-
성형진 교수, 미세유체칩 내 액적 위치 제어 기술 개발
우리 대학 기계공학과 성형진 교수 연구팀(유동제어연구실)이 열모세관 현상을 이용해 미세유체칩 내 액적의 위치를 정교하게 제어하는 기술을 개발했다.
박진수 박사과정이 1저자로 참여한 이번 연구는 영국왕립화학회(Royal Society of Chemistry)에서 발간하는 미세유체기술 및 마이크로타스(microTAS) 분야의 국제학술지인 랩온어칩(Lab on a Chip)지 2017년 6호의 표지논문으로 선정됐다.
(논문명: Acoustothermal tweezer for droplet sorting in a disposable microfluidic chip)
극소량의 유체 샘플을 이용해 동전만한 크기의 미세유체칩 내에서 복잡한 실험을 수행하기 위해서는 정교한 미세유체 기술이 필요하다.
특히 서로 섞이지 않는 두 유체로 구성된 액적을 기반으로 하는 미세유체역학 분야에서 액적의 위치를 정교하게 제어할 수 있는 기술이 필수적이다.
하지만 기존의 액적위치 제어기술은 한 쪽 방향으로만 제어할 수 있거나 마이크로 크기 수준에서는 정교하게 제어하지 못했다.
연구팀은 독자적으로 개발한 음향열적가열법을 통해 마이크로 수준의 동적 온도구배를 형성했고 이를 통해 미세유체칩 내에서 액적의 위치를 마이크로 크기 수준에서 정교하게 제어했다.
궁극적으로는 원하는 배출 유로로 액적을 분리할 수 있음을 증명했다.
성형진 교수 연구팀은 그동안 광력과 음향력 기반의 미세유체역학, 난류, 고체-유체 상호작용 연구 분야에서 탁월한 연구 성과를 내 SCI급 국제 학술지에 300여 편의 논문을 게재한 바 있다.
이번 연구는 한국연구재단의 창의연구지원사업, 글로벌박사펠로우십과 KAIST-KUSTAR의 지원으로 수행됐다.
박진수 박사과정은 “본 연구에서 개발된 기술은 액적의 양쪽에서 서로 반대방향으로 작용해 균형을 이루는 열모세관 힘을 이용해 액적의 위치를 마이크로스케일에서 정교하게 제어할 수 있다”고 말했다.
성 교수는 “본 연구에서 개발된 기술이 액적 기반 미세유체칩 내 생화학반응, 제약, 물질 합성 등에 널리 활용될 수 있을 것으로 기대된다”고 말했다.
□ 그림 설명
그림1. 랩온어칩 표지
2017.03.20
조회수 17076
-
박희성 교수, 맞춤형 단백질 변형기술 동물 모델 적용에 성공
우리 대학 화학과 박희성 교수 연구팀이 아주대 의과대학 박찬배 교수와의 공동 연구를 통해 동물 모델에서 단백질의 아세틸화 변형을 조절할 수 있는 기술을 개발했다.
인간의 질병 연구에 대표적으로 쓰이는 쥐 모델에서 단백질 아세틸화를 조절할 수 있게 돼 다양한 질병의 원인을 밝힐 수 있을 것으로 기대된다.
이번 연구는 미래창조과학부의 글로벌프런티어사업(의약바이오컨버젼스연구단, 단장 김성훈)과 지능형 바이오시스템 설계 및 합성연구단(단장 김선창), 식약처의 미래 맞춤형 모델동물개발 연구사업단(단장 이한웅)의 지원을 받아 수행됐다.
이번 연구 결과는 국제 학술지인 ‘네이처 커뮤니케이션즈(Nature Communications)’ 21일자 온라인 판에 게재됐다.
우리 몸의 세포에서 만들어지는 2만 여종의 단백질은 생합성 이후 인산화, 아세틸화, 당화 등 200여 종의 다양한 변형(post-translational modification)이 발생하게 된다.
세포 내 단백질들은 다양한 변형을 통해 기능과 활성이 조절되며 이러한 변형은 생체 내에서 세포 신호 전달 및 성장 등 우리 몸의 정상적인 신진대사 활동을 조절하는 매우 중요한 역할을 한다.
하지만 유전적 또는 환경적 요인으로 인해 단백질 변형이 비정상적으로 일어나면 세포의 신호 전달, 대사 활동 등이 손상돼 암, 치매, 당뇨를 포함한 다양한 중증 질환을 유발한다.
기존에는 이러한 비정상적 단백질 변형을 동물 모델에서 인위적으로 유발시키고 제어하는 기술이 존재하지 않아 질병의 원인 규명 및 신약 개발 연구에 어려움이 있었다.
박 교수팀은 2016년 9월 다양한 비정상 변형 단백질을 합성할 수 있는 맞춤형 단백질 변형 기술을 개발해 사이언스(Science)지에 발표한 바 있다.
연구팀은 기존 연구를 더 발전시켜 각종 암과 치매 등의 이유가 되는 퇴행성 신경질환의 원인인 비정상적인 단백질 아세틸화를 동물 모델에서 직접 구현하는 기술을 개발했다.
연구팀은 이 기술을 바탕으로 실험용 쥐의 특정한 발달 단계나 시기에 표적 단백질의 특정 위치에서 아세틸화 변형을 조절할 수 있음을 증명했다.
또한 다른 조직에 영향을 주지 않고 간이나 콩팥 등 특정 조직이나 기관에서만 표적 단백질의 아세틸화 변형 제어가 가능함을 확인했다.
연구팀은 “이 기술은 암과 치매 등 단백질의 비정상적 변형으로 발생하는 각종 질병의 바이오마커 발굴 등 질병 원인 규명 연구의 획기적인 전기를 마련할 것으로 기대된다”고 말했다.
박희성 교수는 “실용화 될 경우 지금까지 실현이 어려웠던 다양한 질병에 대한 실질적 동물 모델을 제조할 수 있을 것으로 전망된다”며 “향후 맞춤형 표적 항암제 및 뇌신경 치료제 개발 등 글로벌 신약 연구에 새 패러다임을 열 것이다”고 말했다.
□ 그림 설명
그림1. 아세틸화 변형 조절 마우스 개발 및 아세틸화 제어 결과
그림2. 비정상적인 단백질 변형 및 각종 질병의 모식도
2017.03.06
조회수 17234
-
우운택 교수, 증강현실 속 캐릭터 실시간 조작기술 개발
〈 우 운 택 교수 〉
우리 대학 KI IT융합연구소 증강현실 연구센터의 우운택 교수(문화기술대학원) 연구팀이 증강현실 안경을 통해 현실공간에 존재하는 가상 객체의 이동경로를 간편하고 자유롭게 설정할 수 있는 기술을 개발했다.
이 기술은 홀로렌즈와 같은 투과형 증강현실 안경을 착용한 사용자가 스마트폰을 이용해 현실공간에서 직관적으로 동물, 식물 등의 가상 객체를 조작하면서 이동경로를 실시간으로 설정 및 변경할 수 있다.
유정민 연구교수가 1저자로 참여한 이번 연구 결과는 한국 인간-컴퓨터 상호작용 학회(HCI)에서 지난 8일에 시연됐고, 관련 논문은 2017년도 국제 인간-컴퓨터 상호작용 학회(HCI International 2017)에서 발표될 예정이다.
기존의 증강현실을 저작하는 과정은 피시(PC) 환경에 특화된 저작 프로그램을 이용하거나 전문적인 프로그래밍 언어로 가상의 객체를 선택하고 조작해야 한다. 따라서 과정이 복잡하고 비용이 상대적으로 많이 소요되는 한계가 있었다.
연구팀은 특수한 입력장치를 사용하는 대신 자체 개발한 앱을 스마트폰에서 구동시켜 홀로렌즈가 부착된 안경형 디스플레이 장치와 연동했다.
이를 통해 3차원 마우스와 같은 입력장치로 사용할 수 있고 증강현실 속 가상 객체를 컴퓨터의 아이콘 옮기듯 쉽게 조정하고 이동할 수 있게 된다.
이 기술은 사용자가 스마트폰의 입력 정보와 내장된 3축 기울기 센서로부터 획득한 스마트폰의 자세 정보를 이용해 가상 객체를 선택 혹은 취소하거나 크기를 조절할 수 있다. 또한 가상 객체의 이동경로를 현실 공간에 바로 설정하거나 수정할 수 있다.
이러한 기능은 현실 공간에서 가상 객체의 이동을 직관적으로 설정할 수 있기 때문에 다양한 동적인 증강현실 환경을 현장에서 즉각적으로 구성할 수 있다.
누구나 쉽게 사용할 수 있는 저작도구는 다양한 증강현실 콘텐츠의 즉각적인 생산과 체험을 가능하게 하고 새로운 증강체험 관련 산업의 형성 및 생태계 구축에 기여할 수 있을 것으로 기대된다.
우 교수는 “이 기술은 스마트 폰만 있으면 누구나 콘텐츠를 현장에서 직관적으로 저작할 수 있다”며 “추가 개발될 증강현실 저작도구를 통해 누구나 포켓몬go 같이 가상 캐릭터와 현실공간이 상호작용하는 환경을 만들 수 있을 것으로 기대한다”고 말했다.
□ 그림 설명
그림1. 증강현실 체험 위한 안경형 디스플레이기반 이동경로 저작 기술의 개념도
그림2. 기술을 활용하여 증강현실 환경을 구성하는 실제 화면
2017.02.16
조회수 12762
-
최시영 교수, 물리적 힘을 이용해 안정화된 에멀전 개발
우리 대학 생명화학공학과 최시영 교수 연구팀이 디플리션 힘이라고 불리는 물리적인 힘을 이용해 새로운 방식의 안정적인 에멀젼을 제작하는 데 성공했다.
생명화학공학과 연구조교수인 김규한 박사가 1저자로 참여한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 2월 1일자 온라인 판에 게재됐다.
특히 이 연구는 우리 대학 의 ‘학부생 연구 참여 프로그램(URP : Undergraduate research program)’을 통해 학부생인 김수빈 학생이 2저자로 참여해 의미를 더했다.
우리가 흔히 화장품 종류로 알고 있는 에멀전은 물속에 기름방울들이(또는 기름 속에 물방울이) 안정적으로 분산된 구조를 뜻한다. 그리고 피커링 에멀전은 계면활성제 대신 고체 입자를 사용해 안정화된 에멀전을 뜻한다.
일반적으로 물과 기름은 섞이지 않는다고 알려져 있지만 지금까지는 적정량의 계면활성제를 넣고 물과 기름을 섞어 적절히 분산시켰다. 이를 통해 에멀전을 제작했고 이는 마요네즈, 선크림, 로션 등 산업 전반에 유용하게 사용되고 있다.
그러나 지금까지 피커링 에멀전은 고체 입자 표면에 화학적인 처리를 통해 흡착력을 증대시켜 안정화하는 방식을 택했다. 이는 처리과정이 복잡하고 적용 범위가 매우 좁아 유용하게 사용되지 못했다.
연구팀은 피커링 에멀전의 표면을 화학적으로 처리하는 대신 수나노미터 크기의 작은 고분자 입자를 더 큰 고체 입자(수십 나노미터에서 수 마이크로미터 수준)와 함께 섞었다. 이를 통해 디플리션 힘(depletion force)을 유발했고 물리적인 힘을 통해 에멀전을 안정화시키는 데 성공했다.
디플리션 힘이란 많은 수의 작은 입자들이 자신들의 자유로운 공간을 많이 확보하기 위해 다른 큰 입자들을 뭉치게 만드는 힘을 뜻한다. 크기가 큰 입자끼리 서로 끌림을 유도하는 것이다.
그동안 디플리션 힘은 고체와 고체 입자끼리만 적용됐다. 그러나 연구팀은 작은 입자로 고분자, 큰 입자로 고체 입자와 기름방울을 사용해 고체와 액체 사이에서도 디플리션 힘이 적용됨을 증명했다.
작은 입자 크기 역할을 하는 고분자를 삽입함으로써 친수성을 갖는 고체 입자가 기름방울 표면에 흡착되는 것을 향상시켰고, 입자 표면으로부터 분리되는 것을 방지해 안정적인 상태를 유지할 수 있었다.
연구팀은 안정적인 고내부상 피커링 에멀전을 통해 다양한 종류의 다공성 고분자 물질을 쉽게 제작할 수 있음을 확인했다. 이 다공성 고분자는 넓은 표면적을 이용해 분리막이나 조직공학, 약물 전달체 및 센서 등에 적용 가능할 것으로 기대된다.
1저자인 김규한 연구교수는 “그동안 고체 콜로이드 입자들 사이에서만 이용되던 디플리션 힘을 고체 입자와 액체 방울 사이에서 구현한 첫 번째 예로서 그 학술적인 의미가 있다”고 말했다.
최 교수는 “학술적 의미를 넘어 산업 및 국가 경쟁력에 기여할 수 있는 기술이다”며 “화학적인 힘이 아닌 물리적 힘을 이용해 안정적인 에멀젼을 형성하기 때문에 고체 입자와 고분자 종류에 관계없이 사용 가능하고, 특수 목적에 맞는 맞춤형 다공성 물질 제작이 가능하다”고 말했다.
이번 연구는 한국연구재단 이공분야 기초연구사업 (대통령 post-doc. 펠로우십, 리서치 펠로우십, 중견연구자 지원사업)의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 이번 기술을 통해 제작한 다공성 고분자 구조체의 내부 사진들
그림2. 고내부상 피커링 에멀젼의 유변학적 특성 측정 및 시스템의 가공성을 보여주는 사진
그림3. 안정한 피커링 에멀젼 시스템을 나타내는 사진들
2017.02.07
조회수 17302
-
김정, 박인규 교수, 로봇의 피부 역할 할 수 있는 촉각센서 개발
우리 대학 기계공학과 김정, 박인규 교수 공동 연구팀이 실리콘과 탄소 소재를 활용한 로봇의 피부 역할을 할 수 있는 촉각 센서를 개발했다.
이 기술은 충격 흡수가 가능하면서 다양한 형태의 촉감을 구분할 수 있어 향후 로봇의 외피로 이용 가능할 것으로 기대된다.
이효상 박사과정이 1저자로 참여한 이번 연구결과는 네이처 자매지인 ‘사이언티픽 리포트(Scientific Report)’ 1월 25일자 온라인 판에 게재됐다.
피부는 인체에서 가장 많은 부분을 차지하는 기관이며 주요 장기를 외부 충격으로부터 보호하는 동시에 섬세한 촉각 정보를 측정 및 구분해 신경계에 전달하는 역할을 한다.
현재 로봇 감각 기술은 시각, 청각 부분에서는 인간의 능력에 근접하고 있으나 촉각의 경우는 환경의 변화를 온몸으로 감지하는 피부 능력에 비해 많이 부족한 것이 사실이다
인간과 비슷한 기능의 피부를 로봇에게 적용시키기 위해선 높은 신축성을 갖고 충격을 잘 흡수하는 피부 센서 기술의 개발이 필수이다. 전기 배선을 통해 몸 전체에 분포된 많은 센서를 연결하는 기술 또한 해결해야 할 문제이다.
연구팀은 문제 해결을 위해 실리콘과 탄소나노튜브(CNT)를 혼합해 복합재를 만들었고 이를 전기임피던스영상법(EIT)라는 의료 영상 기법과 결합했다. 이를 통해 넓은 영역에 가해지는 다양한 형태의 힘을 전기 배선 없이도 구분할 수 있는 기술을 개발했다.
이를 통해 개발된 로봇 피부는 망치로 내려치는 수준의 강한 충격도 견딜 수 있으며 센서의 일부가 파손돼도 파손 부위에 복합재를 채운 뒤 경화시키면 재사용이 가능하다.
또한 3D 프린터 등으로 만들어진 3차원 형상 틀에 실리콘-나노튜브 복합재를 채워 넣는 방식으로 제작할 수 있다. 기존 2차원 평판 뿐 아니라 다양한 3차원 곡면으로 제작이 가능해 새로운 형태의 컴퓨터 인터페이스도 개발할 수 있다.
이 기술은 다른 형태의 위치나 크기 등을 촉각적으로 구분할 수 있고 충격 흡수가 가능한 로봇의 피부, 3차원 컴퓨터 인터페이스, 촉각 센서 등에 적용 가능할 것으로 예상된다.
특히 이번 연구는 나노 구조체 및 센서 분야의 전문가인 박인규 교수와 바이오 로봇 분야 전문가인 김정 교수가 공동으로 진행해 실제 제품 적용 가능성이 높다.
김정 교수는 “신축성 촉각 센서는 인체에 바로 부착 가능할 뿐 아니라 다차원 변형상태에 대한 정보를 제공할 수 있다”며 “로봇 피부를 포함한 소프트 로봇 산업 및 착용형 의료기기 분야에 기여할 것이다”고 말했다.
박인규 교수는 “기능성 나노 복합소재와 컴퓨터단층법의 융합을 이용해 차세대 유저인터페이스를 구현한 것이다”고 말했다.
이번 연구는 1저자 이효상 박사과정 외 권동욱, 조지승 연구원과의 공동연구로 진행됐고, 미래창조과학부 이공분야 기초연구사업(중견연구자 지원사업)과 초정밀 광기계기술 연구센터(선도연구센터지원사업)의 지원으로 수행됐다.
□ 그림 설명
그림1. 제작한 촉각 센서와 연결돼 저항에 반응하는 로봇 손
그림2. 실리콘 고무와 카본나노튜브를 이용한 압저항 복합재 제작 과정
그림3. 압저항 복합재를 활용한 컴퓨터 인터페이스
2017.02.02
조회수 18699
-
박용근 교수, 성능 수천배 향상된 3차원 홀로그래픽 디스플레이 기술 개발
우리 대학 물리학과 박용근 교수 연구팀(KI 헬스사이언스 연구소)이 성능이 2천 배 이상 향상된 3차원 홀로그래픽 디스플레이 기술을 개발했다.
이번 연구를 통해 기존 무 안경 홀로그래픽 기술의 큰 문제점이었던 제한적인 영상 크기와 시야각을 향상시킬 수 있을 것으로 기대된다.
유현승 박사과정이 1저자로 참여한 이번 연구는 광학 분야 국제 학술지인 ‘네이처 포토닉스(Nature Photonics)’ 1월 24일자 온라인 판에 게재됐다.
공상과학 영화에 자주 등장하는 3차원 홀로그램은 대중에게 친숙한 기술이지만, 영화 속 홀로그램은 컴퓨터 그래픽 효과로 만들어낸 것이다. 실제 기술로 구현하기에는 한계가 많기 때문이다.
이 때문에 디스플레이 산업계는 2차원 영상 두 개로 착시 효과를 활용하는 가상현실(VR)과 증강현실(AR)에 집중하고 있다. 이 기술들은 3차원 이미지 대신 두 개의 서로 다른 2차원 이미지를 눈에 투사하는 방식을 채택한다.
3D안경 등 특수 장비 없이도 볼 수 있는 3차원 홀로그램을 만들기 위해선 공간광파면 조절기(빛이 퍼져나가는 방향을 정밀하게 조절할 수 있는 광학제어장치)를 이용해 빛의 방향을 변경해야 한다.
그러나 이와 같은 공간광파면 조절기를 3차원 디스플레이로 사용하지 못하는 가장 큰 걸림돌은 픽셀의 개수이다. 최근 각광받는 고해상도 모니터의 많은 픽셀 개수조차도 2차원 이미지에만 적합할 뿐 3차원 이미지를 만들기에는 정보량이 매우 부족하다.
이 때문에 기존의 기술로 만들 수 있는 3차원 영상은 크기 1센티미터, 시청 가능 각도 3도 이내 수준으로서 실용성과는 거리가 멀다.
연구팀은 문제 해결을 위해 공간광파면 조절기만 사용하는 대신 간유리를 추가적으로 활용해 빛을 무작위로 산란시켰다. 무작위로 산란된 빛은 여러 방향으로 퍼지기 때문에 넓은 각도에서 시청 가능하고 영상 크기도 확대된다.
하지만 무작위한 패턴을 갖기 때문에 특별한 제어 없이는 3차원 이미지를 볼 수 없다. 연구팀은 빛의 결맞음(파동이 간섭 현상을 보이는 성질) 정도에 대한 수학적인 상관관계를 활용해 빛을 적절히 제어해 문제를 해결했다.
연구팀은 실험을 통해 가로, 세로, 높이 2센티미터 영역에 약 35도의 시청각을 갖는 3차원 이미지를 제작하는 데 성공했다. 이는 기존의 공간대역폭보다 약 2천 600배 이상 향상된 결과이다.
연구팀의 홀로그래픽 디스플레이는 기존의 공간광파면 조절기에 간유리를 추가하는 것만으로 제작이 가능해 일반적인 디스플레이 장치와 결합해 상용화가 가능할 것으로 기대된다.
1저자인 유현승 학생은 “물체의 인식을 방해한다고 여겨진 빛의 산란을 적절히 이용해 기존 3차원 디스플레이보다 향상된 이미지를 만들 수 있음을 선보였다”며 “특수 안경 없이 볼 수 있는 실용적인 디스플레이의 기반이 될 것으로 기대된다”고 말했다.
이번 연구는 한국연구재단의 시간역행반사 창의연구단 사업과 미래유망융합기술파이오니어사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 3차원 홀로그래픽 디스플레이의 모식도
그림2. 2 cm × 2 cm × 2 cm 영역에 만들어진 3차원 이미지
그림3. 3차원 홀로그래픽 디스플레이의 원리
2017.01.24
조회수 16816
-
오일권 교수, 귀금속 촉매 대체할 친환경 물 분해 촉매 개발
우리 대학 기계공학과 오일권 교수 연구팀이 값비싼 백금 등의 귀금속 촉매를 대체할 수 있는 니켈-코발트 기반의 친환경 물 분해 기술을 개발했다.
물 분해 기술은 수소를 친환경적으로 생산할 수 있다. 연구팀이 개발한 원천기술을 통해 수소의 대량 생산 및 수소에너지 상용화에 기여할 것으로 기대된다.
배석후 박사과정이 1저자로 참여한 이번 연구는 화학, 에너지 및 소재 분야의 국제 학술지 ‘어드밴스드 에너지 머티리얼즈(Advanced Energy Materials)’ 1월호 표지논문에 게재됐다.
현재 가장 많이 사용되는 수소에너지의 발전 방식은 물을 전기 분해시켜 수소를 생산하는 방법이다. 이 방식은 공해 없이 순수한 수소를 생산할 수 있다.
하지만 비용이 많이 들어 상용화에 어려움이 있다. 특히 산소가 발생하는 플러스(+) 전극에는 이리듐 및 루테늄 산화물 기반의 귀금속 촉매가 필요하고, 수소가 발생하는 마이너스(-) 전극에는 백금이 필요하다.
따라서 이를 대체할 수 있는 값싼 재료의 촉매를 개발하는 것이 상용화를 앞당길 수 있는 길이다.
연구팀은 문제 해결을 위해 플러스 전극에 사용되는 이리듐 및 루테늄 산화물 기반의 촉매를 대체할 수 있는 니켈-코발트 금속 기반의 화합물 촉매를 제작하는 데 성공했다.
니켈-코발트 금속 화합물 촉매는 가격이 저렴하지만 이리듐 및 루테늄 산화물 촉매에 비해 높은 전압을 필요로 하는 등 상대적으로 낮은 성능으로 인해 사용되지 못했다.
연구팀은 문제 해결을 위해 수열합성을 이용했다. 수열합성은 고온, 고압 상태에서 물 혹은 수용액에 금속 등을 녹여 물질을 합성하는 기술이다.
연구팀은 니켈-코발트 전구체가 녹아 있는 용액을 바탕으로 수열합성을 진행했다. 이를 통해 니켈-코발트 촉매의 낮은 성능 문제를 해결하는 동시에 촉매의 표면적을 넓히는 데 성공했다.
또한 추가적인 수열합성을 통해 촉매 외부층을 전도성이 높은 탄소층으로 둘러싸면서 전극과 나노선 복합체 사이의 전하 전달 능력을 극대화시킨 이중 나노선 형태의 촉매를 제작했다.
외부층을 전도성이 높은 탄소층으로 구성했기 때문에 탄소 직물로 만들어진 전극 기판과 상승효과(Synergy)를 내면서 단일 니켈-코발트계 금속 촉매에 비해 30% 낮은 전압과 2.7배 높은 단위 면적당 촉매 활성도를 보였다.
기존의 나노선은 원뿔 모양으로 종횡비가 커 나노선 전체로 전달되는 전압이 일정하지 않았다. 이 때문에 나노선 전체가 촉매 반응에 참여하지 못하는 현상이 발생했으나, 연구팀의 촉매는 탄소층으로 둘러싸여 있기 때문에 전자의 활발한 이동이 가능했고 이는 일정한 전압 전달로 이어졌다.
연구팀은 “연이은 수열합성을 통해 비교적 간단한 공정으로 이상적인 이중 구조의 나노선 촉매를 제작하는 데 성공했다”며 “기존의 값비싼 귀금속 촉매에 비해 훨씬 저렴하면서도 성능은 거의 차이가 없다”고 말했다.
오 교수는 “생산 과정이 간단하고 대량 생산이 가능하며 성능 또한 기존 귀금속 촉매에 뒤지지 않는다 ”며 “이번 연구를 통해 물을 수소같은 화학에너지로 변환하는 기술의 상용화에 기여할 수 있을 것이다”고 말했다.
이번 연구는 기계기술연구소 김지은 박사, EEWS 대학원 박정영 교수가 참여했고, 미래창조과학부 리더연구자지원사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 선정된 표지논문(front cover) 이미지
그림2. 탄소층이 코팅된 니켈-코발트 이중 나노선 촉매 입자의 미세구조 사진
그림3. 이중 나노선 구조의 전기화학적 촉매로써의 작용 모습
그림4. 이중 나노선 형상의 촉매 제작 과정을 나타낸 모식도
2017.01.19
조회수 16036
-
김호민 교수, 패혈증 원인 물질의 생체 내 메커니즘 최초 발견
우리 대학 의과학대학원 김호민 교수와 연세대학교 윤태영 교수 공동 연구팀이 우리 몸이 패혈증의 원인 물질인 박테리아 내독소를 어떻게 받아들이고 전달하는지 규명했다.
이를 통해 박테리아 내독소가 생체 내 단백질로 전달되는 분자 원리를 밝혀냄으로써 내독소가 전달되는 길목을 차단해 패혈증을 치료할 수 있는 새로운 가능성이 제시됐다.
패혈증은 감염에 의해서 과도하게 활성화된 면역반응에 따른 전신성 염증반응 증후군이다.
이 연구는 면역학 분야 국제 학술지이며, 셀(Cell) 자매지인‘이뮤니티 (Immunity)’12월 13일자에 게재되었다.
그람 음성균 세포외막에 존재하는 내독소는 생체 내 단백질을 통해 면역세포 표면의 세포수용체로 전달돼 선천성 면역 반응을 활성화시킨다.
감염에 의한 혈액 내 내독소 다량 유입은 고열, 혈압저하, 장기손상 등 과도한 염증반응의 결과인 패혈증으로 이어질 수 있지만, 내독소 인식 및 전달 관련 구체적인 분자 원리가 밝혀져 있지 않아 패혈증 치료제 개발에 한계가 있었다.
연구팀은 문제 해결을 위해 단분자 형광기법과 바이오 투과전자현미경을 활용했다. 마이셀(Micelle) 형태로 존재하는 내독소 표면에 막대 모양의 LBP가 결합하여 내독소를 인식하고, 여기에 CD14가 빠르게 결합해 내독소 한 분자를 가져간 후 면역세포 수용체인 TLR4-MD2와의 상호결합을 통해 건네주는 내독소 인식 및 전달 원리를 확인했다.
박테리아 내독소와 정제된 LBP 단백질을 혼합해 바이오투과전자현미경으로 사진을 찍은 후 각각의 분자의 모양을 컴퓨터를 활용한 이미지 프로세싱을 통해 분석함으로써 내독소와 결합한 LBP 단백질 구조를 최초로 규명했다.
특히 막대모양의 LBP 단백질이 그들의 N-도메인 끝을 통해 내독소 마이셀 표면에 결합함으로써 박테리아 내독소만을 특이적으로 인식하는 것을 발견했다.
연구팀은 박테리아 내독소에 형광을 부착시킨 후 내독소 항체를 활용해 유리슬라이드 표면에 코팅시키고, LBP, CD14, TLR4-MD2 단백질들을 흘려주면서 박테리아 내독소, LBP, CD14, TLR4-MD2 분자 하나하나의 동적인 움직임을 실시간으로 관찰하는 단분자 형광 시스템을 최초로 구축했다.
이를 통해 박테리아 내독소 표면에 결합한 LBP 단백질로부터 CD14 단백질이 내독소 한 분자만을 반복적으로 가져간 후 빠르게 TLR4-MD2로 전달함으로써 선천성 면역의 세포신호전달을 활성화 시키는 분자메커니즘을 최초로 규명했다.
또한 마우스 면역세포인 수지상세포를 활용하여 첨단 생물물리학적인 기법을 통해 제시한 분자메커니즘이 생체 내에서 내독소를 인식하여 면역반응을 유발하는 핵심 메커니즘을 검증했다.
기존의 실험방법으로 접근이 어려웠던 LBP, CD14, TLR4-MD2 단백질들 간의 동적인 상호작용을 최신 첨단 실험기법을 통하여 분자수준에서 규명함으로써 생체 내 내독소 인식 및 전달메커니즘을 규명했다.
연구 방법 및 결과는 박테리아 감염에 의한 선천성 면역 연구에 새로운 방향을 제시할 것이며 특히 이 연구에서 규명한 분자적, 구조적 지식들은 패혈증 발병메커니즘 연구 및 치료제 개발에 적극 활용될 수 있을 것으로 기대된다.
김호민 교수는“박테리아 내독소가 생체 내 단백질들의 동적인 상호작용에 의해 면역세포로 전달되는 일련의 과정들을 분자수준에서 최초로 밝힌 것이다”며 “박테리아 내독소 인식 및 전달메커니즘 이해를 통하여 선천성 면역 유발 메커니즘 이해뿐만 아니라 패혈증 예방 및 치료제 개발에 기여할 것으로 기대된다”라고 말했다.
이번 연구는 미래창조과학부, 한국연구재단 기초연구사업(개인연구, 집단연구), IBS 나노의학연구단의 지원으로 수행됐다.
□ 그림 설명
그림1. 생체 내 박테리아 내독소 전달 메커니즘
2016.12.27
조회수 16944
-
이건재, 최성율 교수, 고체 상분리 현상에 의한 그래핀 생성원리 발견
우리 대학 신소재공학과 이건재 교수와 전기및전자공학부 최성율 교수 연구팀이 초단시간의 레이저를 조사해 단결정 탄화규소(SiC)의 고체 상분리 현상을 발견하고 이를 활용한 그래핀 생성원리를 밝혔다.
기존에 활용되고 있는 화학기상증착(Chemical Vapor Deposition, CVD) 기반의 그래핀 합성법이 상당시간의 고온 공정을 필요로 하는 것과 달리 새로운 레이저 열처리법은 상온환경에서 단시간의 공정으로 그래핀을 합성할 수 있어 향후 그래핀 활용의 폭을 넓힐 수 있을 전망이다.
연구진은 단결정 탄화규소 소재 표면에 나노초(10억분의 1초) 단위의 극히 짧은 시간 동안 레이저를 쪼여 표면을 순간적으로 녹였다가 다시 응고시켰다. 그러자 탄화규소 표면이 두께 2.5나노미터의 탄소(C) 초박막층과 그 아래 두께 5나노미터의 규소(Si, 실리콘)층으로 분리되는 상분리 현상이 나타났다. 여기에 레이저를 다시 쪼이자 안쪽 실리콘층은 증발하고, 탄소층은 그래핀이 됨을 확인했다.
특히 탄화규소와 같은 이종원소 화합물과 레이저의 상호작용에 대한 연구는 아주 짧은 시간에 일어나는 복잡한 상전이 현상으로 지금까지 그 규명이 쉽지 않았다. 그러나 연구진은 레이저에 의해 순간적으로 유도된 탄소 및 실리콘의 초박막층을 고해상도 전자현미경으로 촬영하고, 실리콘과 같은 반도체 물질이 고체와 액체 상태일 때 나타나는 광학 반사율이 다르다는 점에 착안해 탄화규소의 고체 상분리 현상을 성공적으로 규명해낼 수 있었다.
연구에 활용된 레이저 열처리기술은 AMOLED(능동형 유기발광다이오드) 등 상용 디스플레이 생산공정에 널리 활용되고 있는 방법으로, CVD 공정과 달리 레이저로 소재 표면만 순간적으로 가열하기 때문에 열에 약한 플라스틱 기판 등에도 활용이 가능하여, 향후 플렉시블 전자 분야로 응용의 폭을 넓힐 수 있을 것으로 기대된다.
이 교수는 "이번 연구 결과를 통해 레이저 기술이 그래핀과 같은 2차원 나노소재에 보다 폭넓게 응용될 수 있을 것이다”고 말했다.
최 교수는 "앞으로 다양한 고체 화합물과 레이저의 상호작용을 규명해 이들의 상분리 현상을 활용하면 새로운 나노소재 개발을 기대할 수 있을 것이다”고 말했다.
이번 연구결과는 자연과학 및 응용과학 분야 학술지 '네이처 커뮤니케이션즈(Nature Communications)' 최신호에 게재됐다.
□ 그림 설명
그림1. 단결정 탄화규소의 용융을 통한 상분리 현상의 원리를 밝혀내는 분자동역학 시뮬레이션의 모식도
그림2. 레이저에 의해 순간적으로 유도된 단결정 탄화규소의 용융 및 응고 현상을 증명하는 실시간 시간 분해능 반사율 (In-situ time-resolved reflectance) 측정 스펙트럼
그림3. 레이저가 조사된 탄화규소 표면의 전체적인 전자현미경 사진(a) 및 이로 의한 탄소와 실리콘으로의 상분리 현상을 촬영한 고해상도 전자현미경 사진(b)
2016.12.05
조회수 18782
-
최경철 교수, 직물위에 유기발광다이오드(OLED) 형성 기술 개발
〈 학술지에 게재된 표지논문 〉
옷처럼 편하게 입으면서도 디스플레이 기능을 수행할 수 있는 OLED 기술이 개발됐다.
우리 대학 전기및전자공학부 최경철 교수 연구팀이 직물 기판 위에 유기발광다이오드(OLED)를 형성해 웨어러블 디스플레이를 실현할 수 있는 원천기술을 개발했다.
연구팀의 직물 OLED는 다층 박막봉지 기술(Thin-film Encapsulation)을 적용한 상태에서도 유연함을 잃지 않았고 1천 시간 이상의 동작 수명을 유지했다.
㈜코오롱글로텍과 공동으로 진행된 이번 연구는 나노전자 기술 분야 국제 학술지 ‘어드밴스드 일렉트로닉 머티리얼즈(Advanced Electronic Materials)’ 11월 16일 표지논문으로 선정됐다.
플라스틱 기판을 기반으로 한 유연 디스플레이는 플라스틱 기판이 얇을수록 뛰어난 유연성을 보인다. 하지만 얇게 만들수록 쉽게 찢어지는 문제가 발생하고 내구성이 약해지게 된다.
반면 직물은 씨실과 날실로 이뤄진 구조로 전체 직물은 두껍지만 여러 가닥의 수 마이크로미터 두께의 섬유들이 엮여있어 매우 유연하면서도 뛰어난 내구성을 갖는다. 연구팀은 이 점에 주목해 직물 OLED 형성 기술을 연구했다.
일반 옷감에 쓰이는 직물은 표면이 거칠고 온도 상승에 따라 부피가 팽창하는 열팽창계수(Coefficient of Thermal Expansion)가 커 열 증착 과정을 거치는 OLED 소자 형성 과정에서 문제가 발생한다.
연구팀이 개발한 평탄화 공정은 이러한 문제를 해결했다. 직물의 유연한 성질을 잃지 않으면서도 유리 기판과 같이 평평한 형태의 직물을 구현했다. 또한 이 평탄화된 직물은 동일 두께의 플라스틱 기판보다 더 유연했다.
연구팀은 평탄화 된 직물 위에 진공 열 증착 공정으로 OLED를 형성했고 OLED를 보호하기 위해 수분과 산소의 침투를 막는 다층 박막봉지 기술을 적용했다.
다층 박막봉지 기술이 적용된 직물 OLED는 1천 시간 이상의 동작 수명과 3천 500시간 이상의 유휴 수명을 갖는 것으로 확인됐다. 결과적으로 플라스틱보다 유연하면서 소자의 신뢰성까지 보장할 수 있는 디스플레이 소자를 구현했다.
연구팀은 이번 연구 결과가 산업적으로 플라스틱 OLED에서 진보된 패브릭 기판의 OLED 기술을 제시할 것이라고 예상했다.
최 교수는 “플라스틱보다 유연하면서 뛰어난 신뢰성을 보인 직물 OLED는 옷처럼 편한 웨어러블 디스플레이를 구현할 수 있을 것이다”며 “작년 실 한 올마다 OLED를 구축했던 성과에 이어 보다 실현 가능한 기술을 개발했다는 데 의미가 있다”고 말했다.
김우현 박사와 권선일 박사과정이 공동 1저자로 참여한 이번 연구는 산업통상자원부의 산업기술혁신사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 제작된 직물 기판 위에 형성된 OLED 구동 사진
그림2. 직물 위에 형성된 OLED 구조
그림3. 단면 SEM 사진
2016.11.22
조회수 18639
-
전상용, 임성갑 교수, 신경세포의 안정적 배양 가능한 플랫폼 개발
우리 대학 생명과학과 전상용 교수와 생명화학공학과 임성갑 교수 공동 연구팀이 신경세포를 장기적, 안정적으로 배양할 수 있는 아세틸콜린 유사 고분자 박막 소재를 개발했다.
특히 이 연구는 KAIST의 ‘학부생 연구 참여 프로그램(URP : Undergraduate research program)’을 통해 유승윤 학부생이 참여해 더욱 큰 의미를 갖는다.
유승윤 학부생을 포함해 백지응 박사과정, 최민석 박사가 공동 1저자로 참여한 이번 연구 성과는 나노분야 학술지 ‘에이시에스 나노(ACS Nano)’ 10월 28일자 온라인 판에 게재됐다.
신경세포는 알츠하이머, 파킨슨병, 헌팅턴병 등의 신경퇴행성 질환 및 신경 기반 바이오센서 등 전반적인 신경관련 응용연구에 꼭 필요한 요소이다.
대부분의 신경 질환이 노인성, 퇴행성이기 때문에 신경세포가 오래됐을 때 어떤 현상이 발생하는지 관찰할 수 있어야 한다. 하지만 신경세포는 장기 배양이 어려워 퇴행 상태가 되기 전에 세포가 죽게 돼 관찰이 어려웠다.
기존에는 특정 수용성 고분자(PLL)를 배양접시 위에 코팅하는 방법을 통해 신경세포를 배양했다. 그러나 이 방법은 장기적, 안정적인 세포 배양이 불가능하기 때문에 신경세포를 안정적으로 장기 배양할 수 있는 새로운 플랫폼이 필요하다.
연구팀은 문제 해결을 위해 ‘개시제를 이용한 화학 기상 증착법(iCVD : initiated chemical vapor deposition)’을 이용했다. iCVD는 기체 상태의 반응물을 이용해 고분자를 박막 형태로 합성하는 방법으로, 기존 세포 배양 기판 위에 손쉽게 얇고 안정적인 박막을 형성시킬 수 있다.
연구팀은 이러한 기체상 공정의 장점을 이용해 신경세포를 장기적으로 배양할 수 있는 기능을 가진 공중합체 고분자 박막을 합성하는 데 성공했다. 새로 합성된 이 고분자 박막은 신경전달물질로 알려진 아세틸콜린과 유사한 물질로 이뤄져 있다.
또한 신경세포가 고분자 박막에서 배양될 수 있는 최적화된 조건을 발견했고, 이 조건에서 생존에 관여하는 여러 신경관련 유전자를 확인했다.
연구팀은 생명과학과 손종우 교수 연구팀의 도움을 통해 새로 배양된 신경세포가 기존의 신경세포보다 전기생리학적 측면 및 신경전달 기능적 측면에서 안정화됨을 확인했다.
연구팀은 “신경세포를 장기적으로 배양할 수 있는 이 기술은 향후 신경세포를 이용한 바이오센서와 신경세포 칩 개발의 핵심 소재로 활용될 것이다”며 “다양한 신경 관련 질병의 원리를 이해할 수 있는 역할을 할 것으로 기대된다”고 말했다.
이번 연구는 한국보건산업진흥원과 한국연구재단의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 본 연구에서 개발된 표면(pGD3) 및 폴리라이신 코팅 위에서 장시간 배양된 신경세포
그림2. 신경전달물질 유사 작용기를 도입한 표면 형성 과정
2016.11.17
조회수 20000
-
오일권, 유승화 교수, 전기로 물의 움직임을 자유롭게 제어하는 기술 개발
우리 대학 기계공학과 오일원, 유승화 교수 공동 연구팀이 그래핀이 코팅된 미세 금속 그물망을 이용해 물의 움직임과 흐름을 전기로 자유롭게 제어하는 기술을 개발했다.
연구팀은 그래핀이 코팅된 마이크로미터(100만분의 1미터) 단위 틈의 금속 그물망에 갇힌 물을 전기장을 가해 투과시키거나, 표면에 놓인 물방울의 모양을 바꾸는 등 ‘전기습윤현상(전기장이 젖음성을 바꾸는 현상)’을 이용해 물의 움직임과 흐름을 전기로 제어하는 방식의 기술을 개발해 수(水)처리 장치에서의 다양한 활용 가능성을 제시했다.
이번 연구결과는 네이처 자매지 네이처 커뮤니케이션즈 10월 31일자에 게재됐다.(논문명 : Graphene-coated meshes for electro-active flow control devices utilizing two antagonistic functions of repellency and permeability)
표면청소, 방수표면, 제습공조, 부식방지, 저항감소 등 다양한 수처리에 적용 가능한 액체 거동 제어 장치의 개발이 요구되고 있다. 그러나 기존의 표면 젖음성 조절과 부식 방지 연구들은 표면의 굴곡이나 화학적인 코팅에 의존하였기 때문에 표면의 젖음성을 제어할 수 없었다.
전기습윤현상을 이용하면 액체의 움직임과 흐름을 조작할 수 있게 돼 발수성 소재의 표면을 젖게 하거나 흡수성 소재의 표면에 물이 스며들지 않게 제어가 가능하다.
연구팀은 그래핀이 코팅된 금속재질의 그물망을 전극으로 사용하여 전기습윤현상에 기반한 액체거동기술을 개발했다. 순수한 물 혹은 이온성 액체 방울을 그래핀 그물망 전극의 표면에 위치시키고 구리판을 또 다른 전극으로 사용해 전압을 인가 시 액체방울 모양이 가역적으로 변화함을 보였다.
이는 정전기력 (electrostatic force)이 물 분자의 정렬 혹은 이온의 이동을 유도하여 액체방울이 전기장 방향으로 늘어나 생긴 현상이다.
그래핀의 소수성(hydrophobicity)으로 인해 일반적으로는 그래핀이 코팅된 그물망에는 물이 투과되지 못한다. 하지만 전기장을 가할 때 물에 작용하는 정전기힘과 그물망 틈 사이에 작용하는 모세관힘의 상호작용에 기반한 젖음성 조절 메커니즘을 규명해 이를 바탕으로 그물망 바깥쪽에 높은 전기장을 인가하면 안쪽의 액체가 비가역적으로 그물망을 투과하여 이동함을 보여, 전기로 그물망의 발수성과 투수성을 능동적으로 제어가 가능함을 보였다.
이를 이용해 그래핀 그물망으로 가둔 물탱크의 물을 전기를 가해 내보내는 장치나 물방울을 층층이 위치한 그래핀 그물망들의 가장 위에서 아래로 전기를 이용해 이동시키는 장치 등을 개발했다. 실험결과 그래핀 코팅이 금속의 부식을 막아 수처리 환경에서도 장시간 사용이 가능했다.
이 연구는 그래핀이 코팅된 금속재질의 그물망을 전극으로 사용하여 액체의 모양과 흐름을 능동적으로 제어할 수 있는 기술을 개발한 것이다.
전기장을 가하여 자유롭게 젖음성을 조절할 수 있는 내부식성* 그물소재로 필요에 따라 물의 흐름을 막거나 통과시키는 제어장치를 제작하여 다양한 미세유체 장치, 방습 및 제습 장치, 차세대 수(水) 처리장치, 혹은 물에 대한 마찰저항 조절이 필요한 선박과 플랜트 등에 사용할 수 있다. 이들 분야에서 요구되는 액체의 정확한 거동제어와 소형화, 장시간 사용 등의 기능을 갖춘 소재/소자의 원천 기술로의 적용이 기대된다.
오일권 교수는 “이 연구는 기존 연구에서 나타났던 금속의 부식 현상 및 물이 젖는 정도를 조절할 수 없었던 문제를 그래핀이 코팅된 그물망 구조로 극복하면서 마이크로 수준에서 액체의 움직임과 젖음성을 제어할 수 있는 방법을 개발한 것이다. 방습 및 제습, 미세유체, 해수 담수화, 차세대 수(水) 처리 장치 등 다양한 분야에 적용될 수 있을 것이다.”고 말했다.
□ 그림 설명
그림1. 그래핀 매쉬의 제조 방법 및 기능성 길항 액체 제어 기술의 도식도
그림2. 비가역적 액츄에이션 모드(irreversible actuation mode)와 기능성 길항 액체 제어장치(functionally antagonistic active flow devices)
2016.11.16
조회수 13990