-
감도 1000배 높은 금나노선 탐침 개발
우리 학교 화학과 김봉수 교수 연구팀(제1저자 강미정 박사)은 단결정 금 나노선을 이용해 만든 세계에서 가장 가는 나노탐침으로 쥐의 신경신호를 측정하는데 성공했다.
굵기가 100nm(나노미터, 10억분의 1미터)에 불과한 이 나노탐침은 기존보다 1,000배 이상 뛰어난 감도를 나타냈으며 1mm 이하의 극히 정밀한 간격으로 뇌신경 신호 측정이 가능하다. 기존 신경탐침은 삽입 시 조직 손상이 커서 검출신호가 약한 반면 개발된 탐침은 손상을 최소화해 신경 신호가 상대적으로 크다.
뇌에서 발생하는 전기적 신경신호를 정확하게 수집·분석하는 신경탐침은 뇌 연구에서 가장 핵심적인 요소다. 신경탐침은 조직손상을 최소화해야하며 우수한 전기적 감도를 가져야한다.
연구팀은 탐침의 재료인 금에 열을 가해 증기상태로 만든 다음 온도가 낮은 기판으로 운반한 후 기판에서의 응결에 의해 단결정 금 나노구조가 생성되는 원리를 이용해 금 나노선을 개발했다. 만들어진 금 나노선은 결함이 없는 단결정구조이기 때문에 전기전도성이 높으면서도 강하고 유연한 특성을 보였다.
김 교수 연구팀은 개발된 나노탐침을 간질을 유발하는 약물을 투여한 쥐의 뇌에 삽입해 신경신호를 측정한 결과 간질을 일으키는 뇌의 특정 영역을 정확히 찾을 수 있었다. 또 낯선 쥐의 침입에 의한 신경신호의 변화도 탐지해냈다.
김봉수 교수는 “뇌 신경 세포를 손상시키지 않으면서 단일 신경세포로부터의 신호를 높은 감도로 포착할 수 있다”며 “정밀한 뇌신경 3차원 지도 작성에 유용할 뿐 아니라 치매, 파킨슨병 등의 전기치료에도 도움이 될 것”이라고 말했다.
연구결과는 나노분야 국제학술지 ‘ACS 나노(ACS Nano)’ 12일자 온라인 판에 게재됐다.
□ 금나노선 합성 방법석영관으로 이루어진 가열로 내에서 금 slug를 가열하여 형성시킨 금 vapor가 수송 기체에 의해 사파이어 기판에 도달하여 나노선으로 성장함
□ 금나노선 성장사파이어 기판에 도달한 금 vapor가 half-octahedral seed를 형성하고, 그 seed에 금 vapor가 결합하여 나노선으로 성장함
□ 금나노선 탐침 제작방법텅스텐 팁으로 기판 위에 수직 성장된 나노선 중 하나를 집어낸 뒤, 텅스텐 팁은 절연층으로 코팅함
□ 신경신호 감도 비교금 나노탐침과 텅스텐 마이크로탐침을 쥐 뇌에 삽입하여 측정한 신경신호 비교. 금 나노탐침에서 스파이크 형태의 신경 신호가 뚜렷하게 관찰됨
□ 행동실험낯선 쥐의 침입에 의한 신경신호의 변화를 금 나노탐침과 텅스텐 마이크로탐침으로 측정. 금 나노탐침에서만 뚜렷한 신호 변화가 측정됨
□ 약물실험세 개의 금 나노탐침 또는 텅스텐 마이크로탐침을 쥐 뇌에 삽입한 후, 쥐에 간질을 유발하는 약물을 주사하여 발작 상태를 보일 때 측정한 신경신호. 세 개의 금 나노탐침은 세 영역의 신호를 구분하여 간질 중심을 찾아낼 수 있는 반면 세 개의 텅스텐 마이크로탐침은 세 영역의 신호를 구분하지 못함
2014.08.27
조회수 12193
-
고효율 나노발전기 상용화길 열어
아주 작은 움직임으로도 전기를 생산하는 나노발전기가 개발됐다. 몸에 붙이고 다니면 충전되는 웨어러블 전자기기 전력원 등 다양한 활용이 기대된다.
우리 학교 신소재공학과 이건재 교수팀은 레이저 박리 전사기술과 유연한 압전박막 소재를 활용해 기존보다 약 40배 높은 효율을 갖는 나노발전기 개발에 성공했다.
연구결과는 세계적 학술지 ‘어드밴스드 머티리얼스(Advanced Materials)’ 4월 23일자 표지논문으로 게재됐다.
나노발전기는 유연한 나노소재에 미세한 압력이나 구부러짐이 가해질 때 전기 에너지가 생성되는 기술이다. 전선과 배터리 없이도 에너지공급이 가능하기 때문에 휘어지는 전자제품은 물론 심장 박동기와 같이 몸속에 집어넣는 기기나 로봇의 에너지원으로도 활용 가능하다. 그러나 지금까지는 에너지 효율이 낮고 제작공정이 복잡해 상용화가 어려웠다.
이 교수 연구팀은 고온에서 결정화된 고효율 압전박막물질을 현재 상용화된 레이저 박리기술을 이용해 딱딱한 기판에서 플라스틱 기판으로 전사, 효율을 크게 향상시키면서도 대면적으로 양산 가능성을 높였다.
이번에 개발된 유연한 기판(2cm × 2cm)에 만들어진 나노발전기는 미세한 구부림에 의해 생성된 에너지(250V, 8㎂)로 105개의 LED를 작동시키는데 성공했다.
이 교수는 “이번에 개발된 고효율의 나노발전기술은 자연에서 발생하는 바람, 진동, 소리와 같은 미세한 에너지는 물론 심장박동, 혈액흐름, 근육수축·이완 등 사람 몸에서 발생되는 생체역학적 힘을 이용해 전기를 생산할 수 있는 무한 에너지원으로 사용될 수 있다”고 응용가능성에 대해 설명했다.
이와 함께 “발전효율이 세계최고기록보다 40여배 높고 대량 양산이 가능한 레이저 박리기술을 활용해 그동안 상용화를 가로막았던 저효율과 복잡한 제조공정의 문제점을 해결했다는데 큰 의의가 있다”고 말했다.
이 교수팀은 향후 압전박막물질을 삼차원으로 적층해 생성전력을 더욱 높이고 이를 동물에 이식하는 생체실험을 수행할 계획이다.
이번 연구결과는 미래창조과학부 도약연구사업과 ‘코오롱-카이스트 라이프스타일 이노베이션센터(KOLON-KAIST LifeStyle Innovation Center)’의 지원으로 수행됐다.
그림1. 레이저 박리 기술로 제작된 대면적 형태의 나노발전기 이미지(논문표지)
그림2. 플라스틱에 제작된 나노발전기에서 생성된 전력을 이용해 105개의 LED를 작동하는 모습
2014.05.15
조회수 17598
-
모델 촉매 시스템을 이용한 스필오버 현상 규명
- 새로운 메커니즘의 상업촉매 개발을 위한 원천기술 확보 -
1960년대 초 발견된 이래 오늘날까지도 학계에서 논란이 되고 있는 물리학적 현상이 KAIST 연구진에 의해 세계 최초로 규명됐다.
KAIST(총장 강성모) 생명화학공학과 최민기(34) 교수팀은 비결정질 알루미노실리케이트 내부에 백금이 선택적으로 위치한 모델 촉매 시스템을 개발해 ‘스필오버(spillover)’ 현상을 규명했다.
연구 결과는 네이처 커뮤니케이션즈(Nature Communications) 25일자 온라인 판에 실렸다.
스필오버 현상은 백금과 같은 금속 표면에서 활성화된 수소원자가 촉매 표면으로 이동하는 현상이다.
이 현상을 이용하면 높은 활성과 안정성을 갖는 촉매를 설계하는데 이용될 수 있을 것이라고 믿어져 지난 50여년간 촉매 분야에서 활발히 연구됐다.
하지만 기존에 알려진 촉매들의 경우에는 노출된 금속 표면에서 여러 가지 다른 경로로 경쟁반응이 일어나기 때문에 스필오버의 존재 및 생성 메커니즘을 직접적으로 규명하는 것이 불가능했다.
연구팀이 개발한 촉매는 백금 나노입자가 수소 분자만 통과할 수 있는 알루미노실리케이트로 덮여있어 다른 경쟁 반응들이 일어나는 것을 원천 차단, 스필오버 현상을 효과적으로 연구하는데 이용할 수 있었다.
연구팀은 촉매에 대한 다양한 구조분석, 촉매 반응성 분석, 컴퓨터 모델링을 통해 알루미노실리케이트에 존재하는 브뢴스테드 산점이 스필오버에 결정적인 역할을 함을 밝혀냈다.
그동안 학계에서 50여년간 정립되지 않은 ‘스필오버’라는 현상을 최초로 규명했다는 점에서 학술적으로 큰 영향력을 발휘할 수 있을 것으로 기대된다.
이와 함께 이번 연구에서 제안된 스필오버에 기반한 수소화 촉매의 경우 높은 수소화·탈수소화 활성을 보임과 동시에 석유화학공정에서 일반적으로 원치 않는 부반응인 수소화 분해(hydrogenolysis) 반응을 확연하게 억제할 수 있다는 점에서 산업적으로도 그 잠재력이 매우 크다고 연구팀은 전했다.
최민기 교수는 “스필오버 현상만으로 반응이 진행되는 해당 촉매의 경우 촉매구조를 적절하게 설계하면 기존 금속촉매를 훨씬 능가하는 촉매를 구현할 수 있을 것”이라며 “향후 높은 활성 및 선택성을 가지는 꿈의 촉매를 만들 것”이라고 말했다.
SK이노베이션 오승훈 수석연구위원은 “촉매계의 오랜 논쟁거리였던 스필오버 현상을 이론과 실험을 통해 규명하고 이에 대한 이해를 높였다는 점이 이번 연구의 가장 큰 성과”라며 “SK이노베이션에서는 이번 연구를 통해 확보한 기술을 바탕으로 새로운 상업촉매 개발 연구를 계속할 것”이라고 말했다.
SK이노베이션(대표 구자영)과 미래창조과학부의 지원을 받아 수행된 이번 연구는 KAIST 최민기 교수 지도아래 임주환 연구원, 신혜영 연구원이 공동 제1저자로 참여했으며 EEWS 대학원 김형준 교수가 컴퓨터 모델링을 수행했다.
2014.02.26
조회수 16979
-
단백질 나노튜브의 자기조립 분자스위치 발견
- 한국, 미국, 이스라엘 국제 공동 연구 성과 -
- 암 치료와 뇌 질환 메커니즘 단서 -
우리 학교 바이오및뇌공학과 최명철 교수와 송채연 연구교수는 미국
산타바바라 캘리포니아대학교, 이스라엘 히브리대학교와 공동으로 세포분열과 세포간 물질수송에 열쇠가 되는 단백질 나노튜브의 자기조립
구조를 제어하는 분자스위치를 발견했다.
연구 결과는 세계적 학술지 ‘네이처 머티리얼즈(Nature Materials, IF=35.7)’ 19일자에 게재됐다.
마이크로튜불(microtubule, 미세소관)은 사람의 몸속에서 세포분열·세포골격·세포간 물질수송 도구로 사용되는 튜브 형태의 단백질로 굵기가 25나노미터(1나노미터는 머리카락 굵기의 10만분의 1)에 불과하다.
대부분의 암 치료 약물은 마이크로튜불의 형성을 교란해 암세포 분열을
억제하는 것으로 작용 메커니즘이 알려져 있다. 알츠하이머병은 세포간 물질수송을 담당하는 마이크로튜불의 구조적 안정성이 떨어지면서
신경세포에서의 신호전달이 제대로 이루어지지 않아 생기는 대표적 뇌질환이다.
연구팀은 싱크로트론 X선 산란장치(synchrotron x-ray
scattering: 전자를 빛의 속도에 가깝게 가속시켜 강력한 X선을 발생시키는 장치)와 투과전자현미경을 이용해 단백질
나노튜브의 자기조립 구조를 서브나노미터(1나노미터 미만)의 정확도로 측정했다.
연구팀은 이번 연구를 분자 레벨에서 레고 블록을 쌓아 올리는 것에 비유해
가로×세로×폭이 각각 4×5×8 나노미터인 단백질 블록을 쌓아 올려 25나노미터 굵기의 튜브를 형성하는 메커니즘을 추적했다. 이
과정에서 연구팀은 레고 블록의 형태를 제어하는 분자스위치를 발견했다. 또 지금까지 보고된 바 없는 전혀 새로운 크기와 형태의
단백질 튜브 구조를 만들어 내는데 성공했다.
최명철 교수는 “인간의 생명 시스템은 고도의 자기조립 구조체를 형성해 복잡한 생물학적 기능을 하고 있지만 한편으로는 극히 단순한 물리학적 원리에 의해 제어가 가능하다는 새로운 패러다임을 제시했다”고 이 연구의 의의를 밝혔다.
또 “이번 연구는 암 치료와 뇌질환 메커니즘을 규명하고자하는 작은 발걸음이며 앞으로 바이오 나노튜브를 이용한 공학적 응용이 무궁무진할 것으로 기대한다”고 말했다.
이번 연구는 한국연구재단의 국제협력사업, 신진연구자지원사업, 학문후속세대양성사업, KAIST 고위험 고수익 프로젝트(High Risk High Return Project)의 지원으로 수행됐다.
2014.01.21
조회수 21510
-
배추 절이는 원리로 광결정 미세캡슐 개발
- “반사형 컬러 디스플레이 소자 및 인체 주입 바이오센서에 응용가능” -- 콜로이드 및 유체역학 분야의 대가 故 양승만 교수에게 연구결과 헌정 -
우리 학교 생명화학공학과 김신현 교수 연구팀이 하버드대와 공동으로 삼투압 원리를 이용해 차세대 광학소재로 주목받는 광결정의 미세캡슐화 기술을 개발했다.
연구결과는 네이처 자매지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 7일자 온라인 판에 게재됐다.
남미 열대림에서 서식하는 몰포(Morpho)나비의 날개는 파란 색으로 보이지만 색소가 없다. 날개 표면에 있는 규칙적인 나노 구조로 인해 파란색 파장의 빛만을 반사하기 때문에 우리 눈에는 파란 색으로 보이는 것이다.
이처럼 물질의 광구조가 특정 파장의 빛만 반사하고 나머지는 통과하는 배열을 갖도록 만들어낸 물질을 ‘광결정’이라고 한다.
광결정은 빛의 파장 절반 수준에서 굴절률이 주기적으로 변하는데 특정 파장의 빛만을 제어할 수 있는 특성과 다양한 응용가능성을 갖고 있어 ‘빛의 반도체’라고도 불린다.
1987년 미국 벨연구소 이론 물리학자 엘리 야블로노비치(Eli Yablonovitch)와 프린스턴대학 사지브 존(Sajeev John)이 광결정 개념을 최초로 보고한 이래 지난 27년 동안 많은 과학자들이 광결정을 인공적으로 제조하기 위해 노력해왔다. 그러나 반사색이 대부분 고정된 구조에 의해 발현돼 색을 바꾸는 것이 불가능하고 제조 공정이 까다로워 상용화가 어려웠다.김 교수 연구팀은 △액체 상태의 광결정을 잉크처럼 캡슐화하고 △광결정을 덩어리 형태가 아닌 머리카락 굵기(약 100나노미터) 수준의 미세캡슐형태로 제조해 제작의 공정성을 높였으며 △고무재질의 캡슐막을 적용해 모양을 자유자재로 바꿀 수 있도록 제작했다.
연구팀은 배추를 소금물에 절일 때 발생하는 ‘삼투압현상’을 활용했다. 배춧잎은 물 분자만을 투과시키는 반투막으로 이뤄져있는데 배추가 소금물에 잠기면 높은 삼투압을 갖는 소금물이 배춧잎 내부의 물 분자를 반투막 밖으로 꺼내고 배춧잎은 부피가 줄어드는 원리를 이용한 것이다.
연구팀은 이 현상을 나노입자를 담은 미세 물방울에 적용했다. 삼투압현상에 의해 물방울의 부피가 줄어듦에 따라 나노입자가 스스로 규칙적인 구조로 배열돼 캡슐막 내부에 액상의 광결정을 만들었다. 이 과정에서 머리카락 굵기 수준의 작은 통로를 구현한 미세유체소자를 활용해 광결정 미세캡슐을 균일한 크기로 제조하는데 성공했다.
김신현 교수는 “미세 광결정 잉크캡슐은 상용화 가능한 수준으로 향후 구부리거나 접을 수 있는 차세대 반사형 컬러 디스플레이 소자 및 인체 내로 주입 가능한 바이오센서 등을 구성하는 핵심 광학소재로 사용될 수 있을 것”이라고 이번 연구 의의를 설명했다.
KAIST 및 하버드 연구진들은 이번 연구 결과를 지난해 9월 불의의 사고로 고인이 된 콜로이드 및 유체역학 분야의 세계적 대가 故 양승만 교수(前 KAIST 생명화학공학과 교수)에게 헌정했다고 전했다.
한편, 이번 연구는 산업통상자원부에서 지원하는 선진기술국가 국제공동기술개발사업으로 진행됐다.
□ 용어설명- 광결정 (Photonic crystals): 빛의 파장의 절반 수준에서 굴절률이 규칙적으로 변하는 물질로써 특정 에너지를 갖는 광자가 물질 내에 존재할 수 없는 광밴드갭 (photonic bandgap)을 갖는 물질을 말함. 광밴드갭에 해당하는 파장이 가시광선 영역에 있을 때, 외부에서 입사하는 백색광 중 광밴드갭에 해당하는 파장의 빛이 선택적으로 반사되어 금속 광택과 흡사한 느낌의 색깔을 보임.
- 미세유체소자(Microfluidic device) : 머리카락 굵기 수준의 미세한 유로를 집적화함으로써 유체 흐름을 매우 정교하게 제어할 수 있게 해주고, 균일한 크기와 구조의 이멀젼(emulsion) 을 생성시킬 수 있는 소자.
□ 그림설명
그림1. 삼투압 차에 따른 캡슐 크기 감소를 보여주는 모식도
그림2. 균일한 크기의 광결정 캡슐을 제조할 수 있는 미세유체소자
그림3. 초록색 및 파란색 반사색을 보이는 광결정 캡슐의 광학현미경 사진
그림4. 광결정캡슐의 변색 및 변형을 보여주는 광학현미경 사진
그림5. 자연계에 존재하는 광결정의 예: 오팔보석, 공작새 깃털, 극락조의 날개
2014.01.15
조회수 25698
-
나노 입자 기반 신개념 슈퍼렌즈, 2013 10대 과학기술 뉴스로 선정
박용근 교수
우리 학교 물리학과 박용근·조용훈 교수 공동연구팀이 개발한 "나노 입자 기반의 신개념 슈퍼렌즈" 기술이 한국과학기술단체총연합회가 선정한 "2013년 10대 과학기술 뉴스"로 선정됐다.
이 렌즈는 빛의 산란을 이용해 기존 광학렌즈보다 3배가량 뛰어난 해상도를 갖는다.
빛의 굴절을 이용하는 기존 광학렌즈와 달리, 슈퍼렌즈는 100㎚ 크기의 세포 내 구조와 바이러스 등을 볼 수 있다. 또 광통신과 최첨단 반도체 공정 등에 응용 가능하다.
이밖에도 나로호 발사 성공, 뇌세포막을 제거해 뇌를 투명하게 보는 기술과 암 전이를 차단하는 신물질 개발, 초광각 곤충 눈 카메라 기술 개발 등이 올해의 연구업적으로 인정받았다.
2013 10대 과학기술 뉴스는 3차례의 위원회 심의와 지난달 21일부터 이달 4일까지 14일 간 5437명의 온라인투표 참여를 통해 선정됐다.
2013.12.11
조회수 12780
-
바이러스를 이용한 친환경 나노발전기 개발
- 자연계의 생체 합성 능력을 모방해 만든 신물질로 나노발전기 개발 -
우리 학교 신소재공학과 이건재(38)·남윤성(40) 교수 공동연구팀은 유전자 조작 바이러스를 이용해 유연한 압전 나노발전기를 만드는데 성공했다.
연구결과는 나노 및 에너지 분야의 세계적 학술지 ‘ACS Nano’ 온라인판(11월 14일자)에 게재됐으며, 대면적 저비용 제작에도 성공해 ‘어드밴스드 에너지 머티리얼스(Advanced Energy Materials)’ 12월호 표지논문으로 선정되기도 했다.
조개껍질, 해면, 뼈 등에서 볼 수 있듯이 자연계는 인간이 만들기 어려운 여러 가지 물질이나 구조를 스스로 합성하고 조립하는 능력을 가지고 있다. 예를 들어, 자연계의 조개껍질은 매우 단단한 반면 같은 물질이지만 인공 합성물인 분필은 쉽게 부서진다.
게다가 기존의 여러 인공 합성법들은 독성이 많고 극한적인 환경에서 이뤄진다는 것에 비해 이러한 자연적인 합성은 매우 신비하고 주목할 만한 현상이다. 이처럼 생물들이 가지고 있는 자연적 물질 합성을 모방하면 과학기술 분야에서 효율적으로 환경문제를 해결하거나 신물질을 개발할 수 있다.
연구팀은 자연계에 대량으로 존재하면서 인체에는 무해한 M13이라는 바이러스 유전자를 조작하고, 이 바이러스의 특징을 이용해 압전 효과가 우수한 티탄산바륨(BaTiO3)을 합성함으로써 유연한 압전 나노발전기를 만드는데 성공했다.
나노발전기란 기계적인 힘을 가하면 전기가 생성되는 압전(piezoelectricity) 현상을 응용해 만든 에너지를 얻는 소자다. 연구팀은 이번에 손가락의 움직임으로도 전기에너지를 생산해 LED를 구동하는데 성공했다.
남윤성 교수는 “이번에 개발된 나노발전기는 DNA 조작이 생명체의 변형을 뛰어넘어 전자소자까지 제어할 수 있다는 새로운 발상의 전환을 보여주는 것”이라며 “뛰어난 압전특성과 친환경적인 제조공정은 이러한 접근법이 얼마나 매력적인지를 잘 보여준다”고 연구의 의의를 설명했다.
ㅁ 그림설명
바이러스 구조를 이용한 티탄산바륨 합성 및 나노발전기 모식도(첫째 줄), 바이러스와 이를 이용한 티탄산바륨 나노물질의 전자현미경 사진 및 구현된 유연한 나노발전기와 소자 (LED) 구동 모습(둘째 줄)
2013.12.10
조회수 20366
-
오래가는 리튬황 이차전지 개발
- 리튬이온전지 보다 에너지밀도가 5배 이상 높은‘리튬황 전지’개발 -
우리 학교 신소재공학과 김도경 교수는 EEWS 최장욱 교수와 공동으로 현재 상용화중인 리튬이온 배터리의 수명 및 에너지 밀도를 크게 뛰어넘는 리튬황 전지를 개발했다.
연구결과는 나노소재 분야 권위 있는 학술지 ‘어드밴스드 머티리얼즈(Advanced Materials)’ 3일자 표지논문(frontispiece)으로 실렸다.
개발된 리튬황 전지는 △단위 무게당 에너지 밀도가 최대 2100Wh/kg로 상용화 중인 리튬이온전지(최대 387Wh/kg)의 5.4배에 달하고 △기존에 개발된 리튬황 전지가 갖는 충·방전에 따른 급격한 용량감소 문제를 해결해 수 백 번 충·방전이 가능하다.
김 교수 연구팀은 나노 전극 재료합성기술을 활용, 두께 75nm(나노미터) 길이 15㎛(마이크로미터)의 황 나노와이어를 수직으로 정렬해 전극 재료를 제작했다.
제작된 황 나노와이어 정렬 구조는 1차원 구조체로 빠른 전자의 이동이 가능해 전극의 전도도를 극대화시켰다.
이와 함께 황 나노와이어 표면에 균일하게 탄소를 코팅함으로써 황과 전해액의 직접적인 접촉을 막아 충·방전 중 황이 녹아나는 것을 방지, 리튬황 전지가 갖는 수명저하 문제를 해결했다.
기존에 개발된 리튬황 전지용 전극은 초기에 높은 용량을 보임에도 불구하고 충·방전을 반복함에 따라 지속적인 용량감소를 보였다.그러나 개발된 전극은 빠른 방전속도(3분마다 1회 충·방전 조건)에서 300회의 충·방전 후에도 초기 용량의 99.2%를 유지했고 1000회의 충·방전 후에도 70%이상 용량을 나타냈다.
따라서 이차전지에서 가장 중요한 특성인 수명, 에너지 밀도 등에서 기존의 어떠한 전극보다 성능이 우수한 세계 최고 수준으로 평가받고 있다.
김도경 교수는 “개발된 리튬황 전지는 무인기, 전기자동차 및 재생에너지 저장장치 등에 필요한 차세대 고성능 이차전지의 실현을 앞당길 수 있는 기술”이라며 “대표적인 차세대 이차전지인 리튬황 전지의 오랜 난제인 수명저하의 해결방안을 찾아 세계 최고 수준의 성능을 구현해 내 이 분야에서 우리나라가 기술 우위를 선점할 수 있을 것으로 기대된다”고 연구 의의를 밝혔다.
한편, 연구팀은 관련 기술에 대해 국내 특허 1편과 PCT 국제 특허 1편의 출원을 완료했다.
□ 그림설명
그림1. 개발된 리튬황 전지수명특성 그래프, 300회의 충·방전 시에도 초기 용량의 99.2%의 성능을 낸다.(좌측) 1000회 충·방전에도 높은 성능을 유지한다.(우측)
그림2. 탄소 코팅된 황 나노 와이어 정렬 구조(좌측상단 1, 2 프레임), 단일 황 나노와이어(좌측 하단), 황 나노 와이어 정렬 구조 모식도(우측)
2013.12.03
조회수 15598
-
옷처럼 입을 수 있는 신 개념 배터리 개발
- 구부리고, 접히고 구겨져도 작동이 가능한 이차전지 원천기술 개발 -
- 휘어지는 유기 태양전지 접목한 새로운 개념의 충전 기술 기반 -
최근 국내 대기업간 휘어지는 스마트 폰 경쟁이 치열하다. 특히, 국내 기업인 S사와 L사는 휘어지는 배터리를 탑재해 눈길을 끌었다. 그러나 앞으로는 배터리를 옷처럼 입고 다니는 것은 물론 태양광으로 충전도 가능할 전망이다.
우리 학교 EEWS 대학원 최장욱(39) 교수는 같은 과 이정용(40) 교수, 기계공학과 김택수(36) 교수와 공동으로 휘는 것은 물론 접어도 안전하게 작동하면서 태양열로 충전하는 신 개념 배터리를 개발했다. 연구 결과는 나노과학분야 세계적 권위지 ‘나노 레터스(Nano Letters)’지 5일자 온라인판에 게재됐다.
이번에 개발된 배터리를 이용하면 웨어러블 컴퓨터 기술개발이 탄력을 받을 것으로 기대된다. 또 아웃도어 의류에 적용할 경우 한겨울에도 입으면 땀나는 옷이 나올 것으로 예상된다.
휘어지는 전자기기는 미래 고부가가치 시장으로 여겨지고 있다. 삼성전자의 갤럭시 기어(Galaxy Gear), 애플(Apple)의 아이와치(i-Watch), 구글(Google) 글래스 등 다양한 입는 전자제품이 출시됐거나 시제품으로 소개됐으며 시장선점을 위한 기술경쟁은 더욱 치열해질 전망이다.
그러나 기존의 딱딱한 배터리는 입는 전자기기에 큰 장애물로써, 자유롭게 휘어지는 배터리를 개발하기 위해 많은 국내외 연구팀에서 노력하고 있다.
최 교수 연구팀은 옷으로 사용되는 섬유가 반복적인 움직임에도 변형되지 않는 점에 착안해 배터리에 유연한 특성을 부여했다.
연구팀은 폴리에스터 섬유에 전통적인 기술인 니켈 무전해 도금을 한 후, 전극 활물질로 양극에는 리튬인산철산화물을, 음극에는 리튬티타늄산화물을 얇게 도포해 유연한 집전체를 개발했다. 이처럼 섬유를 기반으로 개발된 배터리는 섬유의 유연함을 유지할 수 있어 구부림·접힘·구겨짐이 모두 가능하다.
기존 배터리의 집전체가 알루미늄과 구리를 사용해 몇 번만 접어도 부러지는 단점을 간단한 방법을 통해 획기적으로 개선한 것이다.
특히, 집전체 골격으로 쓰인 3차원 섬유구조는 반복적인 움직임에도 힘을 분산시켜 전극물질의 유실을 최소화하면서도 전지의 구동을 원활하게 해 5,000회 이상 접어도 정상적으로 작동했다. 현재는 2V의 전압과 85mAh의 용량을 나타냈으며, 이는 추가적인 최적화 과정을 통해 맞춤형 디자인을 할 수 있어 다양한 웨어러블 응용 분야에 적용될 수 있다고 연구팀은 설명했다.
게다가 이번에 개발한 배터리의 제조기술은 현재 양산 제조공정을 그대로 활용할 수 있어 생산라인의 재투자 없이 바로 적용될 수 있을 것으로 기대된다.
이와 함께 연구팀은 휘어지면서도 가벼운 특징을 갖는 유기태양전지 기술을 적용, 옷처럼 입고 구김이 가는 상태에서 태양광으로 충전하는 기능도 추가했다.
최장욱 교수는 “지금까지 입는 전자제품 개발에 있어 가장 큰 난관이었던 입는 배터리의 실마리를 풀어 미래 이차전지 분야 핵심원천기술로 활용될 것”이라며 “기존 이차전지 기업들과의 협력해 상용화되면 다양한 소형 모바일 전자기기를 입고 다니는 새로운 IT 시대를 가능하게 할 것”이라고 밝혔다.
2013.11.14
조회수 16601
-
화학적 도핑을 통한 탄소신소재 개발
- 재료분야 저명 학술지 ‘어드밴스드 머티리얼스’ 25주년 특집호 발표 -
우리 학교 신소재공학과 김상욱 교수가 ‘화학적 도핑을 통한 탄소 신소재 개발’을 주제로 재료분야 저명학술지 ‘어드밴스드 머티리얼스(Advanced Materials)’ 25주년 기념 초청 리뷰논문(10월 14일자)을 게재했다.
이번 논문에서 김 교수는 그래핀과 탄소나노튜브에 다양한 이종원소 도핑을 통해 새로운 탄소 소재를 개발하고, 적용 가능한 수준까지 재료의 특성을 끌어올려 배터리, 광촉매 등은 물론 미래 기술로 각광받고 있는 태양전지, 휘어지는 디스플레이 등에도 응용될 것이라고 전망했다.
‘도핑’은 운동경기에서 좋은 성과를 내기 위해 선수들이 약물이나 주사 등을 사용하는 것으로 널리 알려져 있다. 그러나 과학계에서는 순수한 물질에 필요한 불순물을 첨가시키는 것을 ‘도핑’이라고 부른다.
두 가지 도핑 모두 성능을 향상시키는 데 도움이 된다는 공통점을 가지고 있지만 과학계의 도핑은 부작용이 없으며 요구되는 성능을 획득하는데 반드시 필요한 존재라는 특징을 갖고 있다. 실리콘 반도체의 경우에도 다양한 원소가 도핑된 반도체를 사용해 요구 성능을 확보하고 있다.
최근 주목받는 그래핀이나 탄소나노튜브와 같은 신소재는 재료 특성이 매우 우수한 것으로 알려져 있지만 산업적으로 활용하기 위해서는 다양한 원소를 도핑이란 첨가 방법을 통해 재료 특성을 우수하게 끌어올리는 방법이 필요했다.
도핑을 할 경우 탄소원자로만 구성된 그래핀과 탄소나노튜브에 다른 원소의 주입이 가능하게 되고 이들 원소의 특징에 따라서 전자를 주거나 받게 되어 전기를 보다 잘 통하게 할 수 있다. 또 반응성을 향상시켜 산업적 응용을 방해하던 낮은 용매 분산성을 향상시킬 수 있게 된다.
이와 함께 향상된 용매 분산성과 전기 전도도는 그동안 탄소 계열 신소재에서는 불가능하게 여겨졌던 용액 공정을 가능하게 할 수 있다. 이를 통해 휘어지는 반도체, 오래가는 배터리, 효율 높은 광촉매 등의 개발을 가능하게 한다.
김상욱 교수는 “이번 기술 개발로 현재 사용되는 배터리보다 더 오래가는 배터리, 더 빛을 잘 차단해주는 자외선 차단제, 태양열로 가는 자동차 및 휘어지는 휴대폰 등에 활용할 수 있는 신소재의 개발이 한층 더 앞당겨진 것으로 기대된다”고 말했다.
어드밴스드 머티리얼스는 재료분야 최고 수준의 학술지로 이번 25주년 기념 특집에서는 세계적으로 저명한 재료 과학자들로 구성된 학술지 편집진이 엄격한 심사과정을 거쳐 선정한 가장 선도적인 업구업적을 내고 있는 연구자들을 초청해 연구 성과를 소개했다.
그림1. 도핑을 통해 만들어진 탄소 신소재와 이들의 다양한 적용사례
- 1. 태양전지, 2. 휘어지는 기판, 3. 액정, 4. 선택적 흡착제, 5. 에너지 저장 및 변환소자, 6. 복합재료(왼쪽 위부터 시계방향)
2013.11.05
조회수 15139
-
소금쟁이 착안해 나노박막 물성 측정법 개발
-“수 nm 두께 나노박막의 기계적 물성도 손쉽게 측정할 수 있어”-- 네이처 커뮤니케이션즈 3일자 게재 -
우리 학교 기계공학과 김택수 교수와 한국기계연구원(원장 최태인) 나노역학연구실 현승민 박사 공동연구팀은 물 표면의 특성을 이용해 나노박막의 기계적 물성을 평가하는 새로운 방법을 개발했다.
연구결과는 세계적 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)" 3일자 온라인판에 게재됐다.
이번에 개발된 기술을 활용하면 직접 측정하기 어려운 나노박막의 강도, 탄성 등 기계적 물성을 직접 측정해 정확한 결과 값을 얻을 수 있다. 또 방법이 간단해 나노박막 기계적 물성 평가의 새로운 패러다임을 제시한 것으로 학계와 산업계는 평가하고 있다.
나노박막의 기계적 물성 평가는 반도체, 디스플레이 등의 신뢰성을 예측하는데 중요한 것은 물론 나노 세계의 새로운 현상을 발견하는데도 필요하다. 그러나 기계적 강도는 구조물이 바닥으로부터 떨어져 측정을 하는데 나노박막의 경우 쉽게 부서지는 문제점이 있어 시험이 어려웠다.
연구팀은 소금쟁이와 같은 곤충이 물의 표면 위를 자유로이 떠다니는 것에 착안했다.
연구팀은 표면 장력이 크고 낮은 점성을 갖는 물의 특성을 이용해 물 표면에 약 55nm(나노미터) 금나노박막을 띄워 놓고 손상 없이 기계적 물성을 정확하게 특정하는데 성공했다.
이 기술을 이용하면 다양한 종류의 나노박막 뿐만 아니라 두께가 수 나노미터에 이르는 박막의 기계적 물성까지도 측정할 수 있을 것으로 기대된다.
김택수 교수는 이번 연구에 대해 “물의 특성을 이용한 새로운 강도 시험 방법의 개발을 통해 기존에 접근하기 어려웠던 나노박막의 기계적 물성 평가를 효과적으로 수행할 수 있게 됐다”고 의의를 밝혔다.
또 “향후 기존의 강도 시험법으로는 측정이 불가능했던 그래핀과 같은 2차원 나노박막의 기계적 물성을 밝혀나갈 계획”이라고 말했다.
KAIST 기계공학전공 김재한 박사과정(제1저자) 학생이 KAIST 김택수 교수, 한국기계연구원 현승민 박사의 지도를 받아 수행한 이번 연구는 한국연구재단 신진연구지원사업, 한국기계연구원 주요연구 사업과 21세기 프론티어 사업의 지원으로 수행됐다.
<물 표면을 이용한 나노박막의 기계적 물성 평가 과정>
<왼쪽에서부터 현승민 박사, 김재한 박사과정생, 김택수 교수 (카이스트, 한국기계연구원 공동 연구팀)>
2013.10.14
조회수 16814
-
양자점 이용한 고효율 투명 태양전지 개발
- 양자점 전해질에 분산해 9%대 고효율 염료감응 태양전지 원천기술 개발 -- 네이처 자매지 ‘사이언티픽 리포트’ 19일자 게재 -
우리 학교 신소재공학과 강정구 교수 연구팀은 모바일 양자점(mobile quantum dots)을 활용해 투명한 고효율 염료감응 태양전지 원천기술을 개발하는데 성공했다.
연구 결과는 세계적 학술지인 네이처(Nature)에서 발간하는 사이언티픽 리포트(Scientific Reports) 19일자 온라인판에 게재됐다.
현재 양산 가능한 염료감응 태양전지는 효율이 약 14% 정도로 낮아 가시광선 및 적외선 영역의 빛 흡수를 높이기 위해 염료, 빛 산란층, 플라즈몬 구조 등을 적용해 왔다. 그러나 이러한 구조들로 인해 태양전지가 두꺼워져 고효율의 투명 태양전지 구현에 한계가 있었다.
연구팀은 빛 흡수를 높이기 위해 염료감응 태양전지의 전해질에 양자점을 분산시켜 빛 산란층과 플라스몬 구조 없이도 9%대의 고효율을 달성했다.
아직은 현재 양산 가능한 태양전지보다 효율이 낮고, 상용화에는 많은 시간이 소요될 것으로 예상되지만 근본적으로 두께가 얇고 저렴한 염료감응 태양전지의 장점으로 인해 매우 의미 있는 연구결과라고 연구팀은 전했다.
이와 함께 연구팀은 전해질에 분산돼 있는 양자점이 염료와 함께 빛을 흡수하고 나서 다시 빛을 방출해 TiO2-염료 층과 전해질이 있음에도 불구하고 투명한 태양전지를 구현해내는데 성공했다.연구팀은 또 이번 연구를 통해 △가시광선 영역대에서도 양자점의 흡수와 방출 스펙트럼에 따라 형광공명 에너지 이동과 빛을 흡수한 양자점이 산화된 염료의 환원을 가속화시켜 태양전지 효율이 증가했으며 △빛 분산층과 플라즈몬 구조가 있는 투명하지 않은 셀과의 비교에서도 양자점의 흡수에 의한 효율 증가가 다른 효과보다 크고 투명한 특성을 보였음을 밝혀냈다.
강정구 교수는 이번 연구에 대해 “염료감응 태양전지의 높은 효율과 투명성을 모두 확보할 수 있게 됐으며, 투명한 유리창에 태양전지를 설치하는 것이 최종 목표”라며 “적외선 영역의 빛을 사용해 전기를 만들 수 있는 방법을 제시해 염료감응 태양전지의 적용 범위가 더욱 확대될 것으로 기대된다”고 말했다.
이번 연구는 KAIST 인공광합성센터, 고효율박막태양전지센터, 나노계면센터, WCU, 글로벌프론티어 사업 등의 지원을 통해 수행됐다.
그림1. 모바일 양자점이 포함된 염료감응태양전지의 흡수 스펙트럼, 외부양자효율, 전압-전류.(상단) 플라즈몬 구조, 빛반사층과 모바일 양자점이 구현된 태양전지의 외부양자효율, 산란파워, 그리고 사진의 비교. (하단)
그림2. 모바일 양자점이 전해질에서 염료에 흡수된 빛 에너지를 전달하는 메커니즘(좌측)과 염료 및 양자점의 흡수스펙트럼과 양자효율 (우측): Foster Resonance Energy Transfer (FRET) (상단), 양자점에서 흡수된 빛에너지에 의한 산화된 염료의 환원 작용(중단), 2광자 흡수 (하단)
그림3. 염료감응 태양전지 샘플
그림4. 연구원 사진
2013.09.25
조회수 16574