사광가속기(XFEL)가 성공적으로 가동되면, 현재 발표된 데이터보다 적어도 1,000배정도 더 좋은 데이터를 얻을 수 있을 것으로 예상된다.”고 밝혔다. <이효철 교수 프로필> ■ 학 력 1990 경남과학고 2년 수료, KAIST 화학과 학사과정 입학 1994 KAIST 화학과 학사과정 졸업 1994 Caltech(California Institute of Technology) 박사과정 입학 2001 Caltech 졸업(박사) 2001 시카고 대학 박사 후 연구원(Post Doc.) 2003.8.1-2007.2.28 KAIST 화학과 조교수 2007.3.1-현재 KAIST 화학과 부교수 ■ 수상경력 2006 젊은 과학자상(과학기술부/한국과학기술한림원) 2006 과학기술우수논문상(한국과학기술단체총연합회) 2006 KAIST 학술상 2001-2003 美國 대먼 러년 암재단(Damon Runyon Cancer Research Foundation)펠로우쉽 (설명) 시간분해 엑스선 산란의 개념을 예술적으로 표현한 그림
2008.09.22
조회수 24516
이흔 교수팀, 물로 이뤄진 얼음 입자내 수소원자 저장 현상 규명
- 사이언스誌 최근호 에디터스초이스에 선정, 리서치 하이라이트로 소개 물을 얼려 만들어진 얼음 입자 내에 나노 크기의 수많은 빈 공간을 형성시켜 그 안에 수소원자가 저장될 수 있다는 사실이 국내 연구진에 의해 새롭게 규명됐다. 우리학교 생명화학공학과 이흔(李琿, 56) 교수팀과 서강대 강영수(46) 교수팀이 공동으로 물로 이뤄진 얼음 입자 내에 크기가 가장 작은 수소 원자가 안정적으로 저장될 수 있음을 최초로 규명, 이 연구결과를 미국화학회지에 발표하였으며, 사이언스(Science) 誌 최신호(7월11일자)의 ‘에디터스 초이스(Editor’s Choice)’에도 선정되어 리서치 하이라이트로 소개됐다. 李 교수는 지난 2005년 4월 7일자 네이처(Nature) 誌에 ‘얼음 형태의 입자 내로 수소저장’이란 제목의 논문으로 이 현상을 처음 발표한 바 있다. 당시에는 수소저장은 분자상태로 이뤄진 것으로 발표하였으나, 이후 3년여의 연구 끝에 수소가 분자 상태가 아니라, 가장 작은 크기의 원자로 얼음 내에 저장될 수 있음을 이번 연구에서 밝혀냈다. 고유가 시대에 석유, 천연가스를 대체할 새로운 에너지원 개발이 매우 시급한 이슈로 떠오르고 있다. 하나의 해결책으로 그동안 모든 국가들이 수소 에너지를 연구해 왔으나, 획기적 저장 원리의 부재로 기술개발에 많은 어려움을 겪고 있다. 따라서 미래의 거의 유일한 청정에너지인 수소에너지를 잘 활용할 수 있느냐의 성공여부는 이를 얼마나 효과적으로 저장시킬 수 있는 기초 원리의 확보에 있다. 그동안 널리 사용된 수소저장 방법으로는 영하 252℃ 극저온의 수소 끓는점에서 수소 기체를 액화시켜 특별히 제작된 단열이 완벽한 용기에 저장하거나 또는 350기압 정도의 매우 높은 압력에서 기체 수소를 저장하는 방법이 있지만 수소가 제일 작고 가벼운 원소여서 어떤 재질의 용기이건 속으로 침투하는 성질이 있다. 따라서 이 방법들은 경제성이나 효율성이 매우 떨어지게 되고 극저온이나 상당히 높은 압력으로 인한 여러 가지 기술적 난제들을 필연적으로 갖게 된다. 이러한 문제점들을 극복하기 위해 그동안 전 세계적으로 수소저장합금, 탄소나노튜브 등을 이용한 차세대 수소 저장 기술 연구가 활발히 이뤄지고 있지만 이러한 특수 물질들의 저장 재료로서의 한계성 때문에 현실적으로 적용하기가 어렵다. 더욱이 이 모든 방법들은 수소를 분자 상태로 저장하고 있다. 그러나 이번에 발표된 李 교수의 연구논문에서는 수소를 저장하기위한 기본물질로 분자대신 원자가 가능하다는 것을 밝혔다. 일단 수소 원자를 잡아두는 저장 창고로 물을 이용하기 때문에 매우 경제적이며, 또한 친환경적인 수소 저장 방법이라 할 수 있다. 순수 물로만 이뤄진 얼음 입자에는 수소를 저장할 수 있는 빈 공간이 존재하지 않는다. 그러나 순수한 물에 미량의 유기물을 첨가하여 얼음 입자를 만들 경우 내부에 수많은 나노공간을 만들게 되며, 바로 이 나노 공간에 수소 원자가 안정적으로 저장되는 특이한 현상이 나타난다. 李 교수는 “수소 분자 대신 원자를 이용하는 경우 반응과 결합성이 뛰어나 새로운 수소저장 원리를 구현할 수 있고 연료 전지를 비롯한 많은 수소 관련 분야에 이 새로운 현상이 적극적으로 이용될 수 있을 것으로 기대된다.”고 말했다. 이번 연구로 지구상 가장 보편적이고 풍부한 물질인 물로 이뤄진 얼음입자에 수소원자를 직접 저장할 수 있는 메커니즘이 밝혀짐에 따라 앞으로 미래 수소에너지를 이용하는 수소자동차, 연료전지 개발에 자연현상적 신개념 원리를 마련하게 됐다.
2008.08.04
조회수 18083
생명화공 정희태교수, 세계최초 액정 초미세 나노패턴소자 개발
- 15일자 네이처 머티리얼스誌 온라인판 게재- 나노-바이오 전자소자 산업분야에서 시장 선점 기대우리 학교 생명화학공학과 정희태(鄭喜台, 42) 교수 연구팀이 액정 디스플레이 (LCD)의 핵심소재로 잘 알려져 있는 액정물질을 이용, 나노기술의 핵심인 차세대 초미세 나노패턴소자를 세계최초로 개발했다. 관련 연구논문은 15일자 네이처 머티리얼스(Nature Materials)誌 온라인판에 게재된다. 나노패턴 제작은 차세대 초고밀도 반도체 메모리기술과 바이오칩 등 나노기술의 핵심분야다. 특히, 鄭 교수팀의 액정을 이용한 패턴구현은 기존의 패턴 방식에 비해 대면적을 구현할 수 있을 뿐만 아니라 바이오 특성을 가지는 나노물질도 액정 패턴 내에 배열할 수 있다는 것이 큰 장점이다. LCD를 구동하는 물질인 네마틱 액정과 달리 鄭 교수가 사용한 스메틱 액정은 LCD 응답특성이 매우 우수함에도 불구하고 자연적으로 존재하는 결함구조 때문에 LCD 구동물질로 사용하지 못하고 있다. 이러한 스메틱 액정은 기판의 표면특성에 따라서 무질서한 형태의 회오리 형 결함구조를 가진다. 이번 연구에서는 마이크로미터 수준의 직선이 새겨진 표면 처리된 실리콘 기판을 사용함으로써 무질서한 회오리 형태의 액정 결함구조를 규칙적으로 제어하였다(첨부 자료그림 참조). 특히 이 공정은 기존의 나노패턴에 적용하는 방식과 비교하여 제작시간을 수십 배 이상 줄일 수 있으며, 결함구조 내에 다른 형태의 기능성 물질도 규칙적으로 배열 할 수 있음을 확인하였다. 이는 다양한 형태의 패턴이 필요한 실제 반도체와 단백질 칩 등의 바이오 소자에 적용할 수 있는 가능성을 제시하고 있다 (자료그림 중 삽입사진 참조). 이번 연구결과로 LCD의 세계적 강국인 우리나라가 액정을 이용한 나노분야에서도 세계 최고의 원천기술을 갖게 되었다. 향후 액정을 이용한 새로운 응용의 신기원을 열게 되었으며, 나노-바이오 전자소자 산업분야에서 시장 선점 및 막대한 부가가치 창출 등을 통해 국가경쟁력 강화에 크게 기여할 것으로 기대된다. 연성재료(Soft Materials)를 이용하여 나노패턴을 제조하는 기술은 전 세계적으로 나노-바이오 분야에서 큰 이슈가 되는 연구로써, 연구의 핵심은 바이오 및 광전자소자 응용을 위하여 대면적에서 결함이 없는 소재의 개발에 있다. 이번 鄭 교수팀이 적용한 액정은 결함구조를 가지는 대표적인 물질로서 지금까지 학계에서는 대면적 나노패턴이 불가능하다고 인식돼 왔다. 鄭 교수는 “이번 연구결과는 연성소재를 이용한 나노패턴소자 제작방식의 기존 개념을 완전히 뒤엎는 것이다. 결함을 없애야만 한다는 기존의 생각에서 탈피하여 결함을 규칙적으로 구현하면 패턴에 이용할 수 있다는 발상의 전환으로 대면적 나노패턴을 개발했다는데 의미가 있으며, 향후 나노분야 전반에 걸쳐 영향이 클 것” 이라고 밝혔다. 이번 연구결과는 鄭 교수(교신저자)의 주도 하에 KAIST 물리학과 김만원 교수팀과 미국 캔트 주립대학의 액정센터 올래그 라브랜토비치(Oleg Lavrentovich)교수가 함께 일궈낸 성과다. 鄭 교수는 나노물질분야에서 사이언스, PNAS, Advanced Materials에 최정상급 논문을 다수 발표하는 등 나노물질 분야에서 차세대 주자로서 두각을 나타내고 있는 젊은 과학자다. <해설> 액정: 유동성이 있으면서 고체적인 특성을 나타낸다. 전기적 특성이 매우 뛰어나 LCD 구동을 위한 핵심 물질로 사용된다. 네마틱, 스메틱, 콜레스테릭 등 다양한 종류의 액정이 존재한다. 현재 LCD에 사용하는 액정은 네마틱 액정이며 콜레스테릭 액정은 반사거울과 초정밀 온도계에 사용된다. 鄭 교수팀이 사용한 액정은 스메틱 액정으로서 네마틱 액정보다 자연계와 합성물질에서 더욱 많이 존재하고, 산업체와 학계에서 오랜기간 동안 연구해 왔음에도 불구하고 결함구조 등의 문제점으로 인하여 산업에 적용하지 못하고 있는 물질이다. <첨부. 수 밀리미터 크기의 대면적 액정물질 나노패턴 현미경 사진>우측상단 삽입사진은 액정나노패턴내에 형광나노입자를 규칙적으로 포집한 리소그라피 제작사진
2007.10.15
조회수 23382
이상엽 교수, 네이처 바이오테크놀로지 초청논문 게재
“바이오플라스틱 상용화 시대 도래” 네이처 바이오테크놀로지 10월호 초청논문에서 전문가로서의 의견 밝혀.. 독일의 훔볼트 베를린대 프리드리히 교수와 뮌스터대학의 스타인뷔헬 교수팀은 바이오플라스틱 생산의 대표 미생물인 랄스토니아 유트로파 (Ralstonia eutropha)균의 전체 게놈서열을 밝히고, 네이처 바이오테크놀로지 10월호에 논문을 발표했다. 플라스틱 생산 대표 미생물의 전체 게놈 서열이 밝혀짐에 따라 보다 체계적인 시스템 수준에서의 균주개량을 통해 바이오플라스틱의 효율적인 생산이 가능해 질 것으로 예측된다. 네이처 바이오테크놀로지社는 이 논문에 대해 해당분야의 세계적 전문가인 KAIST 생명화학공학과 이상엽(李相燁, 42세) LG화학 석좌교수에게 게놈 서열 해독에 따른 앞으로의 바이오플라스틱 생산에 관한 전문가 분석논문을 의뢰했으며, 李 교수는 지난 10일 발간된 네이처 바이오테크놀로지 10월호 ‘뉴스와 전망(News and Views)’에서 “랄스토니아균의 게놈 해독은 다양한 오믹스와 가상세포를 통한 시뮬레이션, 그리고 게놈 수준에서의 엔지니어링을 결합하여 시스템 수준에서 균주를 개량할 수 있는 토대가 마련되었음을 의미한다”라며, “앞으로 플라스틱을 구성하는 물질을 자유자재로 바꿔 우리가 원하는 물성을 가진 플라스틱의 생산이 가능할 것이며, 대사 흐름의 최적화를 통해 이제까지 보고된 것보다도 훨씬 효율적이고 경제적인 바이오플라스틱의 생산이 가능해 질 것이다”라고 밝혔다. 李 교수는 그간 바이오플라스틱 관련 SCI논문만도 70여편을 발표한 이 분야의 세계적 전문가다. 1996년 트렌즈 인 바이오테크놀로지 (Trends in Biotechnology)에 “플라스틱 박테리아 (Plastic Bacteria)”라는 신조어를 발표했으며, 1997년에도 네이처 바이오테크놀로지에 대장균 플라스틱에 관한 전문가 논문을 게재한 바 있다. 현재, 과학기술부의 시스템생물학연구개발 사업에서 시스템 기법을 동원한 연구의 응용 예로서 바이오플라스틱 생산 균주 개량 연구를 수행 중이다. 네이처 바이오테크놀로지 10월호 ‘뉴스와 전망(News and Views)’난에 게재된 미생물 플라스틱 관련 이상엽 교수 논문 내용 - 폴리하이드록시알카노에이트(polyhydroxyalkanoate, PHA)는 자연계에 존재하는 수많은 미생물들이 탄소원은 풍부하지만 다른 성장인자가 부족할 경우 자신의 세포내부에 에너지 저장물질로 축적하는 고분자이다. 이 PHA고분자는 그 고분자를 구성하고 있는 단량체(단위 화학물질)가 에스터 결합을 하고 있는 폴리에스터로서 20여년 전부터 전 세계적으로 많은 연구가 되어왔다. 하지만, PHA는 물성이 석유화학 유래의 플라스틱보다 좋지 않고, 생산 단가가 매우 높아 상용화는 되지 못했던 실정이다. 1980년대 PHA의 생산 가격은 kg당 15불 정도로서 그 당시 폴리프로필렌 가격의 20배나 되었기 때문이다. KAIST 생명화학공학과 BK21사업단 이상엽 LG화학석좌교수는 과학기술부의 지원으로 대사공학과 발효공정의 결합을 통한 미생물 플라스틱의 효율적인 생산에 관한 연구를 수행하여 왔으며, PHA생산 단가를 kg당 2-3불 정도로 낮추는 공정을 개발한 바 있다. 플라스틱을 꽉 채울 정도로 효율적인 PHA 생산 박테리아를 개발하여 “플라스틱 박테리아”라고 명명한 바 있다. - 지난 2년여 동안 유가가 유래 없이 고공행진을 함에 따라 전 세계적으로 바이오기반 에너지 및 화학물질의 생산에 관한 연구가 활발히 진행 중이다. PHA도 그간 경제성과 물성의 취약점 때문에 연구가 시들해 졌다가, 최근 다시 각광을 받고 있다. 이번 10월호 네이처 바이오테크놀로지에 독일의 연구팀이 발표한 플라스틱 생산 미생물의 대표주자 랄스토니아 유트로파(Ralstonia eutropha)의 게놈 해독 결과는 시사하는 바가 크다. 즉, 그 박테리아의 대사 활동에 관한 청사진을 얻게 됨으로서 보다 체계적인 균주개량이 가능해 지는 것을 의미한다. - 네이처 바이오테크놀로지는 바로 이 점을 주목하여 이상엽 교수에게 전문가의 분석 논문을 의뢰하였고, 이 교수는 현재 KAIST에서 활발하게 수행하고 있는 시스템생명공학 기법의 적용을 통해 미생물 플라스틱 생산의 획기적인 발전이 있을 것이라고 분석했다. 본 논문에서 李 교수는 “게놈 서열이 밝혀짐에 따라, 게놈수준에서의 대사회로 네트워크 구축이 가능해 졌고, 시뮬레이션을 행할 수 있어, 수많은 시행착오와 실험을 가상의 실험으로 빠르게 대체할 수 있게 되었으며, 이러한 결과를 실제 다양한 전사체, 단백체, 대사체 등 오믹스 결과와 융합 해석함으로서 보다 효율적인 균주의 개발이 가능하다”고 밝혔다. 또한, 플라스틱의 효율적인 생산 뿐 아니라 우리가 사용하고자 하는 용도에 맞는 물성을 가지는 “주문제작(tailor-made) PHA”의 생산도 대사공학을 통해 가능해 질 것으로 예측하였다. 그 외에도 李 교수가 전 세계 특허를 보유하고 있는 광학적으로 순수한 하이드록시카르복실산 생산연구도 탄력을 받게 되었으며, 그 외 이 균주의 특징을 살려 생물학적 수소생산, 방향족 화합물의 생산, 분해 및 응용 등에서도 기술적 발전이 빠르게 일어날 것으로 전망하였다. - 세계적으로는 최근 미국의 메타볼릭스사와 ADM사가 손을 잡고 PHA의 상용화 수준 생산에 돌입하였고, 풍부한 천연자원의 브라질에서도 바이오에탄올에 이어 PHA를 상용화하고 있다. 그 외 전통적으로 이 분야 연구를 많이 해온 일본과 독일, 그리고 풍부한 바이오매스를 가진 호주에서도 지속적인 상용화 연구를 수행 중이다. 李 교수는 “대표적인 바이오플라스틱 생산 미생물의 게놈 서열이 밝혀짐으로서 효율적인 생산 시스템의 개발을 통한 각국의 상용화 경쟁이 더욱 치열해 질 것”으로 전망했다. - 李 교수는 이렇게 효율적으로 PHA를 생산할 수 있는 것이 가능해 짐에 따라, 다양한 재생가능한 원료(셀룰로우즈, 전분, 설탕 등)로부터 미생물 발효에 의한 플라스틱의 생산이 보다 본격적으로 진행될 것으로 전망하고, 기존 화학물질의 바이오 기반 생산 기술(white biotechnology)가 보다 더 탄력을 받을 것으로 전망하며, 이에 따라 “우리나라도 일부 시스템 대사공학 기술의 우위를 바탕으로 자원 강대국들과의 전략적 제휴 등을 통해 바이오기반 화학물질 생산 기술과 산업의 확보에 박차를 가해야 할 것”이라고 말했다. - 네이처 바이오테크놀로지의 ‘뉴스와 전망(News and Views)’은 그 해당 호에 게재되는 논문들 중 영향력이 큰 몇 편의 논문에 대하여 그 분야 세계 최고의 전문가에게 분석을 의뢰하여 초청 논문을 게재하는 섹션으로, KAIST 이상엽 교수는 바이오플라스틱과 관련하여 1997년 1월호에 “대장균이 플라스틱 시대로 접어들다”에 이어 이번 2006년 10월호에 “바이오플라스틱 생산을 해독하다”라는 전문가 분석 논문을 게재하였다.
2006.10.18
조회수 25240
김은준교수팀, 시냅스 생성 단백질 발견
- 흥분성 시냅스 생성 촉진하는 새로운 단백질‘엔지엘’발견 - 정신분열증을 비롯한 다양한 뇌질환 발병 원리 추정 가능 - 네이처 뉴로사이언스誌 9월호 게재 사람의 뇌에서 시냅스의 생성을 촉진하는 새로운 단백질이 국내 연구진에 의해 발견됐다. KAIST(총장 서남표) 생명과학과 김은준(金恩俊, 42 / 시냅스생성 창의연구단 단장) 교수팀이 ‘엔지엘(NGL)’ 단백질이 흥분성 시냅스의 생성에 관여한다는 새로운 사실을 발견, 오는 18일 발표되는 신경과학 권위지인 ‘네이처 뉴로사이언스誌(Nature Neuroscience)" 9월호에 게재된다고 밝혔다. 金 교수팀은 後시냅스에 위치한 ‘엔지엘’이란 막단백질이 前시냅스의 네트린지(netrin-G)라는 다른 막단백질과 연결되면서 가교 역할을 하여 새로운 시냅스 생성을 촉진하는 것을 발견했다. ‘엔지엘’은 뉴로리긴(neuoroligin)에 이어 세계에서 두 번째로 새롭게 발견된 시냅스 가교 단백질이다. 이 새로운 단백질의 발견으로 시냅스 생성 원리와 다양한 뇌질환 발병 원인을 추정할 수 있게 되었다. 우리 뇌는 약 1000억개 이상의 신경세포와 각 세포당 1만 여개의 시냅스로 신경회로망을 구성하고 있다. 시냅스는 신경세포 사이에 신경전달이 일어나는 장소다. 시냅스의 생성은 신경회로의 생성으로 연결되고, 신경회로는 정상적인 뇌발달이나 뇌기능뿐만 아니라 다양한 뇌질환과도 관련이 깊다. 金 교수는 “엔지엘과 연결되어 있는 네트린지(netrin-G)가 정신분열증 (schizophrenia)과 관련이 있고, 엔지엘과 비슷한 기능을 가진 다른 시냅스 가교 단백질인 뉴로리긴이 정신지체(mental retardation) 및 자폐증(autism)과 관련이 깊은 만큼, 엔지엘도 정신분열증을 비롯한 다양한 뇌질환과 관련이 있을 것으로 보인다"라고 말했다. <첨부사진 설명> ■ 사진 1: 엔지엘의 시냅스 생성 능력 확인 실험 1 표면에 엔지엘을 발현하고 있는 일반세포(녹색)와 신경세포를 섞어 준다. 축색돌기(axon)가 약 10시 방향에서 가운데 위치해 있는 엔지엘(일반세포)쪽으로 뻗어 나오다가 엔지엘을 만나게 되는데, 이 때 엔지엘은 접촉하는 축색돌기 안에 前시냅스(붉은색)의 형성을 유도한다. 前시냅스의 형성 여부는 시냅신(Synapsin)이라는 前시냅스 단백질의 형광 염색(붉은색)으로 알 수 있다. - 그림a-b : 엔지엘에 의한 시냅스 형성 - 그림c-d : 시냅스 생성능력이 소멸된 변형 엔지엘은 시냅스 생성 못함 ■ 사진 2: 엔지엘의 시냅스 생성 능력 확인 실험 2 표면에 엔지엘을 코팅시킨 구슬을 신경세포 위에 뿌려주면 구슬이 신경세포의 축색돌기와 접촉하게 된다(구슬들은 가운데 패널의 위상차 이미지에서 명확히 보임). 이때 엔지엘은 축색돌기 안에 前시냅스(붉은색)의 형성을 유도한다. 전시냅스의 형성 여부는 시냅토파이진(SynPhy; a 패널) 또는 비글룻(VGlut1; b패널)이라는 前시냅스 단백질의 형광 염색(붉은색)으로 알 수 있다.
2006.09.19
조회수 16917
생명화학공학과 양승만 교수팀 연구결과, 네이처誌 하이라이트로 소개
물방울 이용 나노트렌지스트 만든다” 생명화학공학과 양승만(梁承萬, 55) 교수팀에서 수행한 연구결과가 2월 2일자 네이처誌 하이라이트로 소개됐다. 네이처誌는 “News and Views”란에 네이처誌에 게재된 논문 가운데 2-3편과 그 밖에 국제적으로 저명한 학술지에 게재된 논문들 가운데 학술적 가치와 기술 혁신성이 높은 것들을 매주 1-2편 선정하여 논문 내용을 논평과 함께 특필하고 있다. 이번 네이처誌에 소개된 연구는 양승만 교수팀에서 “액적내부에서 혼성콜로이드입자의 자기조립(Self-organization of Bidisperse Colloids in Water Droplets)" 이라는 제목으로 화학분야 가장 권위 있는 학술지의 하나인 미국 화학회지 (Journal of the American Chemical Society: JACS)에 최근 게재됐다. 이 논문은 양승만 교수팀 조영상씨의 박사 학위 논문 일부로 수행된 것이다. 이 연구의 핵심 아이디어는 나노미터 수준의 작은 입자와 마이크로미터 크기의 큰 입자를 지름이 약 50마이크로미터 정도(머리카락 굵기의 약 절반 정도)의 물방울 속에 정해진 수만큼 가두고 물을 서서히 증발 시키면 입자들이 스스로 규칙적인 구조로 조립된다는 것이다. 즉 큰 입자와 작은 입자들이 자기조립을 하면서 작은 입자가 큰 입자 사이에 규칙적으로 쌓이게 된다. 네이처誌는 이 연구의 독창성과 발전가능성을 상세히 해설하고 있다. 네이처誌는 이 연구가 특별히 조명 받아야 하는 이유를 크게 두가지로 나누어 다음과 같이 설명하고 있다. 첫째, 이러한 자기조립 소재는 고밀도 정보처리를 위한 나노트랜지스터로 쓰일 수 있다는 점이다. 이는 반도체 나노입자와 절연체 마이크로입자로 구성된 자기조립 소재가 트랜지스터의 기능을 보유하기 때문이다. 둘째, 벽돌로 건축물을 쌓듯이 큰 입자로 구성된 자기조립 소재를 나노 벽돌로 이용, 3차원 구조물을 조립하면 소위 다이아몬드 격자구조의 광자결정(photonic crystal)을 만들 수 있다는 것이다. 이러한 다이아몬드 격자구조를 갖는 광자결정은 완전히 열려 있는 광밴드갭(photonic bandgap)을 보유하고 있다. 즉, 이 구조의 광자결정은 특정한 파장 영역대의 빛만을 입사각에 관계없이 완전히 반사시키는 기능을 보유하게 된다. 이 광자결정은 광자(빛)가 정보를 처리하는 미래에 오늘날의 반도체와 같은 역할을 할 것이므로 ‘빛의 반도체’라 불린다. 광자결정의 특수한 기능으로 인하여 나노레이저, 다중파장의 광정보를 처리할 수 있는 수퍼프리즘(superprism), 광도파로(waveguide) 등 차세대 광통신 소자와 현재의 컴퓨터 속도를 획기적으로 높일 수 있는 수십 테라급 초고속 정보처리능력을 갖춘 광자컴퓨터의 개발에 필요한 소재로 주목 받고 있으며 사이언스誌에서는 21세 가장 주목받는 핵심 기술 10개 중에 하나로 선정한 바 있다. 이밖에도 마이크로 입자의 표면을 형광체와 DNA로 도핑하면 개개의 입자들이 각각 다른 정보를 전달하는 나노 리포터(nano-reporter)로 작용할 수 있고, 이들을 조합라이브러리(combinatorial library) 형태를 구현하면 발현된 정보를 한꺼번에 생물학적 또는 광학적으로 인코딩하여 방대한 바이오정보를 신속하게 처리할 수 있다. <복합 콜로이드를 이용하여 제조한 혼성 콜로이드분자>
2006.02.03
조회수 21622
얼음입자내 수소저장메커니즘 세계최초 규명
미래 수소에너지 개발에 획기적 전기마련 이흔 교수팀, 네이처(Nature)誌 7일자에 발표 섭씨 0℃ 부근의 온도에서 수소 분자가 얼음 입자 내에 만들어진 나노 크기의 수많은 빈 공간으로 저장될 수 있다는 사실이 世界最初로 규명됐다. KAIST(한국과학기술원)는 생명화학공학과 이흔(李琿, 54) 교수팀이 이와 같은 자연 현상적 수소저장 메커니즘을 규명했으며, 관련 연구결과 논문이 세계적 과학전문저널인 네이처誌 7일자에서 가장 주목해야 할 논문으로 선정돼 해설 및 전망기사와 함께 발표되었다고 밝혔다. 미래의 거의 유일한 청정에너지인 수소에너지를 얼마나 잘 활용할 수 있느냐의 성공여부는 효과적인 저장 기술의 확보 여부에 달렸다. 그동안은 영하 252 ℃ 극저온의 수소 끓는점에서 수소 기체를 액화시켜 특별히 제작된 단열이 완벽한 용기에 저장하거나, 350 기압 정도의 매우 높은 압력에서 기체 수소를 저장하는 방법을 널리 사용해 왔다. 하지만 수소는 제일 작고 가벼운 원소여서 어떤 용기의 재질이건 속으로 침투하는 성질 때문에 이 방법들은 경제성이나 효율성이 떨어지게 되고 극저온이나 높은 압력의 사용으로 인한 여러 가지 기술적 난제들을 가질 수밖에 없었다. 이러한 문제점들을 극복하기 위해 그동안 전 세계적으로 수소저장합금, 탄소나노튜브 등을 이용한 차세대 수소저장 기술연구가 활발히 이뤄지고 있지만 이러한 특수 물질들의 저장 재료로서의 한계성 때문에 현실적으로 적용하기가 어려웠다. 그러나 이번에 발표된 李 교수의 연구결과는 수소를 저장하기 위한 기본 물질로 물을 이용하기 때문에 매우 경제적이며 또한 친환경적인 수소 저장 방법이라 할 수 있다. 순수 물로만 형성된 얼음 입자에는 수소를 저장할 수 있는 빈 공간이 존재하지 않는다. 그러나 순수한 물에 미량의 유기물을 첨가하여 얼음 입자를 만들 경우 내부에 수많은 나노 공간을 만들게 되며, 바로 이 나노 공간에 수소가 안정적으로 저장되는 특이한 현상이 나타난다. 특히, 주목할 만한 사실은 우리가 쉽게 다룰 수 있는 영상의 온도에서 수소가 저장되고, 수소를 포함하고 있는 얼음 입자가 상온에서 물로 변할 때 저장된 수소가 자연적으로 방출된다는 것이다. 이러한 수소의 저장과 방출이 짧은 시간 내에 단순한 과정으로 진행되며, 더욱이 수소를 저장하는 물질에 물을 사용함으로써 지금까지 알려진 저장합금이나 탄소나노튜브 등의 수소저장 재료와는 달리 거의 무한대로 얼음 입자를 반복해 활용할 수 있을 뿐만 아니라 필요시 방대한 얼음 입자로 이뤄진 공간에 수소의 대규모 저장이 가능하게 된다. 궁극적으로 물로부터 수소를 생산하고, 생산된 수소를 얼음 입자에 저장한 후 이를 최종 에너지원으로 이용하여 수소를 연소시키거나 연료전지에 사용하면 다시 수증기가 만들어지게 된다. 李 교수는 이렇게 물, 얼음, 수증기로 이루어지는 수소의 순환 시나리오를 제시할 수 있으며, 앞으로 이를 완성하기 위한 체계적이고 과학적인 접근이 필요할 것으로 판단된다.고 말했다. 지구상에서 가장 보편적이고 풍부한 물질인 물로 이루어진 얼음 입자에 수소를 직접 저장할 수 있는 메커니즘이 밝혀짐에 따라 앞으로 미래 수소 에너지를 이용하는 수소자동차, 연료전지 개발에 획기적인 전기를 마련한 것으로 보인다.
2005.04.07
조회수 21747
뇌신경 보호유전자 세계 첫 발견
KAIST 생명과학과 김재섭 교수(43세)팀은 지나친 자극으로부터 신경세포를 보호하는 유전자를 세계 최초로 발견하고, 이 유전자를 열병을 뜻하는 파이렉시아(Pyrexia)라고 명명했다. 이 유전자는 채널 단백질을 만들며, 이 채널은 섭씨 39도 이상의 고온에 의해 작동된다. 특히 이제까지 온도에 의해 작동되는 채널 단백질들은 여러 종류 발견되었으나, 자극으로부터 신경을 보호하는 채널은 파이렉시아가 처음이다. 이 유전자는 신경세포가 고온에 대해 과민하게 흥분하여 스트레스성 반응을 보이고 이로 인해 기능이 손상되는 것을 방지한다. 또한 이 유전자의 기능이 약화되면 섭씨 40도 고온에서 수분 내에 신경기능이 마비되지만, 이 유전자의 기능이 강화되면 이러한 고온에서도 신경세포의 기능이 손상되지 않고 정상적으로 작동한다. KAIST 김재섭 교수는 "파이렉시아 채널을 인위적으로 작동시키는 약(화합물)을 개발할 경우, 상습적 마약 복용 등으로 신경이 과도하게 자극되어 뇌기능이 손상되는 것을 방지할 수 있는 획기적인 길이 열릴 것이다"라고 말하면서 "이번 연구 결과는 독감을 비롯한 각종 열병에 의해 의식을 잃거나 뇌기능이 영구하게 손상되는 것도 방지할 수 있는 길을 열었다"며 그 의미를 밝혔다. 한편, 이 연구 결과는 미국에 국제특허 출원되었으며, 세계 최고의 유전학 및 인간질병 유전자 권위지인 네이처 제네틱스 (Nature Genetics) 3월호에 논문으로 계제될 예정이다. 또한 네이처 제네틱스는 이 발견의 중요성을 감안하여 이 논문을 1월 31일자로 인터넷 (http://www.nature.com/ng/)에 먼저 공개했다. 이 유전자는 KAIST 생명과학과와 제넥셀(주)가 공동으로 2003년에 완성한 세계 최초의 형질전환초파리 게놈검색시스템을 활용하여 발굴되었으며, KAIST 생명과학과와 제넥셀(주)는 "형질전환초파리 게놈검색시스템"을 활용하여 파이렉시아 이외에도 여러 종류의 인간질병 및 신경관련 유전자를 발굴하여 연구에 박차를 가하고 있다.
2005.01.31
조회수 21271
<<
첫번째페이지
<
이전 페이지
11
12
13
14
15
16
>
다음 페이지
>>
마지막 페이지 16