본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%83%9D%EB%AA%85%EA%B3%BC%ED%95%99%EA%B8%B0%EC%88%A0%EB%8C%80%ED%95%99
최신순
조회순
기능성 혈관전구세포 분화 성공
- 배아줄기세포 및 역분화줄기세포로 부터 기능성 혈관전구세포 분화 성공 - Blood誌 표지논문 게재, 줄기세포를 이용한 혈관질환의 세포치료 가능성 열어 우리학교 한용만 교수팀이 인간배아줄기세포 및 역분화줄기세포로부터 혈관전구세포로의 분화를 성공하였다. 이번 연구에서는 기존에 알려진 배아체형성이나 생쥐세포공배양 방식을 뛰어넘어, 인간배아줄기세포의 신호전달체계의 조절을 통해 혈관전구세포를 분화 유도하였다. 연구팀은 인간배아줄기세포를 분화하기 위해, 인간배아줄기세포의 자가재생산에 매우 중요한 역할을 하는 MEK/ERK 및 BMP 신호전달체계를 조절하여 혈관전구세포를 약 20%가량 분화 유도하였다. 이러한 방식으로 생산된 혈관전구세포는 체외에서 혈관계를 구성하는 혈관내피세포, 혈관평활근세포 및 조혈세포로의 분화가 이뤄졌고, 체내에서도 역시 혈관을 형성함을 누드마우스모델을 통해 확인하였다. 또한, 인간배아줄기세포 유래의 혈관전구세포는 하지허혈성질환동물에 주입하였을 때, 직접 혈관을 형성하거나 혈관형성에 관여하는 성장인자등을 분비하여, 하지허혈성질환동물의 혈류량이 증가한 반면 허혈성 부위의 괴사는 감소하였다. 이번 연구는 교육과학기술부(장관 이주호) 21세기프론티어연구개발사업인 세포응용연구사업단의 연구비 지원으로 수행되었으며, 고규영 교수(KAIST), 최철희 교수(KAIST), 정형민 교수(차의과대학교), 조이숙 박사(한국생명공학연구원) 등이 참여하였다. 연구결과는 올해 9월 美혈액학회지인 "Blood(IF:10.55)"에 표지논문으로 최종 게재되었으며, 국내특허 등록 및 해외 PCT출원을 마친 상태이다. 이 실험결과를 바탕으로, 향후 혈관질환분야에 줄기세포를 이용한 환자맞춤형 세포치료의 가능성을 열어줄 것으로 기대된다. [그림] 신호전달체계의 조절을 통한 배아 및 역분화 줄기세포의 혈관전구세포의 분화
2010.12.27
조회수 17674
심장질환 원인신호전달메커니즘 규명
- 신약개발 및 심장질환 응용연구의 중요한 발판 마련 - IT와 BT를 융합한 시스템생물학 연구 통해 규명 우리학교 바이오및뇌공학과 조광현 교수팀과 생명과학과 허원도 교수팀이 시스템생물학 융합연구를 통해 심장질환 원인신호전달경로의 숨겨진 메커니즘을 규명했다. 심근비대증은 다양한 병인에 의해 심근세포가 비대해지는 병리학적 현상으로써 심부전증과 부정맥 등을 수반하는 주요 심장질환이다. 칼시뉴린-엔팻(calcineurin-NFAT) 신호전달경로는 이러한 심근비대증의 유발에 매우 중요한 역할을 하는 것으로 알려져 있다. 하지만 이 신호전달경로의 주요 조절단백질로 알려진 알캔(RCAN1)의 기능에 대해 많은 논쟁이 이어져 왔고 현재까지 그 구체적인 조절메커니즘이 밝혀지지 않았다. 조광현 교수 융합연구팀은 이러한 복잡한 현상에 대해 수학 모델링과 대규모 컴퓨터시뮬레이션, 그리고 단일세포 분자 이미징 기술을 동원한 시스템생물학 융합연구를 통해 어크(ERK)와 지에스케이(GSK3)로 구성된 스위칭 회로가 칼시뉴린-엔팻 신호전달경로를 조절한다는 것을 새롭게 규명했다. 특히 이 연구에서는 알캔이 세포내 농도가 낮을 때 칼시뉴린(calcineurin)의 기능을 저해하는 억제자로서 기능하지만, 그 농도가 증가하면 어크와 지에스케이에 의한 크로스토크를 통해 칼시뉴린 신호를 오히려 증가시키는 촉진자로서 기능 하도록 세포내 조절회로가 진화적으로 설계되어 있음을 최초로 밝혔다. 지금까지 많은 연구에서 알캔의 상반된 신호조절 역할이 보고되어 학계에서는 과연 무엇이 진실인가에 관한 논쟁이 이어졌다. 또한, 어떻게 동일한 분자가 그와 같이 서로 다른 기능을 보이는 것인지, 이를 유발하는 근본적인 메커니즘은 과연 무엇인지 등이 모두 수수께끼로 남아 있었다. 이번 연구를 통해 학계의 이러한 오랜 질문에 대한 해답이 제시됐으며, 알캔과 칼시뉴린-엔팻 신호전달경로의 근원적인 조절메커니즘이 시스템차원에서 최초로 규명됨으로써 앞으로 이를 표적으로 하는 신약개발 및 관련 심장질환 응용연구의 중요한 발판을 마련하게 되었다. 또한 기존의 실험적 접근만으로는 해결할 수 없는 복잡한 생명현상을 대상으로 IT와 BT의 융합연구인 생체시스템모델링 및 바이오시뮬레이션 연구를 통해 새로운 해결책을 찾을 수 있는 가능성을 제시하게 됐다. 이 연구는 교육과학기술부가 지원하는 한국연구재단의 기초연구실육성사업과 도약연구사업, 그리고 칼슘대사시스템생물학사업의 일환으로 수행됐으며, 연구 결과는 <저널오브셀사이언스(Journal of Cell Science)>의 표지논문으로 선정되어 2011년 1월 1일자(온라인판은 2010년 12월 13일자)에 게재된다.
2010.12.20
조회수 15549
새로운 혈액줄기세포 공급원으로 지방조직 이용가능성 규명
카이스트 생명과학과 고규영교수(및 연구원 한진아)팀, Blood지(IF=10.4)에 실려- 교육과학기술부(장관 안병만)의 21세기 프론티어연구개발사업 지원을 받는 세포응용연구사업단(단장:김동욱 연세대 교수)의 연구팀(책임자:고규영 카이스트 교수, 연구원:한진아)이 지방조직으로부터 백혈병 등 혈액계 난치병 치료에 이용가능한 혈액줄기세포를 분리해 낼 수 있음을 입증하였다. 이로써, 보다 적은 비용과 쉬운 방법으로 혈액줄기세포를 공급할 수 있는 길이 열릴 것으로 기대된다. 이번 연구 결과는 그 중요성을 인정받아 세계적인 학회지인 Blood의 2010년 2월 4일자 표지논문으로 선정되었으며, 이례적으로 학회지를 주관하는 미국 혈액학회 (American Society of Hematology, ASH)가 세계매체를 통해 일반인에게 홍보하기로 하였다. 혈액줄기세포는 다양한 종류의 혈액세포로 분화할 수 있는 분화능을 보유하고 있는 대표적인 성체 줄기세포로, 백혈병 등의 혈액계 난치병 치료에 이용된다. 혈액줄기세포는 주로 성체의 골수 내에 존재하는데, 그 양이 제한적이고 생체외 증식이 어려워 연구 및 치료목적으로의 사용에 걸림돌이 되어 왔다. 우리대학 생명과학과 고규영 교수 연구팀은 지방조직과 골수조직이 다양한 공통점을 갖는다는 점에 착안하여, 골수를 손상시킨 동물에게 지방 조직에 존재하는 비지방세포를 정맥주사한 후, 이 세포로부터 유래한 혈액세포가 장기간 동물의 혈액 내에 존재한다는 것을 입증함으로써, 주입한 지방조직의 비지방세포에 손상된 골수를 재생시킬 수 있는 능력을 가진 혈액줄기세포가 존재한다는 사실을 밝혔다. 김동욱 단장은 “혈액줄기세포를 골수나 혈액으로부터 분리할 수 있는 것은 이미 널리 알려진 방법이지만, 흔히 쓸모없는 조직으로 생각하는 지방조직을 혈액줄기세포의 공급원으로 규명한 것은 이번이 처음이다”라며 재생의학의 새로운 세포공급원으로서 지방조직 이용 가능성을 밝혔다. 이 연구는 혈액줄기세포의 자가이식에 있어 새로운 방법을 제공할 수 있을 것으로 기대된다. 1. 연구내용 요약 혈액줄기세포는 혈액계의 항상성을 유지하는 역할을 담당하는 대표적인 성체줄기세포의 일종으로, 대부분의 혈액줄기세포는 골수에 존재하고 있다. 그러나 소량의 혈액줄기세포는 혈액 내에 포함되어 체내를 순환하다가, 다시 골수로 되돌아오게 된다. 한진아 연구원, 김인준 교수, 고규영 교수 연구팀은 이 과정에서 혈액줄기세포가 골수조직 뿐만 아니라 골수와 비슷한 조건을 제공하여 적절한 환경이 조성되어 있는 조직으로, 골수와 다양한 특성을 공유하고 있는 지방조직을 연구하였다. 지방조직은 지방세포와 비지방세포로 구성되어 있는데, 우리는 생쥐의 지방조직으로부터 비지방세포를 분리하여 유세포분석기 (FACS), 세포배양 군체형성 등의 생체외 실험과 방사선 조사 후 골수이식 등의 생체실험을 실시하였다. 줄기세포를 세포치료 목적으로 이용하고자 할 때, 가장 중요한 것은 생체 내에서의 활동성이다. 우리는 방사선을 조사하여 골수를 손상시킨 동물에 비지방세포를 정맥주사하여, 이 세포로부터 유래한 혈액세포가 장기간 동물의 혈액 내에 존재한다는 사실을 입증하였다. 이는 주입된 세포군 내에 손상된 골수를 재생시킬 수 있는 능력을 가진 혈액줄기세포가 포함되어 있다는 것을 직접적으로 보여주는 증거이다. 더불어 비지방세포에 포함된 혈액줄기세포가 골수에서 유래한 것이며, 약물을 이용하여 골수 혈액줄기세포의 순환계로의 유출을 촉진시켰을 때, 보다 많은 양의 세포를 지방조직으로부터 얻을 수 있음을 입증하였다. 생쥐의 지방조직으로부터 혈액줄기세포를 얻을 수 있다는 사실을 입증함으로써 이용가능한 혈액줄기세포의 또 다른 원천을 밝혀낸 것이다. 이에 인간 지방조직에 대한 연구가 개발, 확립된다면, 연구 및 치료목적으로 응용 가능성이 매우 높을 것으로 기대된다. 이번 연구의 자세한 내용은 2010년 2월 4일자 Blood 저널에 표지논문으로 발표되며, 이례적으로 이 학회지를 주관하는 미국 혈액학회 (American Society of Hematology, ASH)가 세계매체를 통해 일반인에게 홍보하기로 하였다. 2. 용어설명 ∙성체줄기세포 : 배아발달 단계 이후 체내에 존재하는 줄기세포로, 주로 손상된 조직을 재생, 성장시키는 역할을 담당하여 필요한 때에 특정한 조직의 세포로 분화하게 되는 미분화 상태의 세포이다. 배아줄기세포와 달리 윤리적 문제가 없고, 자가면역 반응을 일으키지 않는다는 장점이 있다. ∙비지방세포 : 지방조직에서 지방세포를 제외한 나머지 세포군을 말하며 면역세포, 혈관내피세포와 더불어 그 성격이 완전히 규명되지 않은 줄기세포들을 포함하고 있다. 지방, 연골, 근육 조직 등으로의 분화능을 보유하고 있는 등 골수 중간엽줄기세포 (mesenchymal stem cell)와 유사한 특성을 가지고 있다. 그림 1. Blood 학회지에 표지로 실린 사진. 지방조직에서 발견되는 혈액줄기세포 분포양상.(파란색 : 혈액 / 분홍색 : 혈액줄기세포) 그림 2. 생체외 세포군체형성. 배양된 비지방세포로부터 유래된 혈액세포군체. 그림 3. 약물투여 후 비지방세포에서 혈액줄기세포의 양이 증가함을 나타내는 결과.
2010.02.04
조회수 21818
생명과학과 김진우 교수, 노인성 망막퇴행질환 발생 원인 발견
생명과학과 김진우 교수팀이 미국 및 캐나다 연구팀과의 공동연구로 "PTEN 단백질의 불활성화가 노인성 망막퇴행질환의 핵심 기전" 이라는 사실을 규명했다. 김 교수팀은 이 연구에서 그 동안 종양억제 유전자로 널리 알려져 있던 PTEN 단백질이 안구 내 망막색소상피세포* 사이의 결합을 유지시켜 망막조직의 형태 및 항상성 유지에 중요한 역할을 함으로써 망막퇴행질환을 억제한다는 사실을 생쥐 실험을 통해 증명하였다. 우리 인간을 포함한 동물의 안구 내에는 멜라닌 색소를 다량 함유하고 있는 망막색소상피세포층이 망막을 덮고 있는데, 이 층의 세포들은 강한 세포 간 접합체로 연결되어 안구 내에서 혈관과 망막 사이의 장벽을 제공해 준다. 그러나, 장기간 흡연이나 망막이 강한 빛에 장시간 노출되는 등의 스트레스 상황에서는 망막색소상피세포층이 점차 파괴되고, 그 결과 이 세포층에 생긴 틈으로 망막 외부 모세혈관에 있던 백혈구 세포들이 망막으로 침투하면서 망막세포에 염증반응을 일으켜 망막퇴행을 유발한다. 이러한 현상은 많은 망막퇴행질환들에서 관찰이 되는데, 특히 노령 인구에서 높은 빈도로 일어나는 노인성 황반퇴행질환 (Age-related macular degeneration)*에서 빈번하게 나타나는 현상으로 잘 알려져 있다. 김 교수팀은 망막색소상피세포 간 접합부에 집중되어 나타나는 PTEN 단백질의 기능을 검증하기 위해 PTEN 유전자를 인위적으로 생쥐의 망막색소상피세포에서 제거하였고, 그 결과 이 생쥐들에서 노인성 황반퇴행에서 나타나는 형태적 특징을 관찰할 수 있었다. 연구팀은 더 나아가 기존 노인성 황반퇴행질환 생쥐의 망막색소상피세포에서 인산화에 의한 불활성화를 통해 PTEN 단백질이 세포 간 접합체에서 이탈된다는 사실까지 밝힘으로써, PTEN 단백질이 망막색소상피세포의 구조 유지를 통해 망막퇴행을 억제하는 핵심 단백질이라는 사실을 규명하였다. 노인성 황반퇴행질환은 미국 내에만 2006년 통계로 100 만명 이상의 환자가 보고되었고, 국내에서도 최근 급격한 노령화에 따라 환자 수가 급증하고 있는 노인성 망막퇴행질환으로, 시력 상실로도 이어질 수 있는 심각한 신경 질환이다. 노인성 황반퇴행질환은 약 15% 정도는 망막 내 신생혈관의 급격한 형성으로 발생하는 습성 (wet-type)이고, 약 85% 이상은 망막색소상피세포의 이상 등으로 시작해 만성으로 진행되는 건성 (dry-type)으로 분류된다. 심각한 병증과 많은 환자 수에도 불구하고, 그 동안 건성 황반퇴행질환 치료제 개발이 진척을 보이지 못한 이유 중의 하나는 이 질환이 시작되는 망막색소상피세포의 퇴행에 대한 분자적 기전이 정확히 알려지지 않아 치료제의 타겟이 될 세포 내 현상 및 단백질들을 설정하는데 어려움이 있었다는 것이다. 이번 논문의 교신 저자인 김 교수는 “이번 논문을 통해 알려진 망막색소상피세포 퇴행 억제 핵심 단백질인 PTEN과 그 영향을 받는 하부 신호전달체계의 정체는 향후 노인성 황반퇴행질환의 치료제 개발을 위한 타겟을 설정하는데도 유용한 정보로 사용될 수 있다”고 말했다. 김진우 교수팀의 이번 연구는 교육과학기술부가 지원하는 바이오기술개발사업의 일환으로 수행되었고, 연구 결과는 세계적인 저명학술지인 ‘유전자와 발생’(Genes & Development) 11월 15일판에 게재되었다.
2008.11.18
조회수 19418
김은준교수팀, 시냅스 생성 단백질 발견
- 흥분성 시냅스 생성 촉진하는 새로운 단백질‘엔지엘’발견 - 정신분열증을 비롯한 다양한 뇌질환 발병 원리 추정 가능 - 네이처 뉴로사이언스誌 9월호 게재 사람의 뇌에서 시냅스의 생성을 촉진하는 새로운 단백질이 국내 연구진에 의해 발견됐다. KAIST(총장 서남표) 생명과학과 김은준(金恩俊, 42 / 시냅스생성 창의연구단 단장) 교수팀이 ‘엔지엘(NGL)’ 단백질이 흥분성 시냅스의 생성에 관여한다는 새로운 사실을 발견, 오는 18일 발표되는 신경과학 권위지인 ‘네이처 뉴로사이언스誌(Nature Neuroscience)" 9월호에 게재된다고 밝혔다. 金 교수팀은 後시냅스에 위치한 ‘엔지엘’이란 막단백질이 前시냅스의 네트린지(netrin-G)라는 다른 막단백질과 연결되면서 가교 역할을 하여 새로운 시냅스 생성을 촉진하는 것을 발견했다. ‘엔지엘’은 뉴로리긴(neuoroligin)에 이어 세계에서 두 번째로 새롭게 발견된 시냅스 가교 단백질이다. 이 새로운 단백질의 발견으로 시냅스 생성 원리와 다양한 뇌질환 발병 원인을 추정할 수 있게 되었다. 우리 뇌는 약 1000억개 이상의 신경세포와 각 세포당 1만 여개의 시냅스로 신경회로망을 구성하고 있다. 시냅스는 신경세포 사이에 신경전달이 일어나는 장소다. 시냅스의 생성은 신경회로의 생성으로 연결되고, 신경회로는 정상적인 뇌발달이나 뇌기능뿐만 아니라 다양한 뇌질환과도 관련이 깊다. 金 교수는 “엔지엘과 연결되어 있는 네트린지(netrin-G)가 정신분열증 (schizophrenia)과 관련이 있고, 엔지엘과 비슷한 기능을 가진 다른 시냅스 가교 단백질인 뉴로리긴이 정신지체(mental retardation) 및 자폐증(autism)과 관련이 깊은 만큼, 엔지엘도 정신분열증을 비롯한 다양한 뇌질환과 관련이 있을 것으로 보인다"라고 말했다. <첨부사진 설명> ■ 사진 1: 엔지엘의 시냅스 생성 능력 확인 실험 1 표면에 엔지엘을 발현하고 있는 일반세포(녹색)와 신경세포를 섞어 준다. 축색돌기(axon)가 약 10시 방향에서 가운데 위치해 있는 엔지엘(일반세포)쪽으로 뻗어 나오다가 엔지엘을 만나게 되는데, 이 때 엔지엘은 접촉하는 축색돌기 안에 前시냅스(붉은색)의 형성을 유도한다. 前시냅스의 형성 여부는 시냅신(Synapsin)이라는 前시냅스 단백질의 형광 염색(붉은색)으로 알 수 있다. - 그림a-b : 엔지엘에 의한 시냅스 형성 - 그림c-d : 시냅스 생성능력이 소멸된 변형 엔지엘은 시냅스 생성 못함 ■ 사진 2: 엔지엘의 시냅스 생성 능력 확인 실험 2 표면에 엔지엘을 코팅시킨 구슬을 신경세포 위에 뿌려주면 구슬이 신경세포의 축색돌기와 접촉하게 된다(구슬들은 가운데 패널의 위상차 이미지에서 명확히 보임). 이때 엔지엘은 축색돌기 안에 前시냅스(붉은색)의 형성을 유도한다. 전시냅스의 형성 여부는 시냅토파이진(SynPhy; a 패널) 또는 비글룻(VGlut1; b패널)이라는 前시냅스 단백질의 형광 염색(붉은색)으로 알 수 있다.
2006.09.19
조회수 17933
고규영 교수, 만성 신장질환 치료 새 가능성 열어
전북대 의대 박성광 교수팀, KAIST 생명과학과 고규영 교수팀 공동 연구, 혈관형성촉진제 콤프앤지원, 신장병에도 획기적 치료 가능성 입증 세계 최고 신장 관련 학술지 미국신장학회지 9월호 게재 예정 전북대 의대 박성광(朴聖光, 51) 교수팀과 KAIST 생명과학과 고규영(高圭永, 48) 교수팀의 신장질환 치료제 가능성 개발 연구 결과가 세계 최고의 신장 관련 학술지인 미국신장학회지 (Journal of American Society of Nephrology) 9월호에 게재된다. "일측 요관폐쇄 동물모형에서 신반흔에 대한 콤프앤지원의 개선 효과(COMP-angiopoietin-1 ameliorates renal fibrosis in a unilateral ureteral obstruction model)"라는 제목의 이 연구결과는 그 중요성을 감안, 8월 3일 인터넷판에 먼저 공개했다. 신장병 환자가 조기에 치료되지 못하고 투석이나 신장 이식단계까지 가게 되는 이유는 마땅한 치료법이 없기 때문이다. 朴 교수팀과 高 교수팀은 신장의 모세혈관 손상이 신장질환 진행의 주요 원인이 될 수도 있다는 점에 주목했다. 두 연구팀은 高 교수와 바이오벤처기업 제넥셀이 개발 중인 혈관형성촉진제 콤프앤지원(COMP-Ang1)을 신장병 생쥐에 투여했다. 이 실험에서 콤프앤지원은 놀랍게도 병든 신장의 모세혈관들을 대부분 재생시켰을 뿐만 아니라, 신장의 염증 반응과 섬유화 반응을 억제, 신장병 진행을 막는데 성공했다. 콤프앤지원이 족부궤양 뿐만 아니라 신장병 치료에도 획기적인 약이 될 수 있는 가능성을 증명한 것이다. 신장은 우리 몸의 노폐물을 걸러내 소변을 만드는 기관이다. 신장병은 일단 어느 정도까지 진행되면 회복되지 못하고 계속 악화되어 만성신부전에 도달한다. 이렇게 되면 우리 몸에 노폐물이 축적되어 요독증이 발생하고 결국 투석이나 신장 이식을 받아야 한다. 투석이나 신장이식을 언론보도에서도 자주 접할 만큼 신장병은 흔하면서도 심각한 질환이다. 만성신부전은 국민건강보험공단에서 지급되는 요양급여 중 가장 많은 비중을 차지하고 있다. 지속적으로 혈액투석을 받고 있거나 신장이식 시술을 받은 만성 신부전 환자는 국내에서만도 2002년말 기준 3만4천2백명 정도인 것으로 보고된 바 있으며, 매년 그 수가 10% 씩 증가하고 있다. 미국 신장학회(ASN)의 최근 자료 (www.asn-online.org)에 의하면, 미국의 경우 20세 이상의 만성 신장질환 환자는 2천만 명 이상에 달하며, 이들 중에서 투석이나 신장이식이 필요한 말기 환자만도 39만 명에 달한다. 미국 연방정부의 의료보험인 메디케어(Medicare)는 말기 만성신부전 환자 처치를 위해 2005년도에만 14조 원을 지출한 바 있다. 공동 연구자인 고규영 KAIST 교수는 “현재 제넥셀에서 임상시험용 샘플의 공정 개발이 진행되고 있다. 준비가 되는대로 전북대 박성광 교수팀과 협력, 신장병 환자를 대상으로 한 임상 시험의 가능성을 상의할 계획이다.”고 밝혔다.
2006.08.07
조회수 18907
KAIST 고규영교수팀, 당뇨병 족부궤양 치료단백질 개발
손발이 부패하는 당뇨병 합병증을 치료하는 획기적인 신물질 KAIST 의과학센터와 바이오벤처 제넥셀세인(주)의 고규영 교수와 조정현 박사 연구팀은 혈관생성을 촉진시키는 치료단백질인 콤프앤지원 을 개발하여 이 단백질이 당뇨병 합병증인 족부궤양을 획기적으로 치료한다는 것을 당뇨병 실험동물을 통해 밝혔다. 이번 연구 결과의 자세한 내용은 세계적인 학술지인 미국국립학술원회보지(Proceedings National Academy Sciences, 일명 PNAS)에 조기출간 (2006년 3월 셋째주)으로 게재된다. 미국국립학술원에서는 이 내용의 중요성이 당뇨병 족부궤양 환자에게 희망을 줄 것이라는 판단 하에 이례적으로 일반인을 대상으로 하는 월드사이언스뉴스 홍보물로 채택하였다. 이 연구내용을 근거로 하여 콤프앤지원 치료단백질의 물질 및 임상응용 특허권을 가지고 있는 제넥셀세인(주)는 현재 전임상 실험을 진행하고 있으며 조만간에 상처 합병증이 있는 당뇨병환자를 대상으로 임상실험을 실시하여 실용화할 예정이다. 우리나라를 비롯한 서구 선진국 국가에서 당뇨병의 환자수는 현재 2억명 으로 추산되며 급속도로 증가하여 2020년도에는 3억명에 이르면서 "당뇨대란“이 일어 날것이라고 의학자들은 예고하고 있다. 말기 당뇨병 환자의 약 10%는 손발의 상처가 낫지 않고 썩어 들어가서 결국 손발을 잘라내야 하는 족부궤양에 시달리게 된다. 당뇨병성 족부궤양은 장기 당뇨병에 의한 족부의 미세혈관이 망가져 피부상처가 회복되지 않고 궤양으로 진행되는 치료가 어려운 질환이다. 따라서 이 족부 상처 부위의 망가진 미세혈관에 콤프앤지원을 투여하여 건강한 혈관생성을 촉진 시켜 준다면 상처와 궤양의 회복을 촉진할 것이라는 확신을 하게 되었다. 당뇨병성 생쥐의 꼬리에 궤양과 동일한 상처를 낸 후 콤프엔지원을 전신투여 하거나 상처부위에 국부투여하여 탁월한 상처치유 효과가 있다는 것을 확인하였다. 조직학적 검사를 해보니 콤프앤지원이 상처부위의 건강한 미세혈관과 임파관 생성을 촉진할 뿐만 아니라 혈류량도 증가시켜 상처치유 효과를 일으킨다는 사실을 알게 되었다. 아직까지 이러한 족부궤양을 치료할 수 있는 치료제가 없었으나 이번에 고규영 교수팀의 연구 결과로 인해 손발을 잘라내지 않고 콤프앤지원을 국부투여하여 족부궤양을 치료할 수 있는 길이 열린 것이다. 콤프앤지원 (COMP-Ang1)은 고규영 교수 연구팀이 2년전에 최초로 개발한 건강한 혈관생성촉진 단백질이다. 콤프앤지원은 건강한 혈관생성을 촉진하므로 혈관질환이 동반하는 심장병 (심근경색과 심장허혈증)과 뇌졸중 치료에 적용할 목적으로 제넥셀세인(주)은 현재 전임상 실험을 진행하고 있다. 콤프앤지원은 연간 2조원 이상이 될 것으로 추정되는 세계 혈관형성 촉진제 시장을 석권할 최초의 단백질 치료제가 될 것으로 기대된다. 그림설명: 당뇨병성 생쥐의 꼬리에 궤양과 동일한 상처를 낸 후 콤프엔지원을 투여 하고 상처치유정도를 날짜 별로 사진을 찍음. 대조약물을 투여받은 생쥐의 꼬리 상처는 8가 지나도록 치유가 되지 않는 반면, 콤프앤지원을 투여 받은 생쥐의 꼬리 상처는 4-8주 사이에 거의 완치됨.
2006.03.15
조회수 18585
생명과학과 김학성 교수, 사이언스誌에 논문 발표
“생명요소인 단백질도 설계, 제조한다” - 단백질의 자연 진화과정을 밝혀 신 기능 단백질 설계 기술 개발 - 의약용 단백질 및 산업용 효소 창출 등 생명공학 분야에서 광범위하게 활용될 수 있는 기반 기술 - 사이언스誌에 중요 논문 중 하나로 소개 : 별도“Perspective"란에 자세한 연구 내용 설명 KAIST 생명과학과 김학성(金學成, 48) 교수 / 박희성(朴熙成, 35) 박사팀이 개발한 ‘신 기능 단백질 설계 기반 기술’이 세계적 학술지인 사이언스 誌에 1월 27일자로 발표했다. “기존에 존재하는 단백질 골격을 이용한 신 기능 단백질의 설계와 창출 (Design and evolution of new catalytic activity using an existing protein scaffold)“이라는 제목으로 발표되는 이 기술에 대해 사이언스誌는 별도의 “Perspective"란에 연구 내용을 자세히 설명하여, 그 중요성과 파급 효과를 강조하고 있다. 金 교수팀은 자연계에서 단백질이 진화해온 복잡한 과정을 단순화시켜 새로운 기능을 가진 단백질을 효율적으로 설계하고 제조하는 기반 기술을 개발하였다. 이 기술은 의약용 단백질 및 산업용 효소의 개발 등 생명공학 분야에서 광범위하게 활용될 수 있으며 바이오기술(BT)의 산업화라는 점에서 주목된다. 생물체내에는 5만 종류 이상의 다양한 기능을 수행하는 단백질이 존재한다. 자연 진화 과정에서 생성된 다양한 단백질들은 기존 유전자의 염기서열이 변형된 것뿐만 아니라 임의의 길이나 염기서열을 갖는 유전자 조각들이 오랜 시간에 걸쳐 삽입, 제거, 재조합 등의 복잡한 과정의 단계를 거쳐서 만들어진 것으로 밝혀지고 있다. 단백질은 20개의 아미노산으로 구성된 고분자물질로 생명체가 살아가는데 필수적인 역할을 수행한다. 예를 들어 p53 이라는 단백질은 암을 억제하는 기능을 하고, 많은 효소는 우리가 섭취한 음식물로부터 우리 몸에 필요한 복잡하고 다양한 물질과 에너지를 효율적으로 생산하는 역할을 한다. 이러한 단백질은 의약용, 치료용 혹은 산업용으로 광범위하게 사용되고 있다. 특히, 단백질의 일종인 효소(Enzyme)는 최근 선진국을 중심으로 대대적인 연구개발 및 산업화가 추진되고 있는 화이트 바이오테크(White Biotech)분야의 핵심으로 부각되고 있다. 세계적 화학기업, 제약기업, 생명공학 기업들이 산업 목적에 맞는 효소의 개발에 집중적으로 투자하고 있다. 그러나 대부분의 단백질은 특이성, 리간드와의 친화성, 안정성, 활성 등이 실제 의약용이나 산업적으로 사용하기에는 많은 한계점을 가진다. 이를 해결하기 위해 목적에 맞는 특성이나 새로운 기능을 지닌 단백질을 설계하고 창출하는 연구가 지속적으로 진행되어 왔지만 아직까지 만족할 만한 연구 결과는 보고되지 않았다. 金 교수팀은 생물체내에는 수많은 종류의 단백질이 존재하지만 기본적인 골격의 수는 한정되어 있어 서로 다른 기능을 수행하는 단백질들의 경우라도 그 골격은 유사하거나 동일한 경우가 많다는 점에 착안, 새로운 기능을 가진 단백질 설계에 필요한 요소를 기존의 단백질 골격에 동시에 조합적으로 삽입함으로써 신 기능 단백질을 제조할 수 있는 기술을 성공적으로 개발할 수 있었다. 개발된 신 기능 단백질 설계 기술은 앞으로 새로운 단백질 의약품 개발, 산업용 효소 개발, 합성 생물학, 화이트 바이오테크놀러지(White Biotechnology), 생유기 합성 및 단백질 공학 분야에서 광범위하게 활용되어 생명공학의 산업화에 크게 기여할 것으로 기대된다. 또한, 이번 연구결과는 자연계에서 단백질이 어떠한 진화 과정을 거쳐 현재와 같은 다양한 단백질이 존재하게 되었는지에 대한 중요한 해답을 주고 있어 기초 생명과학 분야에서도 매우 획기적인 연구결과로 인식되고 있다. 사이언스誌 투고의 주역인 金 교수는 최근 국제공학회(ECI)에서 주관하는 국제학술대회인 제 18차 효소공학 학술대회(Enzyme Engineering)를 지난해 10월 국내에 유치하여 성공적으로 개최하는 등 국제적으로도 활발한 활동을 펼치고 있다.
2006.01.27
조회수 23169
생명과학과 김재섭 교수팀, '생체시계 뇌신경망 교신 유전자'세계최초로 밝혀
2만5천여 종의 형질전환 초파리 이용, 새로운 생체시계 유전자 발견 수면장애, 생체리듬 장애로 인한 각종 생리질환 치료법 개발 활로 열어 우리 몸은 하루 24시간의 시각 주기를 기억해서 현재 시각이 아침인지 저녁인지 혹은 낮인지 밤인지를 스스로 아는 능력이 있다. 한국에 살던 사람이 미국에 가면 한국에서 기억된 시각주기 때문에 처음 며칠 동안은 밤에는 깨어 있다가 낮이 되면 졸리고 하는 것이 그 일예이다. 우리 몸이 이렇게 하루 24시간 주기의 시간 흐름을 아는 것은 대뇌 아래 시상하부에 존재하는 일부 신경세포가 시계의 기능을 하기 때문인데, 이 시계를 “생체시계”라고 부른다. 정상적으로 생활하던 사람을 하루 종일 어두운 곳에 두어도 아침 시간이 되면 잠에서 깨고, 끼니마다 배가 고파지며, 또 밤 시간이 되면 잠을 자는 이유도 이 생체시계 때문이다. 생체시계의 역할은 시상하부에 위치한 수십 개의 신경세포가 담당한다. 이 생체시계 신경세포 각각의 내부에서 작동하는 유전자들은 그 동안 잘 알려져 있었다. 그러나 정작 각각의 생체시계 신경세포가 어떻게 서로 교신하여 하나의 완벽하고 정교한 생체시계 신경망을 이루어 우리 몸의 시간을 지배하는 지는 베일에 쌓여 있었다. KAIST 생명과학과 김재섭(金在燮, 42) 교수팀이 바이오벤처 제넥셀과의 공동연구로 이번에 그 베일을 세계 최초로 벗겼다. 金 교수팀은 제넥셀이 구축한 2만5천여 종의 형질전환 초파리를 이용, 새로운 생체시계 유전자를 발견하였으며, 그 이름을 “한(Han)"이라고 명명하였다. 金 교수팀에 따르면 “한” 유전자로부터 만들어지는 단백질은 "피디에프(PDF)"라는 리간드 단백질의 수용체로 작용하며, 생체시계 신경 세포들의 표면에 존재한다. 생체시계 신경세포 중에서 마스터(master) 생체시계 신경세포가 하루 24시간의 주기에 따라 각기 다른 양의 “피디에프”를 분비한다. 그러면 뇌의 다른 부위에 존재하는 생체시계 신경세포들은 표면에 있는 “한” 수용체 단백질을 통해 이 신호를 받아서 자기의 생체시계 작동을 마스터 신경세포의 생체시계 시각과 동조화 시킨다. 이렇게 해서 생체시계 신경망을 담당하는 모든 신경세포들 안에 있는 생체시계는 동일한 시각으로 맞춰지게 된다. 즉, “피디에프”와 “한” 단백질을 이용한 생체시계 신경세포들 사이의 교신이 정확하게 이뤄져 생체시계의 시각 결정을 담당하는 모든 신경세포가 특정 시간을 모두 동일한 시간으로 인식하여 일사 분란하게 몸을 조절하는 것이다. 金 교수팀의 이번 연구결과는 뉴론(Neuron)誌 10월호(10.20 발행)에 게재된다. 뉴론誌는 셀지의 자매지로서 네이처 뉴로사이언스와 쌍벽을 이루는 신경과학 분야의 최고 권위지다. 김재섭 교수는 "학문적으로는 생체시계를 담당하는 뇌신경들이 어떻게 서로 교신 하는 지를 알 수 있게 되었으며, 의학적으로는 수면 장애와 생체리듬 장애로 인한 각종 생리 질환 치료법 개발에 새로운 길을 열게 되었다"고 이번 연구 성과의 의의를 밝혔다.
2005.10.20
조회수 19950
신약개발 원천기술 사이언스지에 발표
자석 이용 신약 개발, 마술같은 기술 "MAGIC" 명명 살아있는 세포내에서 다양한 물질결합 실시간 측정 생명과학과 김태국(金泰國, 41) 교수팀이 (주)씨지케이(CGK, 대표이사 정연철)와 공동으로 개발한 새로운 신약개발 원천기술이 7월1일(금)자 사이언스 誌에 발표됐다. “살아 있는 세포에서 분자 간 상호작용을 검출하는 자성 나노프로브 기술(A magnetic nanoprobe technology for detecting molecular interactions in live cells)“이라는 제목으로 발표된 이 연구결과는 마술과 같은 기술이라 하여 "MAGIC"으로 명명됐다. 물질의 한쪽 끝에 자성체를 붙여 세포에 넣어준 뒤 자석을 대면 결합된 다른 물질이 같이 끌려나온다는 평범한 원리를 세포내에 적용한 이 기술은 살아있는 세포 내에서 다양한 물질의 결합을 실시간으로 측정 가능해 곧바로 신약개발에 응용될 수 있다. 이미 병원에서도 면역억제제로 사용하고 있는 약물에 같은 실험을 수행하여 사람 세포 내에서 이 약물에 결합한다고 알려진 단백질이 매우 선택적으로 자석에 딸려오는 현상을 실시간으로 확인했다. 金 교수는 "MAGIC 기술은 기존에 생체 내에서의 역할이 명확히 밝혀지지 않은 다양한 약물의 표적 분자를 쉽게 찾을 수 있을 뿐만 아니라, 사람 세포내에서 계속 조절 변화되는 바이오프로그램을 실시간으로 모니터하고 유익하게 재프로그래밍도 할 수 있는 혁신적인 기술"이라며, "특히 신약개발이라는 망망대해에서 더 이상 그물을 치고 기다릴 필요가 없는 셈"이라며 이 기술의 의미를 함축적으로 설명했다. 함께 연구에 참여한 CGK 정연철 대표는 "MAGIC 기술은 그간 발표된 어떤 기술보다 신약개발을 혁신적으로 앞당길 수 있는 상업화에 가장 근접한 기술"이며, "이미 항암제를 포함한 두 종의 신약 후보물질을 찾은 상태이다. 내년까지는 동물 실험을 마칠 것"이라는 계획을 발표했다. 또한 "이미 미국의 회사로부터 이 기술의 사업화를 위한 조인트벤처 설립을 제안 받았으며, 내부적으로 검토중"이라고 밝혔다. 金 교수는 "최근 황우석 교수의 줄기세포 치료법와 더불어 신약 치료법의 원천기술을 국내에 확보하여 확고한 바이오기술의 토대를 확립했다는 것이 무엇보다 의미 있다" 며, "MAGIC 원천기술을 비롯해서 앞으로도 기초연구와 바이오산업을 보다 효과적으로 접목, 국내 산업의 성장동력을 마련하기 위해 열심히 노력 하겠다"는 각오를 밝혔다.
2005.07.01
조회수 20324
김학성 오은규 연구팀 나노 입자 이용한 단백질 상호작용 분석기술 개발
상호작용 분석을 위한 다양한 특성의 금 나노입자 제조 기술도 함께 확보 두가지 나노 입자 사이의 물리적 특성변화를 이용, 서로 다른 단백질간의 상호작용을 고감도, 초고속으로 분석하는 기술이 KAIST 연구진에 의해 개발됐다. KAIST 생명과학과 김학성(金學成, 48, 교수), 오은규(吳恩圭, 34, 박사과정) 연구팀은 서로 다른 색상의 형광을 내는 두 개의 나노입자가 10나노미터 이내로 가까워지면 그 사이에 에너지 전달이 생겨, 각자의 형광스펙트럼이 달라지는 현상인 FRET(형광공명에너지전이) 방식을 이용, 단백질의 상호작용을 분석하는 시스템을 세계 최초로 구현했다고 밝혔다. 또한 金 교수팀은 수용액에서 안정성이 좋고 단백질 결합이 용이한 표면을 지닌 금 나노입자 제조기술도 함께 개발했다. 10나노미터 이하의 금속나노입자를 이용, 표적물질의 스크리닝, 세포 이미징, 단백질 상호작용 분석 등에 활용하는 기술이 최근 생명공학 분야에서 주목받고 있다. 특히 단백질 상호작용을 고감도, 초고속으로 분석하는 기술은 각종 질병의 진단, 의약품의 개발, 생명현상의 규명 등에 매우 중요하기 때문에 수많은 연구개발이 진행되고 있다. 기존의 연구개발은 주로 단일나노입자를 만들어 여기에 단백질 등의 바이오물질을 붙이는 기술에 집중되어 왔지만, 金 교수팀은 FRET 방식을 이용, 서로 다른 나노입자의 물리적 특성변화를 이용해 단백질 상호작용에 대한 분석이 가능하게 만들었다. 이 기술은 앞으로 질병진단, 의약품 개발, 세포내 단백질 상호작용 규명 등에 활용될 수 있는 기반 기술로, 국내외에 특허출원하였고 관련연구는 미국 화학회지(JACS) 인터넷판에 최근(2.19) 발표되었다. 위 사진 : 금 나노입자와 반도체 양자점을 이용한 inhibition assay(저해물질 분석) 도면 (사진2) 크기에 따라 다른 색상을 띠는 금 나노입자좌1. 금염수용액 고유의 노란색, 나머지 8개 샘플. 금염수용액으로부터 다양한 크기로 제조된 금 나노입자 (사진3) 좌. 금염과 리간드가 단순히 섞여있는 용액 / 우. 좌로부터 형성된 금 나노입자
2005.02.23
조회수 23897
고규영교수팀 - 건강한 혈관생성단백질 개발
건강한 혈관을 만들고 혈관 내피세포의 손상을 막아주는 단백질이 국내 연구진에 의해 최초로 개발돼 심장병과 뇌중풍 치료에 획기적인 길이 열렸다. KAIST 생명과학과 고규영(高圭永·47) 교수는 13일 세계 최초로 ‘COMP-Ang1’이라는 혈관생성 및 혈관 내피세포 보호 단백질을 조정현 박사와 함께 만들었다고 밝혔다. 이 단백질은 기존 혈관생성물질과 달리 건강하고 염증 없는 혈관을 생성한다고 고 교수는 설명했다. 혈관이 막혀 산소와 영양분의 공급이 차단돼 생기는 심장 허혈증, 심근경색, 뇌중풍 등 허혈성 심장 및 뇌질환 환자에게 건강하고 염증 없는 혈관을 생성시킴으로써 근본적인 치료에 도움을 준다는 것. 이번 연구결과는 그 우수성과 중요성을 인정받아 세계적 학술지인 미국 ‘국립학술원학회지(PNAS)’ 4월호에 이례적으로 2편의 논문으로 나뉘어 게재될 예정이며 국제특허도 출원 중이다.
2004.04.22
조회수 21446
<<
첫번째페이지
<
이전 페이지
11
12
13
14
15
16
17
>
다음 페이지
>>
마지막 페이지 17