-
전기자동차용 차세대 전지의 성능 극대화
〈 김 일 두 교수〉
우리 대학 신소재공학과 김일두 연구팀이 리튬-공기전지의 핵심 구성요소인 촉매를 대량생산할 수 있는 기술을 개발했다.
리튬-공기전지는 전기자동차에 쓰이는 리튬-이온전지를 대체할 차세대 전지로 주목받고 있으며, 이번에 연구팀이 개발한 원천기술을 통해 리튬-공기전지의 상용화에 한 발짝 다가갈 것으로 기대된다.
연구팀은 촉매활성이 뛰어난 두 소재인 루테늄산화물(RuO2)과 망간산화물(Mn2O3)이 균일하게 분포된 이중 나노튜브 구조를 손쉽게 대량 제조하는 원천기술을 확보했고, 이를 리튬-공기전지에 적용하는데 성공했다.
이번 연구는 나노재료 분야의 국제 학술지 ‘나노 레터스(Nano Letters)’ 3일자 온라인 판에 게재됐다. (논문명: One-Dimensional RuO2/Mn2O3 Hollow Architectures as Efficient Bifunctional Catalysts for Lithium-Oxygen Batteries)
리튬-공기전지는 리튬-이온전지에 비해 용량이 10배 이상 높고 대기 중의 산소를 연료로 활용하기 때문에 전기자동차를 위한 에너지 저장장치로 큰 주목을 받고 있다.
그러나 방전 시 생성되는 고체 리튬산화물(Li2O2)이 충전 과정에서 원활히 분해되지 않아 전지의 효율 및 수명특성이 저하돼 상용화에 어려움을 겪었다. 따라서 탄소재 양극 내의 리튬산화물의 형성 및 분해를 안정적으로 도와주는 촉매 개발이 필수적으로 요구됐다.
리튬-공기전지용 촉매는 가벼우면서 내구성이 우수하고 촉매의 표면적을 최대한 넓히는 것이 중요하다. 현재 상용화 수준으로 대량생산이 가능하고 우수한 촉매 활성을 갖는 소재는 아직 개발되지 않았었다.
연구팀은 위의 문제 해결을 위해 루테늄과 망간 전구체가 녹아 있는 고분자 용액을 전기 방사했다. 이는 누에가 실을 뽑듯이 고분자 용액을 재료로 삼은 실을 뽑아내 루테늄-망간 전구체를 기반으로 한 고분자 복합 섬유를 합성해내는 기술이다.
이후 이 섬유를 고온 열처리하면 거푸집 역할을 하는 고분자 템플릿(Template)이 타서 없어지고, 루테늄산화물 및 망간산화물의 이종 물질이 함께 복합체를 이루는 이중튜브 구조의 촉매가 완성된다.
연구팀이 개발한 이중 튜브는 직경 220 나노미터의 외부튜브와 80 나노미터의 내부튜브로 이뤄져 안쪽 및 바깥쪽 벽이 동시에 촉매 반응에 참여 가능하고, 비어있는 공간이 많아 가볍다는 장점을 갖는다.
연구팀은 초기 충전, 방전 시의 과전압 차이가 약 0.8V 이내로 감소하는 효과를 얻었다. 기존 탄소재 사용시 과전압은 약 2.0V 이상이다. 또한 용량제한 1000 mAh/g 하에서 100사이클 이상의 안정적인 리튬-공기전지 특성을 확인했다.
위의 기술 향상이 가능한 이유는 리튬산화물의 생성반응(산소환원 반응)을 도와주는 망간산화물 촉매와 분해반응(산소발생 반응)을 돕는 루테늄산화물 촉매가 내, 외부 튜브에서 나노단위로 균일하게 존재하기 때문이다.
김 교수 연구팀의 핵심 기술인 전기방사 기술은 고분자, 금속 전구체가 포함된 용액을 전기적 인력으로 연신시켜 수십에서 수백 나노 직경의 나노섬유를 얻을 수 있는 기술이다.
이 기술은 쉽게 기능성 나노섬유를 대량생산할 수 있어 수처리용 필터, 황사 마스크, 마스크팩 소재, 바이오 필터 등에 활발히 사용되고 있다.
연구팀은 “휘발점이 다른 두 용매의 온도 상승 속도를 조절하는 간단한 공정을 통해 리튬-공기전지의 충전 및 방전에 이상적인 촉매구조 디자인에 성공했다”고 밝혔다.
김 교수는 “생산 공정이 매우 손쉽고 대량생산이 가능한 기술이다”며 “촉매의 성능이 우수해 차세대 전지로 각광받는 리튬-공기전지의 상용화를 앞당기는 데 기여할 것이다”고 말했다.
신소재공학과 김상욱 교수와 공동 연구로 진행된 이번 연구는 윤기로 박사과정이 제1저자로 참여했고, ‘한국 이산화탄소 포집 및 처리 연구개발센터(Korea CCS R&D Center)’ 및 현대자동차의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 루테늄산화물-망간산화물 코어-쉘 나노튜브 및 이중 나노튜브 미세구조 사진
그림2. 나노튜브 촉매가 사용된 리튬-공기전지의 구성
그림3. 리튬-공기전지의 구동 원리
그림4. 루테늄산화물-망간산화물 코어-쉘 나노튜브 및 이중 나노튜브 형성원리
2016.02.16
조회수 16047
-
데이터 소비 없이 실시간으로 사진 공유한다
〈이 의 진 교수〉
우리 대학 지식서비스공학과 이의진 교수 연구팀이 실시간 사진 공유와 고용량 사진의 무료 고속 다운로드가 가능한 실시간 사진공유 시스템 ‘렛츠픽(LetsPic)’을 개발했다.
최근 스마트폰을 통해 시공간에 구애받지 않고 사진 촬영이 가능해져 여행, 현장학습, 레저 등의 그룹 활동에서 촬영과 동시에 SNS를 통해 함께 사진을 공유하는 문화가 보편화됐다.
하지만 그룹 활동 중 사진 촬영과 공유가 불편할 때도 있다. 예로 등산 동호회에서 등산 중 사진을 찍고 공유하는 과정을 살펴보면 개인이 찍은 사진을 일일이 선택하고 그룹 메신저나 SNS를 통해 전송하는 과정이 필요하다. 수신자도 원하는 사진을 수동으로 선별해서 다운로드해야한다.
또한 수십 장의 사진을 이동 중 전송하고 싶어도 데이터 요금 부담 때문에 현장에서 즉각적인 공유가 어렵다. 현장 체험 학습에서 실시간으로 사진을 공유하며 회의를 진행해야 할 때 데이터 소비의 부담은 더욱 커진다.
연구팀은 문제 해결을 위해 실시간 사진 공유와 고화질 사진의 무료 고속 다운로드가 가능한 렛츠픽(LetsPic) 시스템을 개발했다.
렛츠픽의 특징은 같은 그룹끼리 사진첩을 실시간 공유하는 커넥티드 그룹 카메라 기능에서 찾을 수 있다.
사진을 찍는 즉시 그룹 사진첩에 공유돼 그룹 활동 중 언제든 다 같이 사진을 감상할 수 있다. 그리고 구글 지도상에 사진 촬영한 흔적을 남겨 여행 경로를 공유할 수 있다.
무엇보다도 렛츠픽의 장점은 와이파이나 통신사를 거치지 않는 단말간 직접통신(D2D:device to device) 기술인 와이파이 다이렉트(Wi-Fi Direct) 기술에 최적화시켰다는 점이다.
이를 통해 200미터 이내 근거리에서는 데이터 소비 없이 고용량의 사진을 무료로 고속 다운로드할 수 있고, 통신망이 열악한 산악이나 통신비가 비싼 해외여행 중에도 부담 없이 사진을 주고받을 수 있다.
연구팀은 KAIST 캠퍼스 학생들 대상으로 기존 카메라와 커넥티드 그룹 카메라의 비교 평가를 실시했다. 그룹 카메라 앱이 다른 그룹원의 촬영 활동을 실시간으로 파악할 수 있고, 각자 원하는 사진을 D2D를 이용해 데이터 소비 없이 고속 다운로드 할 수 있어 흥미를 높여준다는 의견을 얻었다.
향후 연구팀은 고도화된 지능형 서비스 기술 개발을 통해 그룹의 상황을 인지해 촬영 결과물에서 유사 이미지를 자동 태그하거나 그룹에 맞는 베스트 사진을 자동 추출하는 등 맞춤형 서비스 기술을 추가 개발할 예정이다.
이의진 교수는 “기존 스마트폰에 존재하는 기술인 와이파이 다이렉트 기술을 최대한으로 활용한 차세대 커넥티드 그룹 카메라 시스템이다”며 “이를 통해 오프라인 그룹활동에 특화된 새로운 사용자 경험을 제공한다”고 설명했다.
이번 연구(총괄책임 KAIST 산업공학과 박준성 초빙교수)는 미래창조과학부 및 정보통신기술연구진흥센터의 정보통신-방송 연구개발사업의 지원을 받아 리코시스, 고려대, 명지대, 한경대, 경상대와 공동으로 진행됐다.
□ 그림 설명
그림1. 렛츠픽 시작화면
그림2. 와이파이 다이렉트 기술로 다른 그룹원과 직접 공유하기 위해 연결 설정하는화면
그림3. 와이파이 다이렉트 기술로 다른 그룹원의 사진을 무료 다운로드하는 사진
그림4. 사진 촬영하면서 동시에 그룹원의 사진을 실시간 공유하는 화면
그림5. 사진 촬영 한 장소를 구글맵 상에 표시해 여행 경로를 파악 가능
2016.01.13
조회수 14040
-
효모 사용해 종양에 항암제 전달한다
〈 전 상 용 교수 〉
우리 대학 생명과학과 전상용 교수 연구팀과 GIST 생명과학부 전영수 교수 공동연구팀이 효모 기반의 바이오소재를 이용해 항암제를 표적 암에 효과적으로 전달할 수 있는 원천기술을 개발했다.
이번 연구결과는 지난해 12월 28일 미국학술원회보인 PNAS 온라인 판에 게재됐다.
이번 기술은 효모(yeast)에 존재하는 천연 소포체(vesicle)인 액포(vacuole)를 항암제를 전달하는 약물전달체로 이용했다. 동물 실험에서 높은 생체 적합성과 항암효능을 보여 기존 치료법의 대안이 될 것으로 기대된다.
약물전달시스템은 기존의 합성의약품 기반 항암 치료에 비해 독성을 크게 낮출 수 있다. 현재 美 식약청의 허가를 받아 치료에 사용되는 약물전달시스템은 리포좀(liposome) 제제와 알부민 나노입자(Abraxane)가 있다.
이러한 나노입자 기반 약물전달시스템은 특정 암을 표적해 치료하는 기술은 아니다. 따라서 최근에는 특정 암을 표적해 부작용을 낮추고 치료 효능은 개선시키는 표적형 약물전달시스템에 대한 연구가 활발히 진행 중이다.
그러나 대부분의 표적형 약물전달시스템은 고분자, 무기 나노입자같은 인공소재 기반이다. 인공소재들은 생체 적합성이 낮고 몸속에 장기간 남아 잠재적 독성을 유발할 수 있다는 한계를 갖는다.
연구팀은 문제 해결을 위해 빵, 맥주의 발효에 사용되는 효모를 이용했다. 효모 안의 소포체인 액포를 항암제 전달 소재로 사용했다.
연구팀은 기존 효모를 유전자변형 시켰다. 유방암에 결합가능한 표적 리간드(ligand)가 도입된 표적형 효모액포로 제조한 것이다.
여기에 항암제로 사용되는 독소루비신(Doxorubicin)을 표적형 효모액포에 선적해 약 100나노미터 직경을 갖는 암 치료용 표적형 약물전달시스템을 구축했다.
이 액포의 구성성분은 인간의 세포막에 존재하는 지질 성분들과 비슷해 암 세포와의 막융합이 수월하게 이뤄진다. 따라서 항암제를 암 세포 안으로 효과적으로 전달할 수 있고, 생체 적합성이 높아 안전한 약물전달시스템이 될 수 있다.
실제로 유방암 동물실험에서 표적형 효모액포 약물전달시스템은 기존 독소루비신 치료 그룹에 비해 약 3배 이상의 항암제를 암 조직에 전달해 우수한 치료 효능을 보였다.
이 기술을 통해 다른 생물체 기반의 나노 소포체를 이용한 약물전달시스템 개발에도 활용 가능할 것으로 기대된다.
전 교수는 “이 기술을 통해 생물체 유래 천연 나노 소포체가 약물전달시스템으로 개발될 것으로 보인다”며 “전임상 연구 및 임상 적용 가능성을 평가해 궁극적인 암 치료 방안 중 하나가 되기를 기대한다”고 말했다.
이번 연구는 한국연구재단의 글로벌프론티어 사업인 지능형바이오시스템 및 합성연구단과 광주과학기술원 실버헬스바이오연구센터의 실버헬스바이오기술개발사업의 지원으로 수행됐다.
□ 그림 설명
그림1. 표적형 효모액포를 정맥주사 한 후 6시간 뒤 암 조직으로의 약물분포 결과
그림2. 유방암 생쥐모델에서 독소루비신 항암제가 선적된 표적형 효모액포 약물전달시스템의 항암 결과
그림3. 최종 항암 치료용 표적형 약물전달시스템을 제조하는 모식도
2016.01.12
조회수 19010
-
나노미터 크기의 우담바라 꽃 모양 제작
〈윤 동 기 교수〉
우리 대학 나노과학기술대학원 윤동기 교수 연구팀이 액정의 승화현상을 이용해 정교한 3차원 액정나노구조를 제작할 수 있는 기술을 개발했다.
이는 액정이 승화할 때 열처리 조건에 따라 여러 모습의 3차원 나노구조가 형성되는 특성을 이용한 기술이다. 간단한 온도조절만으로도 다양한 3차원 나노패터닝이 가능해 차세대 소자 개발에 기여할 것으로 기대된다.
특히 연구팀은 우담바라 꽃, 찐빵 모양 등을 나노미터 크기 수준에서 정교하게 제작하는 데 성공했다.
이번 연구는 ‘네이처 커뮤니케이션즈(Nature Communications)’ 1월 4일자 온라인 판에 게재됐다.
나노 및 마이크로 패터닝을 위해 가장 많이 쓰이는 기술은 빛을 이용한 광 식각 기술이다. 하지만 이 방식은 2차원 식각공정에 특화돼 있고 비싼 공정설비, 복잡한 과정 등의 한계를 갖는다.
특히 3차원 구조 제작을 위해서는 2차원 구조를 계속 적층해야 하는 과정이 포함되기 때문에 정교한 구현이 어려웠다.
연구팀은 문제 해결을 위해 액정의 온도를 높여 분자들을 기체로 승화시켰다.
기체로 승화된 액정분자들은 공기 중으로 날아가게 되는데 그 중 일부는 무게, 분자수준에서의 친화도 등의 원인으로 다시 되돌아와 남아있던 액정 상 구조와 다시 재결합하게 된다.
이는 동굴의 종유석, 석순의 생성 원리나 유황온천에서 승화돼 날아가던 유황 성분이 바위나 돌에 붙어 유황 바위가 되는 것과 비슷한 원리이다.
연구팀은 승화 및 재결합 현상을 통해 온도 및 시간 조절로 수 나노미터 수준의 액정 판상구조를 정교하게 한 겹씩 벗겨낸 뒤, 다양한 3차원 나노 구조체를 제작하는 데 성공했다.
온도나 시간을 조절함으로써 나노 구조체는 다양해진다. 온도를 조금만 상승시킬 때는 우담바라 꽃 모양이 되고, 온도를 매우 높일 때는 액정 분자가 순식간에 날아가 찐빵과 같은 모양이 되기도 한다.
이 기술을 이용하면 차세대 기술로 불리는 수직 트랜지스터 등을 기존 2차원 식각 공정에 비해 약 1천 배 저렴하고 간단하게 제작할 수 있다. 일일이 적층할 필요 없이 3차원으로 패터닝이 순식간에 가능해지기 때문이다.
윤 교수는 “전자기장에 민감하게 반응하는 액정의 고유 성질과 이번 승화 및 재결합 현상을 융합할 수 있다”며 “이를 통해 고효율의 광전자 소자 개발에 많은 도움이 될 것이다”고 말했다.
나노과학기술대학원 김대석 박사과정 학생이 주도하고 美 켄트 주립대학 올레그 라브렌토비치(Oleg D. Lavrentovich) 교수가 참여한 이번 연구는 미래창조과학부의 미래유망기술 융합파이오니아 사업을 통해 수행됐다.
□ 그림 설명
그림1. 우담바라 나노구조체
그림2. 우담바라 나노구조체(확대)
그림3. 다양한 조건의 승화-재조합 공정 후의 초분자 액정 구조체의 모양
2016.01.11
조회수 12604
-
이희승 교수, 펩타이드 자기 나침반 개발
〈이 희 승 교수〉
우리 대학 화학과 이희승(47) 교수 생체모방 유기분자 연구팀이 순수 유기화합물만으로 구성된 펩타이드 자기 나침반을 개발했다.
이번 성과는 네이처(Nature) 자매지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 10월 29일자 온라인 판에 게재됐다.
금속화합물, 산화금속과 같은 강자성(ferromagnetic) 및 상자성(paramagnetic)을 갖는 자성물질은 이들의 자기적 특성을 이용해 다양하게 응용되고 있다.
반면, 펩타이드와 같은 반자성(diamagnetic) 유기분자들은 금속성 물질에 비해 자기민감성(magnetic susceptibility)이 현저히 낮아 수 테슬라(Tesla) 이상의 강한 자기장에도 반응하지 않기 때문에 비 자성(non-magnetic) 물질로 취급됐다.
또한 반자성 특성은 분자수준에서 관찰이 어렵고 효율성이 낮아 한계가 있는 것으로 여겨졌다.
물론 이론적으로는 반자성 분자라도 열에너지를 극복할 수 있는 다수의 분자가 일정한 규칙으로 정렬된 집합체가 되면 반자성 정렬(diamagnetic alignment)이 가능하다. 따라서 외부자기장의 변화에 실시간으로 반응하는 분자기계의 개발이 가능하지만, 이를 실험적으로 증명한 예는 없었다.
문제 해결을 위해 연구팀은 폴덱쳐(foldecture)라고 이름 지은 독창적인 나선형 펩타이드 분자 자기조립체를 개발했다. 이는 독특한 3차원 모양의 일정한 크기를 갖는 비금속 유기물질이고, 반자성 특성을 갖지만 이를 구성하는 펩타이드 분자들이 높은 결정성과 일정한 규칙성을 갖도록 설계됐다.
이러한 규칙성과 결정성 등의 특징은 펩타이드 자기조립체가 외부 자기장 방향을 따라 정렬할 수 있게 만들었다.
또한 MRI 장비의 자기장 세기보다 낮은 1 테슬라 이하의 회전자기장에서도 폴덱쳐들이 실시간으로 감응하며 정렬해 수용액상에서 실시간 회전운동도 가능함을 최초로 증명했다.
연구팀은 체내에 마그네토좀이라는 자기나침반을 지닌 주자성 박테리아(magnetotactic bacteria)의 행동 양식에 착안해, 순수 유기화합물질인 폴덱쳐를 이용해서 외부 자기장의 방향 변화를 민감하게 가리킬 수 있는 수 밀리미터 크기의 하이드로겔 나침반을 구현하는데 성공했다.
이번 연구에서 밝혀진 펩타이드 자기조립체의 반자성 정렬 현상은 반자성 물질 연구에 대한 새로운 시각을 제시했을 뿐 아니라 폴대머 및 펩타이드 자기조립 연구와 자극반응성 분자기계, 유기나노물질의 움직임 제어 등 다양한 관련 응용연구 분야에 영향을 끼칠 것으로 기대된다.
이 교수는“이번 성과를 통해 자기제어가 가능한 생체 친화적 유기 나노/마이크로소재 연구개발이 활성화될 것으로 기대된다”고 말했다.
KAIST 화학과 권선범 박사가 제 1 저자로 참여한 이번 연구는 삼성미래기술육성재단의 지원을 받아 수행됐고, KAIST EEWS 대학원 김형준 교수팀, 화학과 최인성 교수의 세포피포화 연구단과의 공동연구를 통해 진행됐다.
□ 그림 설명
그림 1. 주사전자현미경을 통해 관찰된 폴덱쳐의 자기정렬 현상
그림2. 펩타이드 1 및 2 의 분자구조식과 이들의 자기조립을 통해 합성된 폴덱쳐의 전자현미경 사진
2015.12.02
조회수 11857
-
5단 수직 적층 반도체 트랜지스터 개발
우리 대학 전기 및 전자공학부 이병현 연구원(지도교수 최양규)과 나노종합기술원(원장 이재영) 강민호 박사가 실리콘 기반의 5단 수직 적층 반도체 트랜지스터를 개발했다.
그리고 반도체 트랜지스터를 이용한 비휘발성 메모리 개발에 성공했다.
이번 연구는 나노 분야 학술지 ‘나노 레터스(Nano letters)’ 11월 6일자 온라인판에 게재됐다.
반도체 트랜지스터 분야는 모든 전자기기의 핵심 구성요소로 국내 산업과 경제 발전에 큰 영향을 끼쳤다.
세계적 추세에 따라 치열한 소형화를 통해 생산성과 성능의 향상을 거듭했으나 최근 10나노미터 시대에 접어들며 제작 공정의 한계 및 누설전류로 인한 전력소모 문제가 커지고 있다.
학계 및 산업계는 문제 해결을 위해 전면-게이트 실리콘 나노선 구조를 개발했다. 이는 누설전류 제어에 가장 효과적인 구조로 저전력 트랜지스터 개발에 이용됐다. 그러나 이 역시 소형화에 따른 나노선 면적 감소로 성능 저하의 한계가 있었다.
연구팀은 전면-게이트 실리콘 나노선을 수직으로 5단으로 쌓아 문제를 해결했다. 이 5단 적층 실리콘 나노선 채널을 보유한 반도체 트랜지스터는 단일 나노선 기반의 트랜지스터보다 5배의 향상된 성능을 보였다.
또한 수직 적층 나노선 구조는 말 그대로 위로 쌓기 때문에 단일 구조와 달리 면적이 증가되지 않아 집적도 향상에도 기여할 수 있다.
나노선 수직 적층은 개발된 ‘일괄 플라즈마 건식 식각 공정’ 방식을 통해 이뤄졌다. 이 공정은 고분자 중합체를 이용해 패턴이 형성될 영역에 미리 보호막을 친 뒤 등방성 건식 식각을 통해 나노선 구조를 형성하는 기술이다. 수직 적층 나노선 구조는 이 기술의 연속 작용을 통해 확보한 결과물이다.
이 기술은 지속적 소형화로 인해 기술적 한계에 부딪힌 반도체 트랜지스터 분야에 새로운 돌파구를 제시할 것으로 기대된다.
관련 연구가 이전부터 진행됐지만 더 간단한 공정기술을 이용해 가장 많은 나노선 채널의 적층에 성공했기 때문에 비용절감 및 제작 시간 단축, 반도체 트랜지스터의 성능 향상으로 인한 상용화 등에 크게 기여할 것으로 예상된다.
연구팀은 건식 식각 공정 기술이 기존 방법보다 간단하고 안정적으로 수직 적층 실리콘나노선 구조 제작을 가능하게 함으로써 고성능 트랜지스터 개발에 응용 가능할 것이라고 밝혔다.
이병현 연구원과 강민호 박사는 “이번 기술 개발은 미래창조 국가 나노기술 인프라 기관 나노종합기술원의 훌륭한 반도체 연구 기반과 김진수 부장 포함 관련 연구진들의 우수한 공정 능력이 뒷받침돼 가능했다”고 소감을 말했다.
이번 연구는 글로벌프론티어사업 스마트IT융합시스템 연구단의 지원을 받아 수행됐다.
연구를 주도한 이병현 연구원은 우리 대학 최양규 교수 지도하에 박사과정을 수행 중이며, 삼성전자 메모리 사업부의 책임 연구원으로 재직 중이다.
□ 그림 설명
그림1. 일괄 플라즈마 건식 식각 공정 과정의 모식도.
그림2. 서로 다른 방향에서 단면을 관찰한 주사 전자 현미경 사진 및 투과 전자 현미경 사진
2015.11.24
조회수 12760
-
소장 내 지방 흡수과정의 비밀 밝혀
김 필 한 교수
우리 대학 나노과학기술대학원 김필한 교수와 의과학대학원 고규영 교수 공동 연구팀이 소장에서 지방이 흡수되는 과정의 고해상도 촬영에 성공했다.
이번 연구는 나노과학기술대학원 최기백 박사과정 학생, 의과학대학원 장전엽 박사, 박인태 박사과정 학생이 1저자로 참여했다.
이를 통해 소장의 융모로 흡수된 지방의 전달 통로인 암죽관의 수축현상을 최초로 발견했다.
이번 연구결과는 의생명과학 분야 국제 학술지인 ‘임상연구(The Journal of Clinical Investigation, Impact Factor 13.261)’ 10월 5일자 온라인판에 게재됐다. 또한 11월에는 이달의 주목할 만한 연구로 ‘JCI This month’에도 소개될 예정이다. (논문명 : Intravital imaging of intestinal lacteals unveils lipid drainage through contractility)
소장은 영양분을 흡수하는 기관이다. 소장의 관찰을 위해 많은 학자들이 노력했지만 소장은 항상 쉬지 않고 움직이기 때문에 고해상도 촬영에 한계가 있었다.
연구팀은 자체 개발한 초고속 레이저 스캐닝 공초점 현미경과 소장 의 상태를 보존하고 내벽을 고정할 수 있는 영상 챔버를 이용해 동물 모델의 소장 내벽에서 지방산이 흡수되는 과정을 촬영했다.
이 과정에서 지방의 흡수 통로인 암죽관이 일정 주기로 수축 및 이완하는 현상을 발견했다. 또한 암죽관의 수축 정도가 소장에서의 지방산 흡수 속도에 영향을 미치는 것을 발견했다.
연구팀은 이 암죽관의 움직임이 융모 내부에 다량 존재하는 민무늬근세포에 의해 발생하고, 이는 체내에 분포된 자율신경계를 통해 조절됨을 밝혔다.
이번 연구를 통해 개발된 최첨단 고해상도 생체영상기술로 소장 내 다양한 물질 흡수 과정의 실시간 모니터링이 가능해질 것으로 예상된다.
또한 이 기술은 신약개발 과정에서 지용성 약물이 소장 내 암죽관으로 흡수되게 해 간 독성을 최소화하는 새로운 약물전달 방법 확립에 기여할 것으로 기대된다.
김 교수는 “우리가 섭취하는 다량의 지용성 영양소가 체내로 흡수되는 과정에서 자율신경계로 조절되는 융모 내부의 암죽관 제어 메커니즘이 존재함을 새롭게 밝혀냈다”고 말했다.
이번 연구는 미래창조과학부의 글로벌프론티어사업 및 신기술융합형 성장동력사업의 지원을 받아 수행됐다.
그림 설명
그림1. 소장 내벽에 존재하는 융모에서 지방산이 흡수되는 과정을 광학현미경으로 영상화하는 과정 모식도
그림2. 소장 융모에서 지방산(적색)이 암죽관(녹색)을 통해 흡수되는 과정
그림3. 암죽관(녹색)의 반복적인 이완과 수축 운동. 0초, 2.7초에 이완. 1.6초, 4초에 암죽관의 수축
2015.10.14
조회수 15682
-
바이오부탄올 핵심생산효소 구조 및 특성 규명
이 상 엽 특훈교수
우리 대학 생명화학공학과 이상엽 교수 연구팀이 경북대학교 김경진 교수 연구팀과의 공동연구를 통해 친환경 차세대 에너지인 바이오부탄올의 핵심 생산 효소인 싸이올레이즈(Thiolase)의 구조 및 특성을 규명했다.
연구 결과는 네이처 커뮤니케이션즈(Nature Communications) 9월 22일자 온라인 판에 게재됐다.
바이오부탄올은 바이오연료로 이미 사용되고 있는 바이오에탄올을 능가할 수 있는 친환경 차세대 수송용 바이오연료로 각광받고 있다.
바이오부탄올의 에너지 밀도는 리터당 29.2MJ(메가줄)로 바이오에탄올(19.6MJ)보다 48% 이상 높고 휘발유(32MJ)와 큰 차이가 없다. 또한 폐목재, 볏짚, 잉여 사탕수수, 해조류 등 비식용 바이오매스에서 추출하기 때문에 식량파동 등에서도 자유롭다.
바이오부탄올의 가장 큰 장점은 휘발유와 비교했을 때 공기연료비, 기화열, 옥탄가 등 연료 성능이 비슷해 현재 자동차 등에 사용되고 있는 가솔린 엔진을 그대로 사용할 수 있다는 점이다.
바이오부탄올은 클로스트리듐이라는 미생물로부터 생산이 가능하지만 클로스트리듐의 주요 효소의 구조 및 기작 등에 대한 연구는 체계적으로 이뤄지지 못했다.
이 교수 연구팀은 이 미생물의 성능 향상을 위해 바이오부탄올 생합성에 필요한 주요 효소 중 하나인 싸이올레이즈의 3차원 입체구조를 포항방사광가속기를 이용해 규명했다.
이를 통해 일반적인 미생물의 효소에서는 발견되지 않고 클로스트리듐 내의 싸이올레이즈에서만 관찰되는 산화-환원 스위치 구조를 발견했다.
또한 가상세포모델 등을 활용한 시스템대사공학 기법을 활용해 이 싸이올레이즈가 실제 미생물 내에서 산화-환원의 스위치로 작동한다는 것을 증명했다.
연구팀은 밝혀낸 싸이올레이즈 구조의 원천기술을 활용해 활성이 향상된 돌연변이 효소를 설계했다. 그리고 이를 이용해 바이오부탄올 생산 미생물의 대사회로를 조작해 바이오부탄올 생합성이 향상되는 결과를 얻었다.
이상엽 교수는 “바이오부탄올 생합성 대사회로에서 가장 중요한 효소의 구조와 작용 기작을 세계 최초로 밝혔다”며 “싸이올레이즈 관련 원천기술을 활용해 바이오부탄올을 더욱 경제적으로 생산할 수 있는 대사회로 구축에 응용하겠다”고 말했다.
김상우, 장유신, 하성철 박사가 공동 1저자로 참여한 이번 연구는 미래창조과학부와 한국연구재단의 기후변화대응기술개발사업 및 글로벌프런티어 차세대바이오매스사업단 지원을 받아 수행됐다.
□ 그림 설명
그림 1. 바이오부탄올 생산 효소(thiolase)의 구조 및 산화-환원 스위치 작용기작
그림 2. 바이오부탄올 생산을 위한 포도당 대사회로에서 바이오부탄올 생산 효소(thiolase)의 산화-환원 스위치 작용기작
2015.09.22
조회수 14426
-
대장균 이용 농·의약품 및 나일론 전구체 제작 원천기술 개발
<이 상 엽 특훈교수>
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 11일 세계 최초로 미생물을 이용한 1,3-다이아미노프로판(원, 쓰리-다이아미노프로판) 생산에 성공했다.
이번 연구결과는 사이언티픽 리포트(Scientific Reports) 11일자에 게재됐다.
1,3-다이아미노프로판은 에폭시 수지의 가교제와 의약 및 농약제품 제작에 이용되는 핵심 화학물질이다. 또한 중합반응을 통해 의료용 접착제, 엔지니어링 플라스틱 등으로 이용되는 나일론(폴리아마이드)을 제작할 수 있다.
이 1,3-다이아미노프로판은 현재 석유를 통해 생산된다. 그러나 기후변화와 환경문제를 유발하고 한정자원인 석유화학공정을 이용한다는 한계가 있어 연구팀은 지속가능한 친환경 바이오화학공정으로 재편에 힘쓰고 있다.
이상엽 교수 연구팀은 세계 최초로 대장균을 이용한 1,3-다이아미노프로판 생산에 성공해 지속가능한 자원인 바이오매스로부터 생산 가능성을 열었다.
연구팀은 자체적으로 1,3-다이아미노프로판을 생산할 수 없는 대장균의 문제점 해결을 위해 시스템 대사공학을 이용했다. 시스템 대사공학은 세포전체 대사회로를 정량, 정성적 분석 후 시스템 수준에서 총체적으로 조작해 원하는 화합물을 대량생산하는 기술이다.
연구팀의 생산 과정은 ▲외래 미생물의 1,3-다이아미노프로판 생산 대사회로를 컴퓨터 가상 세포에 도입해 가장 효율적인 대사회로를 결정한 후 ▲이 대사회로를 실제 대장균에 도입해 1,3-다이아미노프로판 생산 ▲마지막으로 추가적인 시스템 대사공학을 통해 약 21배 이상 생산량을 증가시켜 최종 발효를 통해 배양액 1 리터당 13그램의 1,3-다이아미노프로판 생산에 성공했다.
이 기술로 재생 가능 비식용 바이오매스를 이용한 1,3-다이아미노프로판 생산이 가능해져 기존 석유기반 화학 산업을 바이오리파이너리(Bio-refinery)로 대체할 수 있을 것으로 기대된다.
이 교수는 “이번 연구는 세계 최초로 KAIST 연구실에서 바이오리파이너리를 통해 1,3-다이아미노프로판 생산 가능성을 제시한 점에서 의의를 갖는다”며 “더 많은 연구를 통해 생산량 및 생산성을 증산할 계획이다”고 말했다.
이번 연구는 미래창조과학부의 기후변화대응 기술개발사업의 지원을 받아 수행됐고, KAIST 채동언(박사과정) 학생이 제 1저자로 참여했다.
□ 그림 설명
그림 1. C4 대사회로를 이용하여 1,3-다이아미노프로판을 생산하기 위한 대사공학 전략들
그림 2. 최종적으로 엔지니어된 대장균들의 발효 프로파일
2015.08.11
조회수 11491
-
수 나노미터급으로 빛 모으는 3차원 광 장치 개발
우리 대학 물리학과 김명기, 이용희 교수 연구팀이 빛을 수 나노미터급 영역안으로 집속시킬 수 있는 초 고광밀도 삼차원 갭-플라즈몬 안테나(3D gap-plasmon antenna)를 개발했다.
이번 연구는 미국화학회의 나노분야 저널인 ‘나노 레터스(Nano Letters)’ 6월 10일자에 게재됐다.
빛을 한 점으로 집속시키는 연구는 최근까지도 활발하게 이뤄지고 있다. 빛을 고밀도로 집속시킬수록 다양한 분야에서 활용 가능하기 때문이다.
하지만 빛의 파장보다 작은 크기에서 발생하는 회절(回折, diffraction) 현상은 집속을 방해한다. 이를 극복하기 위해 학자들은 금속에서는 회절한계를 뛰어넘어 빛이 가둬지는 플라즈모닉 현상을 이용해 연구를 진행 중이다.
학자들은 2차원 형태의 플라즈모닉 안테나 개발에 집중했고 연구를 통해 5나노미터 이하로 빛을 집속하기도 했다. 하지만 2차원 안테나로는 아무리 작게 모아도 나머지 한 쪽 방향으로 빛이 퍼지는 한계가 있다.
즉, 빛을 3차원 방향으로 집속시킬 수 있어야 빛의 밀도를 최대로 끌어올릴 수 있는 것이다.
연구팀은 집속 이온빔 근접 식각 (Proximal Focused-Ion-Beam Milling) 기술을 도입해 3차원 구조의 4나노미터급 갭-플라즈몬 안테나를 제작했다. 이를 통해 삼차원 나노 공간(~4 x 10 x 10 nm3)안으로 빛을 집속시켜 입사파와 비교해 40만 배 이상의 빛의 세기를 만들었다.
또한 제작된 안테나 내 높은 광밀도를 이용해 금속에서 발생하는 이차조화파 세기의 극대화에 성공했고, 음극선 발광 측정(Cathodoluminescence)장치를 이용해 빛이 나노 갭 안으로 강하게 집속됨을 확인했다.
연구팀은 이 기술이 데이터 통신과 정보 처리 속도를 테라헤르츠(THz, 1초당 1조번) 수준으로 높이고, 하드디스크 면적당 용량을 현재의 100배로 늘릴 수 있을 것이라고 밝혔다.
더불어 전자 현미경 대신 직접 빛을 이용해 분자 이하 크기의 고해상도 이미지를 추출하거나 반도체 공정을 수 나노미터 수준으로 발전시키는 기술이 가능할 것이라고 말했다.
김명기 교수는 “간단하고 새로운 아이디어가 기존 2차원 플라즈모닉 안테나 중심 연구를 3차원 공간으로 확대시켰다”며 “정보통신, 데이터 저장, 영상의학, 반도체 공정 등 다양한 분야에 응용될 수 있을 것이다"고 말했다.
이번 연구는 한국연구재단의 일반연구자지원사업과 중견연구자지원사업, 첨단융합기술개발사업 프로그램 지원을 받아 수행됐다.
□ 그림 설명
그림 1. 제작된 3차원 갭-플라즈몬 안테나
그림 2. 3차원 갭-플라즈몬 안테나 구조 및 시뮬레이션 결과
그림 3. 증폭된 이차조화파 발생과 나노갭 안으로 빛이 집속된 모습
2015.06.15
조회수 13298
-
와이파이만 자동 감지해 다운로드하는 기술 개발
해외출장이 잦은 김 모 씨는 스마트폰에 영화를 다운받아 기내에서의 무료함을 달랜다. 그는 아침 회의에 들어가기 전 오후 5시까지만 다운을 완료하면 된다는 데드라인을 설정하고, 여러 일정을 마친 후 시간이 되자 기내에 탑승했다.
스마트폰을 확인하니 다운이 완료됐고, 자동으로 와이파이만 인식해 다운로드 했기 때문에 LTE 데이터는 전혀 소비되지 않았다.
우리 대학 전기및전자공학과 박경수, 이융, 정송 교수 연구팀은 와이파이와 이동통신 망의 단절을 자동으로 감지해 모바일 콘텐츠를 전달하는 기술 및 시스템을 개발했다.
이동통신 망에서 와이파이 망으로 데이터를 분산시키고 이양하는 것을 와이파이 오프로딩이라 한다. 이는 스마트폰에서 쉽게 볼 수 있는 기능이다.
그런데 현재의 와이파이 오프로딩은 원활하지 않아 자동적 시스템이 아닌 개인의 선택에 의해 이뤄지고 있다. 와이파이 망을 벗어나 이동하는 경우 연결이 단절되고 버퍼링이 발생해, 사용자들은 한 곳에서만 와이파이를 사용하거나 아예 해제하고 이동통신망을 이용하는 것이다.
원활한 오프로딩을 위해 관련 미래 표준을 만들고 있지만 LTE 망 통합 등의 변화가 필요하고 추후 장비 업그레이드 비용이 문제가 된다.
연구팀은 이러한 네트워크 단절 문제를 자동으로 처리하면서 와이파이 망을 최대한 사용하게 만드는 모바일 네트워크 플랫폼을 구축했다. 우선 네트워크 단절을 트랜스포트 계층에서 직접 처리해 네트워크간 이동 시에도 연결의 끊김 없이 전송이 가능한 프로토콜을 개발했다.
더불어 연구팀은 지연 허용 와이파이 오프로딩 기법을 개발했다. 다운로드 완료 시간을 예약하면 잔여 시간과 용량 등의 정보를 계산한 뒤, LTE와 와이파이를 스스로 조절해 최소의 LTE 데이터로 원하는 시간대에 다운로드를 완료할 수 있는 알고리즘이다.
이 기술은 스트리밍 플레이어에도 적용 가능해 와이파이 망에 있는 동안 더 많은 트래픽을 전송해 구역을 벗어나도 버퍼링 없는 동영상 시청이 가능하다.
이 기술로 사용자는 적은 요금으로 질 높은 콘텐츠를 이용할 수 있고, 사업자는 기존 LTE망의 재투자 및 효율적인 와이파이 망 유도가 가능하다. 또한 모바일 동영상 콘텐츠 사업자에겐 더 많은 수요자를 확보할 수 있다.
이융 교수는 “와이파이 오프로딩과 LTE 망의 관계를 최소화함으로써 모바일 콘텐츠 사업자, 망 사업자, 사용자 모두가 윈윈할 수 있는 기술이 될 것이다”고 말했다.
이번 연구는 미래창조과학부 정보통신기술진흥센터 (IITP) 네트워크 CP실(임용재 CP)의 지원을 받아 수행됐고, 5월에 개최하는 모바일 시스템 분야 최고 권위의 국제 학회인 에이씨엠 모비시스(ACM MobiSys)에서 발표될 예정이다.
□ 그림설명
그림 1. 지연 허용 와이파이 오프로딩 기법 개념도
2015.04.20
조회수 12264
-
종양 전역에 약물 전달하는 항암치료나노기술 개발
<박 지 호 교수>
우리 대학 바이오 및 뇌공학과 박지호 교수 연구팀이 종양의 전역에 약물이 골고루 전달되게 해 항암효과를 현저히 높일 수 있는 새 항암치료 나노기술을 개발했다.
이번 연구는 나노분야 학술지 ‘나노 레터스(Nano Letters)’3월 31일자 온라인 판에 게재됐다.
일반적으로 수술이 어려운 종양의 치료를 위해 항암약물치료법이 사용된다. 하지만 종양이 외부로 들어오는 약물의 접근을 여러 방법으로 막기 때문에 종양 전체에 항암효과를 보기 어려웠다. 혈류로 투여된 약물들의 대부분이 혈관주위의 종양세포들에만 전달되고, 중심부의 종양세포에는 전달되지 않아 재발 문제가 자주 발생한 것이다.
연구팀은 문제 해결을 위해 리포좀과 엑소좀이라는 소포체를 이용했다. 리포좀은 인공나노소포체로서 혈류를 통해 혈관 주위의 종양 세포 부위까지 약물을 전달한다. 종양 세포에서 자연적으로 분비되는 생체나노소포체인 엑소좀에 약물을 무사히 탑재하는 것이 리포좀의 역할이다.
엑소좀은 종양에서 세포 내부의 생물학적 물질들을 전달하기 때문에 종양의 진행 및 전이에 중요한 요소로 알려져 있다. 리포좀이 항암 약물을 엑소좀에 탑재하면, 엑소좀이 이동하는 종양 내의 모든 위치로 약물이 전달됨으로써 질병이 치료되는 것이 연구의 핵심이다.
연구팀은 이 기술을 이용해 빛에 반응해 항암효과를 내는 광과민제를 종양이 이식된 실험용 쥐에 주입했다. 이후 종양 부위에 빛을 노출시켜 항암효과를 유도한 후 분석한 결과 종양조직 전역에서 항암효과를 관찰할 수 있었다.
연구팀의 핵심 성과는 종양 및 다른 질병들의 미세 환경을 파악해 질병에 대항하는 맞춤형 약물전달 기술 개발의 발판을 마련한 것이다.
연구팀은 이 기술을 제약회사에서 개발 중인 항암제에 적용해 약물전달이 어려운 악성 종양의 치료효과를 실험 진행 중이다.
박 교수는 “엑소좀이 세포에서 끊임없이 분비되는 특성과 주변 세포로 생물학적 물질을 전달하는 특성을 응용해 종양 중심부까지 약물을 전달 가능하게 만든 최초의 연구”라고 말했다.
박지호 교수 지도아래 이준성 박사, 김지영 석사가 주 저자로 참여한 이번 연구는 한국연구재단이 추진하는 신진연구자지원사업, 글로벌프론티어사업, 미래유망융합기술파이오니어사업의 지원을 받아 수행됐다.
□ 그림설명
그림 1. 종양 전역에 약물이 골고루 전달되게 해 항암효과를 높이는 새 종양투과 약물전달 나노기술
세포막과 결합하는 리포좀에 의해서 세포로 전달된 물질이 그 세포가 분비하는 엑소좀에 효율적으로 탑재돼 주변세포로 전달되는 과정을 보여주는 모식도(좌). 이러한 엑소좀기반 세포간 약물전달이 실제로 종양 스페로이드 및 생체 내 종양모델에서 관찰된 결과들 (우).
2015.04.06
조회수 14358