< 김재철AI대학원 예종철 교수 >
신약 개발이나 재료과학과 같은 분야에서는 원하는 화학 특성 조건을 갖춘 물질을 발굴하는 것이 중요한 도전으로 부상하고 있다. 우리 대학 연구팀은 화학반응 예측이나 독성 예측, 그리고 화합물 구조 설계 등 다양한 문제를 동시에 풀면서 기존의 인공지능 기술을 뛰어넘는 성능을 보이는 기술을 개발했다.
김재철AI대학원 예종철 교수 연구팀이 분자 데이터에 다중 모달리티 학습(multi-modal learning) 기술을 도입해, 분자 구조와 그 생화학적 특성을 동시에 생성하고 예측이 가능해 다양한 화학적 과제에 광범위하게 활용가능한 인공지능 기술을 개발했다고 25일 밝혔다.
심층신경망 기술을 통한 인공지능의 발달 이래 이러한 분자와 그 특성값 사이의 관계를 파악하려는 시도는 꾸준히 이루어져 왔다. 최근 비 지도 학습(unsupervised training)을 통한 사전학습 기법이 떠오르면서 분자 구조 자체로부터 화합물의 성질을 예측하는 인공지능 연구들이 제시되었으나 새로운 화합물의 생성하면서도 기존 화합물의 특성 예측이 동시에 가능한 기술은 개발되지 못했다.
연구팀은 화학 특성값의 집합 자체를, 분자를 표현하는 데이터 형식으로 간주해 분자 구조의 표현식과 함께 둘 사이의 상관관계를 아울러 학습하는 AI학습 모델을 제안했다. 유용한 분자 표현식 학습을 위해 컴퓨터 비전 분야에서 주로 연구된 다중 모달리티 학습 기법을 도입해, 두 다른 형식의 데이터를 통합하는 방식으로, 바라는 화합물의 성질을 만족하는 새로운 화합물의 구조를 생성하거나 주어진 화합물의 성질을 예측하는 생성 및 성질 특성이 동시에 가능한 모델을 개발했다.
< 그림 1. 제안하는 모델을 활용한 입력 특성값의 분자 구조 변환 결과 >
연구팀이 제안한 모델은 50가지 이상의 동시에 주어지는 특성값 입력을 따르는 분자 구조를 예측하는 등 분자의 구조와 특성 모두의 이해를 요구하는 과제를 해결하는 능력을 보였으며, 이러한 두 데이터 정보 공유를 통해 화학반응 예측 및 독성 예측과 같은 다양한 문제에도 기존의 인공지능 기술을 뛰어넘는 성능을 보이는 것으로 확인됐다.
이 연구는 독성 예측, 후보물질 탐색과 같이 많은 산업계에서 중요하게 다뤄지는 과제를 포함해, 더 광범위하고 풍부한 분자 양식과 고분자, 단백질과 같은 다양한 생화학적 영역에 적용될 수 있을 것으로 기대된다.
예종철 교수는 “새로운 화합물의 생성과 화합물의 특성 예측 기술을 통합하는 화학분야의 새로운 생성 AI기술의 개척을 통해 생성 AI 기술의 저변을 넓힌 것에 자부심을 갖는다”고 말했다.
예종철 교수 연구팀의 장진호 석박통합과정이 제1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’지난 3월 14일 자 온라인판에 게재됐다. (논문명 : Bidirectional Generation of Structure and Properties Through a Single Molecular Foundation Model)
한편 이번 연구는 한국연구재단의 AI데이터바이오선도기술개발사업으로 지원됐다.
우리 대학 생명과학과 김호민 교수 연구팀과 국제 공동연구팀인 미국 워싱턴대학교 단백질디자인 연구소 (Institute for Protein Design, IPD) 닐 킹 교수 (Prof. Neil King) 연구팀은 컴퓨터기반 단백질디자인 기술을 활용하여 선천성면역을 활성화시키는 새로운 인공단백질을 디자인하고, 그들의 3차원 분자구조를 규명하는데 성공했다고 10일 밝혔다. 김호민 교수 연구팀과 Neil King 교수 연구팀은 컴퓨터 기반 단백질디자인 기술을 활용하여 선천성면역 수용체인 TLR3와 높은 친화도를 갖는 인공단백질을 개발했다. 또한, 초저온 투과전자현미경 (Cryo-EM) 분석을 통해 설계된 인공단백질이 TLR3와 결합하는 분자결합모드를 규명하였다. 특히, 자연계의 TLR3 작용제(dsRNA)와는 전혀 다른 구조를 가진 디자인된 인공단백질에 의해 선천성면역 수용체 TLR3을 효과적으로 활성화시킬 수 있음을 보인 첫 사례이다. 생명과학과 김호민 교수가 교신저자로 참
2025-02-10즈웨일 교수(1999년 노벨화학상)가 창출한 펨토화학을 통해 화학반응 중 일어나는 분자구조 변화를 실시간에서 관측할 수 있는 길이 열렸지만, 엄밀한 의미에서 에너지에 따른 전이상태 (Transition-State) 구조 변화를 직접 관측한 예는 매우 드물다. KAIST 연구진은, 광분해 화학반응 전이상태의 분자구조 변화를 분광학 기법*으로 정확하게 측정하는데 세계 최초로 성공했다. *분광학 기법: 빛과 분자의 상호작용을 통해 양자역학적 분자구조를 정확하게 알아냄 우리 대학 화학과 김상규 교수 연구팀이 화학반응의 전이상태 (Transition-State) 구조를 실험적으로 밝히는 데 성공했다고 4일 밝혔다. 화학반응 속도론이 개발되면서, 가장 중요한 핵심으로 자리잡은 개념이 ‘전이상태 (Transition-State)’다. 전이상태 이론(Transition State Theory, 이하 TST) 에서는 반응물과 생성물 중간에 위치한 전이상태의 분자구조
2025-02-04눈에 보이지 않는 작은 분자 세계의 비밀이 밝혀졌다. 우리 대학 화학과 이효철 교수(기초과학연구원(IBS) 첨단 반응동역학 연구단장) 연구팀이 화학적 단결정 분자 내 구조 변화와 원자의 움직임을 실시간으로 관찰하는 데 성공했다. 물질을 이루는 기본 단위인 원자들은 화학결합을 통해 분자를 구성한다. 하지만 원자는 수 펨토초(1/1,000조 초)에 옹스트롬(1/1억 cm) 수준으로 미세하게 움직여 시간과 공간에 따른 변화를 관측하기 어려웠다. 분자에 엑스선을 쏴 회절 신호를 분석하는 엑스선 결정학(X-ray Crystallography)의 등장으로 원자의 배열과 움직임을 관찰하는 도구가 상당한 발전을 이뤘지만, 주로 단백질과 같은 고분자 물질에 대한 연구에 집중됐다. 비(非)단백질의 작은 분자 결정은 엑스선을 흡수하는 단면적이 넓고 생성되는 신호가 약해 분석이 어렵기 때문이다. 연구진은 선행 연구에서 단백질 내 화학반응의 전이상태와 그 반응경로를 3차원 구조로 실시간 규명한 바
2024-03-26최근 화학, 생명과학 등 다양한 기초과학 분야의 문제를 해결하기 위해 그래프 신경망 (Graph Neural Network) 기술이 널리 활용되고 있다. 그 중에서도 특히 두 물질의 상호작용에 의해 발생하는 물리적 성질을 예측하는 것은 다양한 화학, 소재 및 의학 분야에서 각광을 받고 있다. 예를 들어, 어떠한 약물 (Drug)이 용매 (Solvent)에 얼마나 잘 용해되는지 정확히 예측하고, 동시에 여러 가지 약물을 투여하는 다중약물요법 (Polypharmacy)의 부작용을 예측하는 것이 신약 개발 등에 매우 중요하다. 우리 대학 산업및시스템공학과 박찬영 교수 연구팀이 한국화학연구원(원장 이영국)과 공동연구를 통해 물질 내의 중요한 하부 구조(Substructure)를 탐지하여 두 물질의 상호작용에 의해 발생하는 물리적 성질 예측의 높은 정확도를 달성할 수 있는 새로운 그래프 신경망 기법을 개발했다고 18일 밝혔다. 기존 연구에서는 두 분자 쌍이 있을 때, 각 분자내에
2023-07-18국제 공동연구진이 대장균의 모든 전사종결부위*를 해독하고, 이를 바탕으로 미생물의 대사 경로를 수도꼭지처럼 자유자재로 조절하는 합성생물학** 기반 차세대 대사 조절 밸브 기술을 개발했다. *전사종결부위: DNA가 암호화하는 정보를 RNA로 전사할 때, RNA 합성이 종결되도록 조절하는 DNA 서열 **합성생물학: 생명현상의 복잡성, 다양성으로 인해 발생하는 낮은 재현성, 예측효율 저하 등의 기존 바이오기술의 문제를 해결하기 위해 생명체의 구성요소를 설계, 제작, 조립하는 공학적 접근방식의 바이오 기술 우리 대학 생명과학과 조병관 교수, 한국생명공학연구원 이승구 박사, 바이오융합연구소 조수형 교수, 미국 캘리포니아대학교 샌디에이고(UCSD) 생명공학과(Bioengineering)의 최동희 박사, 버나드 팔슨(Bernhard Palsson) 교수 국제 공동연구팀이 대장균에 존재하는 1,600여 개의 전사종결부위를 대량으로 해독 및 발굴하고, 이를 기반으로 고부가가치 바이오화
2022-04-17