-
김희영 교수, 반도체 기판 내 불량칩 탐지, 군집화 기술 개발
〈 이영민 박사과정, 김희영 교수, 김진호 석사 〉
우리 대학 산업및시스템공학과 김희영 교수 연구팀이 반도체 기판 내 여러 형태의 혼합된 불량 칩 패턴을 효과적으로 탐지하고 군집화하는 기술을 개발했다.
이번 연구 결과는 산업공학 분야 저명 국제 학술지 ‘IISE Transactions’ 2월호에 게재됐다. 특히 이 논문은 특집 기사(featured article)로 선정돼 ‘ISE(Industrial and Systems Engineering)’ 매거진 1월호에도 게재됐다.
반도체 기판 제조공정은 기판 표면에 집적회로를 형성하는 복잡한 일련의 공정을 통해 구성된다. 기판 가공이 끝나면 기판 내 각 칩의 불량 여부를 테스트하는 과정을 거친다.
이 때 불량칩은 공정 이상 원인에 따라 특정한 패턴(예 : 원, 링, 스크래치 등)을 보이며 분포한다고 알려져 있다. 불량칩의 분포 패턴을 분석하는 것은 공정 이상을 탐지하고 그 원인을 파악하는데 중요한 단서를 제공한다.
최근 반도체 제조 공정이 점점 복잡해짐에 따라 한 기판 안에 여러 형태의 불량칩 패턴이 혼재되는 사례가 증가하고 있다. 연구팀은 다수의 불량칩 패턴을 효과적으로 파악하기 위해 일정 패턴을 형성하고 있는 불량칩을 선택한 후 여러 개의 특정 패턴으로 군집화하는 방법을 제시했다.
연구팀은 무작위 분포가 아닌 특정 패턴을 형성하고 있는 불량칩을 효과적으로 탐지할 수 있는 CPF(connected-path filtering) 기술을 개발했다. CPF는 특히 스크래치 형태로 분포된 불량칩 탐지에 탁월한 성능 향상을 보였다.
탐지한 불량칩을 다수의 패턴별로 군집화하는 과정에서는 사전에 서로 다른 몇 개의 패턴이 혼재됐는지 알지 못한다는 점과 각 패턴이 복잡한 모양을 가진다는 점이 어려움으로 남아 있었다. 이를 해결하기 위해 연구팀은 무한 비선형 혼합 모형(infinite warped mixture model)을 이용함으로써 군집화 과정에서 데이터가 스스로 군집 수를 결정할 수 있도록 했다.
또한 복잡한 모양의 패턴을 바로 이용하는 대신 은닉 공간(latent space)에서의 단순한 모양의 패턴을 이용해 보다 효과적으로 군집화하는 데 성공했다.
연구팀은 SK 하이닉스의 실제 반도체 데이터를 활용해 제안된 방법을 검증함으로써 실제 반도체 제조 현장 문제를 효과적으로 해결할 수 있음을 확인했다.
이번 연구에 1저자로 참여한 김진호 석사졸업생은 SK 하이닉스의 수학 파견 인원으로 선발돼 석사과정 동안 2저자인 이영민 박사과정과 공동 연구를 수행했다. 김진호 졸업생은 현재 SK 하이닉스 수석 엔지니어로 근무하고 있으며 Alius TEST 기술팀을 이끌고 있다.
□ 그림 설명
그림1. CPF 적용 전, 후 결과
그림2. 여러형태의 혼합된 불량칩 패턴과 각 특정 패턴으로 군집화된 불량칩 패턴
2018.06.12
조회수 12671
-
김용훈 교수, 차세대 탄소섬유 개발 위한 이론 규명
우리 대학 EEWS대학원 김용훈 교수 연구팀이 고품질 탄소섬유 개발에 필요한 고분자 전구체와 저차원 탄소 나노소재 간 계면의 원자구조 및 전자구조적 특성을 규명했다.
이번 연구로 차세대 탄소섬유 개발의 이론적 청사진을 제시할 것으로 기대된다.
이주호 박사과정이 1저자로 참여한 이번 연구 성과는 국제 과학 학술지인 ‘어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)’ 4월 11일자에 속표지(Inside Back Cover) 논문으로 게재됐다.
탄소섬유는 매우 가벼우면서도 뛰어난 기계적, 열적 특성을 갖고 있기 때문에 초경량 자전거, 골프 클럽 등 스포츠 용품부터 자동차, 항공우주, 원자력 등 다양한 첨단 기술 분야에 활발히 활용되고 있는 신소재이다.
탄소섬유는 전구체(precursor) 고분자를 방사, 안정화 및 탄화 등의 작업을 통해 얻어지며 현재 폴리아크릴로나이트릴(polyacrylonitrile, PAN)이 탄소섬유의 주 전구체로 사용되고 있다.
고품질 차세대 탄소섬유를 얻는 방법으로 탄소나노튜브(carbon nanotube, CNT)를 탄소섬유 전구체 고분자 매트릭스에 분산시켜 고분자의 결정성을 높이는 연구가 대표적이다. 탄소나노튜브와 전구체 고분자의 조합이 탄소섬유의 물성을 향상시킬 수 있다는 것도 실험을 통해 확인된 바 있다.
그러나 20년 이상의 연구에도 탄소나노튜브와 전구체 고분자 간 상호작용에 대한 이해는 실험적 접근법의 어려움으로 인해 부족한 상황이다. 따라서 탄소나노튜브를 활용한 고품질 탄소섬유 제작 기술은 한계가 있었다.
김 교수 연구팀은 슈퍼컴퓨터를 활용해 양자역학적 제1원리 기반 멀티스케일 시뮬레이션을 수행해 대표적인 탄소섬유 전구체인 폴리아크릴로나이트릴 고분자가 탄소나노튜브 계면에서 배열되는 과정을 원자 수준에서 체계적으로 재현했다. 또한 탄소나노튜브-폴리아크릴로나이트릴 고분자 계면이 특히 좋은 특성을 보일 수 있는 이유를 연구했다.
폴리아크릴로나이트릴 고분자의 단위체가 누워있는 형태의 특정 원자구조를 선호하고, 이 때 양전하와 음전하가 균형 있게 이동하는 계면 특유의 특성이 발현되므로 이 계면 구조를 최대화 시키는 것이 최적의 대규모 폴리아크릴로나이트릴 고분자 정렬을 유도할 수 있음을 밝혔다.
또한 폴리아크릴로나이트릴 고분자의 정렬도가 그래핀 나노리본과의 계면에서 극대화되는 것을 확인해 최근 각광을 받고 있는 그래핀을 이용해 탄소 섬유의 품질을 더욱 향상시킬 수 있다는 가능성도 제시했다.
“김 교수는 양자역학에 기반한 전산모사가 첨단 소재·소자의 개발을 위한 기본원리를 제공해 줄 수 있음을 보여준 연구의 예다”며 “이러한 전산모사 연구의 중요성은 컴퓨터 성능 및 전산모사 이론체계의 비약적인 발전과 더불어 더욱 커질 것이다”라고 말했다.
이번 연구는 미래창조과학부 중견연구자지원사업, 나노소재원천기술개발사업, 기초연구실지원사업, 글로벌프론티어사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 어드밴스드 펑셔널 머티리얼즈 표지
그림2. 연구 개요 모식도
2018.04.26
조회수 20232
-
김수빈 학생, 영국왕립화학회 학술지 표지논문 게재
〈 김 규 한 연구교수, 김 수 빈 학생 〉
우리 대학 학부 4학년 김수빈 학생의 이중 에멀젼(Double Emulsion) 형성 관련 논문이 국제 학술지의 표지논문에 선정됐다.
우리 대학의 학부생 연구지원 프로그램인 URP(Undergraduate Research Participation)를 통한 연구 참여가 활발해지면서 학부생이 1저자로 참여한 논문이 국제 학술지에 등재되는 경우가 많아지고 있다. 김수빈 학생은 URP 프로그램을 통한 연구로 국제 학술지 게재를 넘어 표지논문에 선정되는 성과를 이뤘다.
김수빈 학생의 논문은 세계적으로 권위 있는 학술단체인 영국왕립화학회(Royal Society of Chemistry)가 발간하는 국제 학술지 ‘소프트 매터(Soft Matter)’2018년 2월 7호 표지논문에 게재됐다. (논문명: Controllable one-step double emulsion formation via phase inversion)
특히 김수빈 학생은 이번 표지 이미지를 자신의 상상과 관찰을 바탕으로 직접 디자인해 그 가치를 더 높였다.
김 군이 수행한 이번 연구는 이중 에멀젼(Double Emulsion)의 안정성 향상 관련 연구로 이중 에멀젼이란 에멀젼 방울 안에 또 다른 액체로 구성된 방울이 서로 섞이지 않고 캡슐화 된 상태로 구성된 형태를 뜻한다.
이중 에멀젼은 캡슐화를 통한 보유 능력이 탁월해 식품, 화장품, 약물 전달 등 다양하게 사용 가능하다. 그러나 이중 에멀젼을 대량 생산할 수 있는 기존 기술은 내부의 액체 방울을 만든 뒤 이를 캡슐화 하는 두 단계의 공정에서 액체 방울이 쉽게 파괴되고 개발 이후 이중 에멀젼의 안정성이 보장되지 않는 한계가 있다.
또한 이런 과정에서 이중 에멀젼의 크기와 내부 액체 방울의 비율을 조절하는 데 어려움을 겪고 있다.
김 군은 분자들의 화학 반응처럼 물방울들이 충돌해 일어나는 상 반전(Phase Inversion)의 과정에서 단서를 얻었다. 상 반전이 일어나는 과정에서 이중 에멀젼이 일시적으로 형성됨을 발견했고 이를 바탕으로 이중 에멀젼의 안정성을 높일 수 있는 기준을 제시했다.
이후 지속된 연구에서 폴리메틸 메타아크릴레이트(PMMA)와 소수성 실리카 입자가 이 조건을 만족하는 것을 찾아내 한 번의 공정으로 안정적인 이중 에멀젼을 만들 수 있음을 증명했다. 추가적으로 PMMA와 나노입자의 양을 조절해 이중 에멀젼 내부 물방울의 개수와 부피를 조절하는데 성공했다.
2014년 총장장학생(KPF : KAIST Presidential Fellowship)이자 대통령과학장학생으로 입학한 김 군은 화학과 생명화학공학을 배우고 연구하며 직접 관찰하기 어려운 현상을 머릿속으로 상상하며 이를 바탕으로 가설을 세우고 연구해왔다.
김 군이 일찍부터 연구에 몰두할 수 있었던 것은 학부생 연구지원(URP) 프로그램에 두 차례 참여했던 경험 덕분이다. 학부 2학년 때에는 물리적 힘을 이용해 식품, 화장품에 널리 쓰이는 고내부상 에멀젼을 만드는 방법을 연구했고 1년 후엔 콜로이드 입자를 이용해 기저귀의 원료가 되는 다공성 고 흡수성 수지를 만드는 연구를 수행했다.
김 군은 두 번의 URP 프로그램에서 우수상을 수상했고 이 연구 결과 중 일부를 저명 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’에 2저자로 게재하기도 했다.
김수빈 학생은 “평소에 복수전공을 통해 생명화학공학과에서 에멀젼의 기초가 되는 유체역학, 계면 물리학 등을 배우고 화학과에서 분자 구조를 배워 왔던 것을 융합함으로서 좋은 결과가 나온 것 같다”고 말했다.
이어 “이번 연구 결과로 이중 에멀젼의 상용화에 기여할 수 있을 것으로 기대한다”며 “앞으로도 정확한 원리를 파악하고 이를 바탕으로 정교하게 컨트롤 할 수 있는 화학제품을 만들어 내고 싶다”고 말했다.
이번 연구는 URP 프로그램 및 한국연구재단의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 김수빈 학생이 직접 디자인한 저널 표지논문
2018.04.12
조회수 17962
-
박인규, 정연식 교수, 모바일 기기 탑재 가능한 고성능 수소센서 개발
〈 가오민 연구원, 박인규 교수, 조민규 연구원 〉
우리 대학 기계공학과 박인규 교수, 신소재공학과 정연식 교수 공동 연구팀이 폴리스티렌(Polystyrene) 구슬의 자기 조립(self-assembly) 현상을 이용해 고성능의 실리콘 기반 수소센서를 개발했다.
연구팀이 개발한 수소 센서는 제작 과정이 단순하고 비용이 저렴해 모바일 기기에 탑재할 수 있어 전력 소모에 어려움을 겪는 모바일 분야에 기여할 수 있을 것으로 기대된다.
가오 민(Gao Min) 연구원, 조민규 박사후 연구원, 한혁진 박사과정이 참여한 이번 연구는 나노 분야 국제 학술지 ‘스몰(Small)’ 3월 8일자 표지논문에 선정됐다.
청정에너지인 수소 가스는 차세대 에너지원으로 각광받고 있다. 현재도 냉각 시스템이나 석유 정제시설 등 다양한 산업분야에서 활용되고 있지만 무색, 무취의 가연성 물질이기 때문에 조기 발견이 어려워 고성능 수소 센서를 개발하는 것이 중요하다.
그러나 기존 수소 센서들은 부피가 크고 소모 전력이 높으며 제작비용이 상대적으로 높은 단점이 있다.
공동 연구팀은 수백 나노미터 (nm) 직경의 폴리스틸렌 구슬들을 자기조립 현상을 이용해 규칙적으로 실리콘 기판 위에 배열시켰다. 이를 이용해 수십 나노미터 수준의 그물 모양 패턴을 구현해 초소형 고성능 수소 센서를 개발했다.
이 기술은 수소가스가 센서에 노출되면 팔라듐 나노입자와 반응해 팔라듐의 일함수(work function)가 변화하고 그에 따라 실리콘 나노 그물 내 전자의 공핍 영역(depletion region)의 크기가 변화하면서 전기 저항이 바뀌는 원리이다.
이번에 개발한 수소 센서는 최소 선폭 50 나노미터 (nm) 이하의 실리콘 나노 그물 구조 센서를 저비용으로 구현할 수 있다.
일반적으로 수소 센서의 성능은 민감도, 반응속도, 선택성 등에 따라 구분된다. 연구팀의 센서는 0.1%의 수소 농도에서 10%의 민감도와 5초의 반응속도를 기록해 기존 실리콘 기반 수소 센서보다 50% 이상 빠르고 10배 이상 높은 민감도를 보였다.
박인규 교수는 “기존의 값비싸고 복잡한 공정을 거치지 않고도, 단순한 방법으로 초미세 나노패턴 구현이 가능하며, 수소센서 뿐만 아니라 다양한 화학, 바이오센서에도 응용이 가능할 것이다”고 말했다.
과학기술정보통신부의 나노소재기술개발사업, 한국연구재단의 국민위해인자에 대응한 기체분자식별․분석기술개발사업, 해양수산부의 해양수산환경기술개발사업, KUSTAR-KAIST 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 스몰(Small) 2018년 3월 8일자 Issue 표지논문
그림2. 완성된 수소센서의 일반 사진 (왼쪽), 전자현미경 사진 (중간, 오른쪽)
그림3. 수소 농도 변화에 따른 수소센서의 감지 그래프
2018.04.04
조회수 21250
-
변혜령 교수, 빠른 충전 가능한 리튬-산소전지 개발
〈 변 혜 령 교수 〉
우리 대학 화학과 변혜령 교수 연구팀과 EEWS 정유성 교수 연구팀이 높은 충전 속도에서도 약 80%의 전지 효율 성능(round-trip efficiency)을 갖는 리튬-산소 전지를 개발했다.
기존에 개발된 리튬-산소 전지는 충전 속도가 높아지면 전지 효율 성능이 급속히 저하되는 단점이 있었다. 이번 연구에서는 방전 생성물인 리튬과산화물의 형상 및 구조를 조절해 난제였던 충전 과전위를 낮추고 전지 효율 성능을 향상시킬 수 있음을 증명했다.
특히 값비싼 촉매를 사용하지 않고도 높은 성능을 가지는 리튬-산소 전지를 제작할 수 있어 차세대 전지의 실용화에 기여할 것으로 보인다.
이번 연구결과는 네이처 커뮤니케이션즈(Nature Communications) 2월 14일자 온라인 판에 게재됐다.
리튬-산소 전지는 리튬-이온 전지보다 3~5배 높은 에너지 밀도를 가지고 있어 한 번 충전에 장거리 주행을 할 수 있는, 즉 장시간 사용이 요구되는 전기차 및 드론 등의 사용에 적합한 차세대 전지로 주목받고 있다.
하지만 방전 시 생성되는 리튬과산화물이 충전 시 쉽게 분해되지 않기 때문에 과전위가 상승하고 전지의 사이클 성능이 낮은 문제점을 갖고 있다. 리튬과산화물의 낮은 이온 전도성과 전기 전도성이 전기화학적 분해를 느리게 만드는 것이다.
리튬과산화물의 전도성을 향상시키고 리튬-산소 전지의 성능을 높이기 위해 연구팀은 메조 다공성 탄소물질인 CMK-3를 전극으로 사용해 일차원 나노구조체를 갖는 비결정질 리튬과산화물을 생성하는 데 성공했다.
전극을 따라 생성되는 비표면적이 큰 비결정질의 리튬과산화물은 충전 시 빠르게 분해돼 과전위의 상승을 막고 충전 속도를 향상시킬 수 있다. 이는 기존의 결정성을 갖는 벌크(bulk) 리튬과산화물과 달리 높은 전도성을 갖기 때문이다.
이번 결과는 촉매나 첨가제의 사용 없이도 리튬과산화물의 크기 및 구조를 제어해 리튬-산소 전지의 근본적 문제를 해결할 수 있는 방법을 제시했다는 의의를 갖는다.
변혜령 교수는 “리튬과산화물의 형상, 구조 및 크기를 제어해 전기화학 특성을 변화시킬 수 있음을 증명함으로써 리튬-산소 전지뿐만이 아닌 다른 차세대 전지의 공통된 난제를 해결할 수 있는 실마리를 찾았다”고 말했다.
이론 해석을 제공한 정유성 교수는 “이번 연구 결과로 기존에 절연체로 여겨진 리튬과산화물이 빠르게 분해될 수 있는 반응 원리를 이해할 수 있었다”고 말했다.
이번 연구는 한국연구재단의 지원을 받아 수행됐으며 일본의 리츠메이칸(Ritsumeikan) 대학 가속기 센터와 공동연구로 진행됐다.
□ 그림 설명
그림1. 리튬과산화물 도식 및 투과전자현미경 사진
그림2. 충전 속도 특성 비교
그림3. DFT 계산을 통한 (a) 결정질 및 (b) 비결정질 리튬과산화물의 충방전 에너지 다이어그램
2018.03.29
조회수 16920
-
육종민, 이정용 교수, 나트륨 기반의 이차전지 음극 소재 개발
우리 대학 신소재공학과 육종민 교수와 이정용 명예교수(前 기초과학연구원 나노물질 및 화학반응연구단) 공동 연구팀이 리튬 기반 이차전지 음극재료에 비해 저렴하고 수명이 긴 나트륨 기반 이온 전지용 음극 소재를 개발했다.
기존의 이차전지 음극재료 대비 1.5배 수명이 길고 약 40% 저렴한 나트륨 이온 전지용 음극 소재 개발을 통해 나트륨 이온 전지의 상용화에 기여할 것으로 기대된다.
박재열 박사과정과 기초과학연구원 김성주 박사가 공동 1저자로 참여한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 3월 2일자 온라인 판에 게재됐다.
현재 리튬 이온 전지는 휴대폰, 전기차 등 일상생활과 밀접한 다양한 곳에 사용되고 있다. 그런데 리튬은 매장지역이 한정돼 있고 수요가 급등해 공급량이 부족한 상황이다. 2015년과 대비해 현재 리튬의 가격은 3배 이상 상승했다.
이런 문제를 해결하기 위해 리튬 이온 전지의 대안으로 나트륨 이온 전지가 주목받고 있다. 리튬이 지구 지표면에 0.005%만 존재하는 반면 나트륨은 그 500배 이상인 2.6% 존재하기 때문에 공급 문제가 해결된다.
따라서 나트륨 이온 전지는 기존 리튬 이온 전지에 비해 40% 저렴한 가격으로 같은 용량의 에너지를 저장할 수 있을 것으로 전망된다.
그러나 리튬 이온 전지의 음극 재료인 흑연은 나트륨의 저장에 적합하지 않다. 흑연 간의 층 사이에 리튬 이온들이 삽입(intercalation)되며 저장이 이뤄지는데 나트륨 이온을 저장하기에는 흑연 층간 거리가 너무 좁기 때문이다. 이러한 이유로 나트륨 이온 전지 상용화를 위해서는 이에 적합한 음극 소재를 개발하는 것이 필수적이다.
연구팀은 흑연의 대안을 나노판상 구조를 가진 황화구리에서 찾았다. 황화구리는 높은 전기전도도와 이론용량을 갖는다. 또한 황화구리에 나트륨이 저장되는 과정을 원자단위에서 실시간 분석한 결과 황화구리의 결정 구조가 유동적으로 변화하며 안정적으로 나트륨 이온을 저장하는 것을 확인했다.
그 결과로 황화구리의 나트륨 저장 성능이 흑연 이론용량(~370mAh/g)의 1.5배(~560mAh/g)에 달하는 것을 확인했고 충, 방전을 250회 반복한 이후에도 이론용량의 90% 이상이 유지됨을 증명했다.
이번 연구로 나트륨 이온전지가 상용화되면 지구 표면의 약 70%를 차지하는 바다에 무궁무진하게 존재하는 나트륨을 활용할 수 있다. 이는 배터리 원가 절감으로 이어지고 휴대폰, 전기 자동차, 노트북 등의 단가를 약 30% 정도 낮출 수 있을 것으로 기대된다.
이정용 교수는“이번 연구결과가 차세대 고성능 나트륨 이온 전지 개발에 크게 기여할 것으로 기대된다”고 말했다.
육종민 교수는 “요즘 미세먼지 등의 환경오염 문제로 특히 신재생 에너지 상품에 관심이 많은데 이번 연구 결과를 통해 우리나라가 관련 제품에 대한 우위를 점할 수 있는 토대를 한 단계 다졌다고 생각한다”고 말했다.
이번 연구는 한국연구재단의 생애첫연구사업 및 나노, 소재기술개발사업과 기초과학연구원의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 판상구조 황화구리 촬영 사진
그림2. 황화구리 내 나트륨이 저장되면서 나타나는 결정구조 변화 양상
그림3. 황화구리 내 나트륨 충방전 횟수별 저장 용량
2018.03.08
조회수 16276
-
최민기 교수, 산화 내성 비약적으로 높인 CO2 흡착제 개발
우리 대학 생명화학공학과 최민기 교수 연구팀이 산화 내성을 크게 높인 아민 기반의 이산화탄소 흡착제 개발에 성공했다.
이번 연구에서 개발한 이산화탄소 흡착제는 기존 아민 기반 흡착제들의 문제점인 산화를 통한 비활성화 문제를 해결함으로써 실용화가 가능한 정도로 안정성을 끌어 올렸다는 의의를 갖는다.
이번 연구 성과는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 2월 20일자 온라인 판에 게재됐다.
지구온난화의 주범인 이산화탄소의 포집을 위해 이산화탄소 흡착제 연구가 활발히 진행되고 있다. 그 중 재생에 필요한 에너지 소요가 적고 무해한 고체 흡착제에 대한 관심이 커지고 있는데 그 중 기공이 발달한 고체 내부에 고분자 형태의 아민을 도입한 종류의 흡착제들이 주목받고 있다.
그러나 기존의 아민 기반 고체 흡착제는 뛰어난 이산화탄소 흡착 성능에도 불구하고 반복적인 사용에 따른 화력발전소의 배기가스 내 산소로 인한 아민의 산화 분해 현상이 발생해 성능이 떨어지는 심각한 안정성 문제가 있다.
연구팀은 상용 고분자 아민에 존재하는 극소량의 철, 구리와 같은 금속 불순물들이 아민의 산화 분해를 가속하는 촉매로 작용하는 것을 발견했다.
연구팀은 이 불순물의 활성을 억제할 수 있는 킬레이트제(chelator)라 불리는 소량의 촉매 독을 주입해 산화 안정성을 비약적으로 높였다. 개발된 흡착제는 92% 이상의 대부분의 흡착성능을 유지했으며 이는 기존 흡착제에 비해 약 50배 이상 증진된 산화 안정성이다.
연구팀은 우수한 이산화탄소 흡, 탈착 특성 뿐 아니라 기존 흡착제들의 고질적 문제점이었던 산화 안정성까지 모두 확보했기 때문에 현재까지 개발된 다른 고체 흡착제들보다 실용화에 가깝다고 밝혔다.
1저자인 최우성 박사과정은 “이번 연구는 고체 이산화탄소 흡착제의 산화 분해 문제점을 획기적으로 개선하여 상용화 수준까지 발전시켰다는 점에서 큰 의미가 있다”고 말했다.
최민기 교수는 “연구팀이 개발하는 이산화탄소 흡착제는 상용화 초기 단계에 진입했고 이미 흡착제를 구성하고 있는 각 요소 기술이 세계를 리드하고 있다”며 “연구 역사가 짧은 만큼 앞으로도 개선할 부분이 많지만 흡착제를 더 발전시켜 세계 최고의 이산화탄소 포집용 흡착제를 개발하겠다”고 말했다.
이번 연구는 과학기술정보통신부의 Korea CCS 2020 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1.흡착제 합성 모식도
그림2. 연구에서 개발한 신규 흡착제와 기존 흡착제의 성능 비교
2018.03.07
조회수 14436
-
박태형 박사과정, 권태혁 교수, 해저 점토질에서 불타는 얼음 생성원리 규명
우리 대학 건설및환경공학과 권태혁 교수 연구팀이 일명 불타는 얼음으로 불리는 천연가스 하이드레이트가 바다 속 점토질 퇴적토에서 다량으로 생성되는 원리를 규명했다.
이번 연구는 점토 광물이 하이드레이트 생성을 촉진한다는 것을 실험적으로 규명하고 점토질 퇴적층에서 하이드레이트의 존재에 대한 새로운 원리를 제시했다는 의의를 갖는다.
박태형 박사과정이 1저자로 참여한 이번 연구는 환경 분야 국제 학술지 ‘인바이러멘탈 사이언스&테크놀로지(Environmental Science & Technology)’ 2월 3일자 온라인 판에 게재됐다.
해저의 퇴적토나 영구동토층(2년 이상의 기간 동안 토양이 얼어있는 지대)에서 주로 발견되는 천연가스 하이드레이트는 메탄 등의 천연가스가 물 분자로 이뤄진 얼음과 비슷한 결정구조에 갇혀있는 고체물질이다. 흔히 불타는 얼음으로 불리는 이 물질은 막대한 매장량으로 인해 차세대 대체 에너지로 주목받고 있다.
점토질 퇴적토에서는 가스 하이드레이트 생성이 어렵다는 것이 일반적인 이론이다. 그러나 최근에는 전 세계적으로 해저 점토질 퇴적층에서 다량의 가스 하이드레이트가 발견되고 있어 기존 이론과 상반된 현상에 대한 원인을 규명하는 것이 과제로 남아 있다.
특히 점토광물 표면은 음전하를 띄고 있는데 이 전하들이 점토표면에 흡착된 물 분자에 상당한 전기적 힘을 가해 분극화시킨다. 또한 점토 표면의 음전하를 상쇄하기 위해 주변에 많은 양이온들이 존재한다.
따라서 보통 조건의 물 분자와 분극화된 조건의 물 분자들의 하이드레이트 결정 생성 양상을 비교하는 것이 연구의 핵심이다. 그러나 점토 주변에 자연적으로 존재하는 양이온들로 인해 실험 연구를 수행할 수 없었다.
연구팀은 기존 연구의 한계 극복을 위해 물에 전기장을 가해 점토 표면과 같이 물 분자들의 분극화를 구현한 뒤 물 분자들의 가스 하이드레이트 결정 생성 속도를 측정했다.
그 결과 점토 표면과 비슷한 크기의 전기장(10kV/m)을 물에 적용했을 때 가스 하이드레이트 결정핵 생성 속도가 약 6배 이상 빨라지는 것을 관찰했다. 이는 물 분자가 전기장에 의해 분극화되면 분자 간 수소 결합이 부분적으로 약해지고 내부에너지가 감소되기 때문인 것으로 밝혀졌다.
연구팀은 전기장이 하이드레이트 생성을 촉진함을 실험적으로 규명하는데 성공함으로써 점토광물의 존재가 하이드레이트 생성을 방해하는 것이 아니라 특정 조건에서는 오히려 하이드레이트 생성을 촉진함을 밝혔다.
권 교수는 “이번 연구를 통해 점토질 퇴적토에서 가스 하이드레이트가 많이 발견되는 이유에 대해 좀 더 이해할 수 있게 됐다”며 “멀지 않은 미래에 인류는 가스 하이드레이트를 에너지 자원으로 생산하고 소비할 수 있을 것으로 기대한다”고 말했다.
□ 그림 설명
그림1. 물 분자의 가스 하이드레이트 결정 생성 실험과 촉진 모식도
그림2. 가스 하이드레이트 생성 촉진(좌)과 억제(우) 반응
2018.03.05
조회수 9831
-
신의철, 박수형 교수, 방관자 면역세포의 인체 손상 원리 발견
우리 대학 의과학대학원 신의철, 박수형 교수, 중앙대학교병원 김형준, 이현웅 교수 공동 연구팀이 바이러스 질환에서 방관자 면역세포에 의해 인체 조직이 손상되는 과정을 발견했다.
이번 연구를 통해 바이러스 질환, 면역 질환이 인체를 손상시키는 원리를 이해하고 이를 신약 개발에 적용할 수 있을 것으로 기대된다.
이번 연구 결과는 면역학 분야 국제 학술지 ‘이뮤니티(Immunity)’ 1월자 최신호에 게재됐다.
바이러스에 감염되면 바이러스 증식 자체로 인해 인체 세포가 파괴되지만, 바이러스가 증식해도 직접적으로 인체 세포를 파괴하지 않기도 한다.
하지만 이러한 경우에도 인체 조직은 손상돼 질병을 일으키게 되는데 그 원인이나 과정은 상세히 밝혀지지 않았다. 다만 간염 바이러스에 감염됐을 때 이와 같은 현상이 잘 발생한다는 사실만 알려져 있었다.
면역계의 가장 중요한 특성은 특이성(specificity)으로 바이러스에 감염되면 해당 바이러스에 특이적인 면역세포만 활성화돼 작동을 하고 다른 바이러스들에 특이적인 면역세포들은 활성화되지 않는 것이 일반적이다.
감염된 바이러스가 아닌 다른 바이러스와 관련된 면역세포들이 활성화되는 경우도 있다. 이런 현상은 흔히 ‘방관자 면역세포의 활성화’라는 이름으로 오래 전부터 알려진 현상이다. 하지만 이 현상의 의학적 의미는 불투명했다.
공동 연구팀은 A형 간염 바이러스에 감염된 환자를 분석했다. 연구팀은 해당 바이러스에 특이적인 면역세포뿐 아니라 다른 바이러스에 특이적인 엉뚱한 면역세포들까지 활성화되는 것을 발견했고 이러한 엉뚱한 면역세포에 의해 간 조직이 손상되고 간염이 유발되는 것을 확인했다.
연구팀의 발견은 방관자 면역세포가 인체 손상을 일으키는 데 관여한다는 점을 규명했다는 의의를 갖는다.
이번 발견의 핵심은 바이러스에 감염되면 감염된 인체 조직에서 과다하게 생성되는 면역 사이토카인 물질인 IL-15가 방관자 면역세포들을 활성화시키고, 활성화된 면역세포들은 NKG2D 및 NKp30이라는 수용체를 통해 인체 세포들을 무작위로 파괴할 수 있다는 것이다.
이러한 결과는 IL-15 사이토카인, NKG2D, NKp30 수용체와 결합하는 항체 치료제를 신약 개발하면 바이러스 및 면역 질환에서 발생하는 인체 손상을 막을 수 있다는 중요한 의미를 갖는다.
이번 연구는 중앙대학교 병원 임상 연구팀과 KAIST 의과학대학원이 동물 모델이 아닌 인체에서 새로운 면역학적 원리를 직접 밝히기 위해 협동 연구를 한 것으로 중개 연구(translational research)의 주요 성과이다.
신 교수는 “면역학에서 불투명했던 방관자 면역세포 활성화의 의학적 의미를 새롭게 발견한 첫 연구사례이다”며 “향후 바이러스 질환 및 면역질환의 인체 손상을 막기 위한 치료제 연구를 계속하겠다”고 말했다.
이번 연구는 삼성미래기술육성재단의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 방관자 면역세포에 의한 인체 손상 과정 개념도
2018.02.21
조회수 15038
-
최원호 교수, 전기바람 발생 원리 규명
우리 대학 물리학과 최원호 교수가 전북대 문세연 교수와의 공동 연구를 통해 전기 바람(Electric wind)이라 불리는 플라즈마 내 중성기체 흐름의 주요 원리를 규명했다.
이는 플라즈마 내 존재하는 전자나 이온과 중성입자 사이의 상호작용에 대한 기초 연구로 플라즈마를 이용하는 유체 제어기술 등 플라즈마 응용 기술의 발전에 기여할 것으로 기대된다.
박상후 박사가 1저자로 참여한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 1월 25일자 온라인 판에 게재됐다.
두 개의 서로 다른 입자 무리로 구성된 유체역학 문제는 수세기 동안 뉴턴을 포함한 많은 과학자들의 관심을 지속적으로 받아 온 연구주제이다.
전자나 이온과 중성입자 간의 충돌로 인한 상호작용은 지구나 금성의 대기에서도 일어나는 여러 자연현상의 기초 작용으로 흔히 알려져 있다. 플라즈마에서의 전기바람은 이 상호작용을 통해 나온 결과의 대표적인 예다.
전기바람이란 전하를 띈 전자나 이온이 가속 후 중성기체 입자와 충돌해 발생하는 중성기체의 흐름을 말한다. 선풍기 날개와 같이 기계적인 움직임 없이 공기의 움직임을 일으킬 수 있는 방법으로 기존의 팬을 대체할 수 있는 차세대 기술로 주목받고 있다.
최근에는 이와 같은 플라즈마 기술을 적용해 트럭 및 선박에서 발생하는 공기저항을 감소시켜 연료효율의 증가와 미세먼지 발생 감소, 풍력발전기 날개 표면의 유체 분리(flow separation)의 완화, 도로 터널 내 공기저항 및 미세먼지 축적 감소, 초고층 건물의 풍진동 감소와 같은 응용기술 개발이 여러 나라에서 활발히 시도되고 있다.
대기압 플라즈마 내에 전기장이 강하게 존재하는 공간에서 전자나 이온이 불균일하게 분포되면 전기바람이 발생한다. 전기바람의 주요 발생 원인은 현재까지도 명확하게 밝혀지지 않아 유체 제어와 관련한 여러 응용분야에 적용하는데 어려움이 있었다.
연구팀은 대기압 플라즈마를 이용해 전기바람 발생의 전기 유체역학적 원리를 밝히는데 성공했다. 전기 유체역학적 힘에 의한 스트리머 전파와 공간전하 이동의 효과를 정성적으로 비교하는 데 성공했다.
연구팀은 스트리머 전파는 전기바람 발생에 큰 영향을 주지 못하고 오히려 스트리머 전파 이후 발생하는 공간전하의 이동이 주요 원인임을 밝혔다. 특정 플라즈마에서는 음이온이 아닌 전자가 전기바람 발생의 핵심 요소임을 확인했다.
또한 헬륨 플라즈마에서 최고 초속 4m 속력의 전기바람이 발생했는데 이는 일반적인 태풍 속력의 4분의 1 정도이다. 이러한 결과를 통해 전기바람의 속력을 효율적으로 제어할 수 있는 기초 원리를 제공할 수 있을 것으로 보인다.
이번 연구는 하전입자와의 상호작용으로 인해 중성기체 흐름이 발생하는 원리를 실험을 통해 설명했고 정확한 분석법과 설득력을 갖췄다는 평을 받는다.
최 교수는 “이번 결과는 대기압 플라즈마와 같이 약하게 이온화된 플라즈마에서 나타나는 전자나 이온과 중성입자 사이의 상호작용을 학문적으로 이해하는데 유용한 기반이 될 것이다”며 “ 이를 통해 경제적이고 산업적 활용이 가능한 플라즈마 유체제어 분야를 확대하고 다양한 활용을 가속화하는데 큰 역할을 할 것으로 기대된다”고 말했다.
이번 연구는 국가핵융합연구소의 미래선도플라즈마-농식품융합기술개발사업과 산업통상자원부의 사업화연계기술개발사업(R&BD)의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 약전리 대기압 제트 플라즈마 사진
그림2. 대기압 헬륨 제트 플라즈마의 고전압 펄스 폭 및 높이에 따른 전기바람 속력의 변화
2018.02.19
조회수 17306
-
최성율, 박상희 교수, 전자기기용 저전력 멤리스터 집적회로 개발
우리 대학 전기및전자공학부 최성율 교수와 신소재공학과 박상희 교수 공동 연구팀이 메모리와 레지스터의 합성어인 멤리스터(Memristor)를 이용해 저전력 비휘발성 로직-인-메모리 집적회로를 개발했다.
레지스터, 커패시터, 인덕터에 이어 4번째 전자 회로 소자인 멤리스터를 통한 기술로 새로운 컴퓨팅 아키텍처(하드웨어와 소프트웨어를 포함한 컴퓨터 시스템 전체 설계방식)를 제공할 수 있을 것으로 기대된다.
장병철, 남윤용 박사과정이 공동 1저자로 참여한 이번 연구는 재료분야 국제 학술지 ‘어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)’ 1월 10일자 표지 논문으로 게재됐다.
4차 산업혁명 시대는 사물인터넷, 인공지능 등의 정보통신 기술 기반을 통해 발전되고 있으며 이는 사용자 친화적인 유연, 웨어러블 기기를 활용해 제공될 것으로 보여진다.
이러한 측면에서 저전력 배터리를 기반으로 한 소프트 전자기기의 개발에 대한 필요성이 커지고 있다.
하지만 기존 트랜지스터로 구성된 메모리와 로직회로 기반의 전자 시스템은 문턱전압 이하 수준의 트랜지스터 누설 전류(subthreshold leakage current)에 의한 대기전력 소모로 인해 휴대용 전자기기로의 응용에 한계가 있었다. 또한 기존 메모리와 프로세서가 분리돼 있어 데이터를 주고받는 과정에서 전력과 시간이 소모되는 문제점도 있었다.
연구팀은 문제 해결을 위해 정보의 저장과 로직 연산 기능을 동시에 구현할 수 있는 로직-인-메모리 집적회로를 개발했다.
플라스틱 기판 위에 비휘발성의 고분자 소재를 이용한 멤리스터, 산화물 반도체 소재를 이용한 유연 쇼트키 다이오드 선택소자(Schottky Diode Selector)를 수직으로 집적해 선택소자와 멤리스터가 일대일로 짝을 이루는 1S-1M 집적소자 어레이를 구현했다.
연구팀은 기존의 아키텍처와는 달리 대기 전력을 거의 소모하지 않는 비휘발성 로직-인-메모리 집적회로를 구현해 새로운 컴퓨팅 아키텍처를 개발했다. 또한 어레이 상에서 소자 간에 흐르는 스니크(sneak) 전류라고 불리는 누설 전류 문제도 해결했다.
그 밖에도 연구팀의 기술은 병렬 컴퓨터 방식인 하나의 명령어로 여러 값을 동시에 계산하는 단일 명령 다중 데이터 처리(Single-Instruction Multiple-Data, SIMD)를 구현했다.
최 교수는 “멤리스터와 선택소자의 집적을 통해 유연한 로직-인-메모리 집적회로를 구현한 이번 연구는 유연성과 저전력성을 가진 메모리와 로직을 동시에 제공한다”며 “모바일 및 웨어러블 전자시스템의 혁신을 가져 올 수 있는 원천기술을 확보했다는 의의를 갖는다”고 말했다.
이번 연구는 과학기술정보통신부 한국연구재단이 추진하는 글로벌프론티어사업 등의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 저널에 게재된 표지논문 사진
그림2 유연 멤리스티브 비휘발성 로직-인-메모리 회로와 소자 단면 고해상도 투과전자현미경 이미지
그림3. 비휘발성 메모리 소자 응용을 위한 인가전압에 따른 소자 성능 확인
그림4. 유연 1S-1M 집적 소자 어레이의 병렬 로직 연산
2018.02.13
조회수 18208
-
양찬호 교수, 전기적 위상 결함 제어기술 개발
〈 양 찬 호 교수, 김 광 은 박사과정 〉
우리 대학 물리학과 양찬호 교수 연구팀이 강유전체 나노구조에서 전기적인 위상 결함을 만들고 지울 수 있는 기술을 개발했다.
이 기술을 통해 전기적 위상 결함 기반의 저장 매체를 개발한다면 대용량의 정보를 안정적으로 저장할 수 있을 것으로 기대된다.
이번 연구는 포스텍 최시영 교수, 포항 가속기연구소 구태영 박사, 펜실베니아 주립대학 첸(Long-Qing Chen) 교수, 캘리포니아 대학 라메쉬 교수 등과 공동으로 수행됐다. 김광은 박사과정이 1저자로 참여한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 1월 26일자에 게재됐다.
위상학은 물체를 변형시켰을 때 물체가 가지는 성질에 대한 연구를 하는 학문으로, 원과 삼각형은 위상학적으로 동일한 물질이라고 할 수 있다.
2016년도 노벨 물리학상 발표 기자회견에서 노벨위원회는 위상학의 개념을 구멍이 한 개 뚫린 베이글 빵, 구멍이 없는 시나몬 빵, 유리컵 등에 비유했다. 시나몬 빵과 유리컵은 다르게 보이지만 구멍이 없다는 점만 따지면 위상학적으로 같은 물질이 된다. 하지만 구멍의 개수가 다른 베이글과 시나몬 빵은 위상학적으로 다른 물질이 되는 식이다.
즉 물질에서 위상학적이라 함은 연속적인 변형으로는 그 특성을 변화시킬 수 없는 절대적인 보존량을 말한다. 이러한 위상학적 특징을 이용해 정보저장 매체를 만들면 외부의 자극으로부터 보존되며 사용자의 의도대로 쓰고 지울 수 있는 이상적인 비휘발성 메모리를 제작할 수 있다.
강유전체와 달리 강자성체(자기적 균형이 깨진 상태, 외부 자기장을 제거해도 자기장이 그대로 남아있음)의 경우는 소용돌이 형태의 위상학적 결함 구조가 이미 구현됐다.
반면 외부 전기장 없이도 스스로 분극을 갖는 강유전체는 자성체에 비해 위상학적 결함 구조를 더 작은 크기로 안정시키고 더 적은 에너지를 이용해 조절할 수 있다는 장점이 있음에도 불구하고 초보적인 연구 단계에 머물러 있었다. 실험적으로 위상학적 결함 구조를 어떻게 안정화시키며 어떠한 방식으로 조절할 것인지에 대한 연구가 부족했기 때문이다.
연구팀은 문제 해결을 위해 강유전체 나노구조에서 비균일한 변형을 줘 위상학적 결함 구조를 안정시키는 데 성공했다. 연구팀은 강유전체 나노접시(ferroelectric nanoplate) 구조를 특정 기판 위에 제작해 접시의 바닥면에는 강한 압축 변형을 주는 동시에 옆면과 윗면은 변형에서 자유로운 구조를 만들었다.
이러한 구조는 방사형으로 압축변형 완화(Compressive strain relaxation)가 일어나 격자의 변형이 오히려 강유전체의 소용돌이 구조를 안정화시키게 된다. 연구팀은 이번 연구가 고밀도, 고효율, 고안정성을 갖춘 위상학적 결함기반 강유전 메모리에 핵심적인 원리를 제시했다고 말했다.
양 교수는 “강유전체는 부도체이지만 위상학적 강유전 준입자가 국소적으로 전자 전도성을 수반할 수 있어 새로운 양자소자 연구로 확대될 수 있을 것이다”고 말했다.
이번 연구는 한국연구재단의 창의연구지원사업, 선도연구센터지원사업, 글로벌프론티어사업 등의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 전기적 위상 결함 개수를 조절하여 만든 5가지의 다른 위상 구조
2018.02.08
조회수 29308