-
암세포를 정상세포로 되돌리는 치료원리 최초 규명
지난 수십 년간 많은 의생명과학자들의 집중적인 암 연구에도 불구하고 여전히 국내 사망원인 1위는 암이다. 현재의 암 치료가 한계를 갖는 본질적인 이유는 모든 치료방식이 암세포의 사멸만을 목표로 하여서 결국 암세포의 내성 획득으로 인한 암의 재발 및 정상세포 사멸로 인한 부작용을 피할 수 없기 때문이다. 이에 암세포를 특정한 상황에서 정상세포 또는 정상과 유사한 세포로 되돌릴 수 있는 암가역화(cancer reversion) 현상에 기반한 새로운 항암 치료기술이 제시되었으나, 아직 실제적인 개발은 거의 시도되지 못했다.
우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 시스템생물학 연구를 통해 암세포를 죽이지 않고 성질만을 변환시켜 정상세포로 되돌릴 수 있는 암 가역화의 근본적인 원리를 규명하는 데 성공했다고 8일 밝혔다.
조광현 교수 연구팀은 정상세포가 외부자극에 부합하는 세포반응을 일으키는 것과 달리 암세포는 외부자극을 무시한 채 통제불능의 세포분열 반응만을 일으킨다는 것에 주목하였다. 컴퓨터 시뮬레이션 분석을 통해 특정 조건에서 유전자 돌연변이에 의해 왜곡된 입출력 관계가 정상적인 입출력 관계로 회복(가역화)될 수 있음을 발견했으며, 분자세포실험을 통해 이와 같은 입출력 관계의 회복이 실제 암세포에서 나타난다는 것을 입증했다.
우리 대학 주재일 박사, 박화정 박사가 참여한 이번 연구결과는 와일리(Wiley)에서 출간하는 국제저널 `어드밴스드 사이언스(Advanced Science)' 6월 2일 字 온라인판 논문으로 출판됐다. (논문명: Normalizing input-output relationships of cancer networks for reversion therapy)
조광현 교수 연구팀은 암세포의 왜곡된 입출력 관계가 정상세포의 정상적인 입출력 관계로 회복될 수 있는 이유는 생명체의 오랜 진화과정에서 획득된 세포내 유전자 조절 네트워크의 견실성(robustness)과 중복성(redundancy)에 기인한다는 것을 규명했다. 또한 암 가역화를 위한 조절 타겟으로 유력한 유전자들이 존재한다는 것을 발견했고 이 유전자들을 조절하면 실제로 암세포의 왜곡된 입출력 관계가 정상적인 입출력 관계로 회복된다는 것을 암세포 분자세포실험을 통해 증명했다.
이번 연구성과는 실제 암세포가 정상세포로 가역화 될 수 있는 현상이 우연한 것이 아니며, 암세포 가역화를 유도할 수 있는 타겟을 체계적으로 탐색하고 이를 조절하는 약물을 개발함으로써 혁신 항암제의 개발이 가능함을 보여준 것이어서 그 의미가 크다.
조광현 교수는 "현행 항암치료의 한계를 극복할 수 있는 새로운 암 가역치료 전략에 대한 근본적인 원리를 밝히는 데 성공함으로써 암 환자의 예후와 삶의 질을 모두 증진시킬 수 있는 혁신 신약 개발의 가능성을 높이게 되었다ˮ라고 말했다.
조광현 교수 연구팀은 암세포를 정상세포로 되돌리는 가역치료 개념을 최초로 제시한 뒤 2020년 1월에 대장암세포를 정상 대장세포로 되돌리는 연구결과를 발표했고, 2022년 1월에는 가장 악성인 유방암세포를 호르몬 치료가 가능한 유방암세포로 리프로그래밍하는 연구에 성공한 바 있다. 그리고 2023년 1월에는 전이 능력을 획득한 폐암 세포를 전이 능력이 제거되고 약물 반응성이 증진된 세포 상태로 되돌리는 가역화 연구에 성공한 바 있다. 하지만 이와 같은 성과들은 서로 다른 암종에서 개별적으로 연구되어진 사례연구였기 때문에, 어떠한 공통된 원리로 암가역화가 여러 암종에서 발생가능한지는 밝히지 못했다. 이번 연구 결과는 이러한 암가역화의 보편적인 원리와 진화적 기원을 밝힌 최초의 연구다.
한편 이번 연구는 과학기술정보통신부와 한국연구재단의 중견연구사업 등의 지원으로 수행됐다.
2023.06.08
조회수 5194
-
새로운 준입자 애니온 현상 발견
우리 대학 물리학과 심흥선 교수 연구팀(응집상 양자 결맞음 선도연구센터)이 특이 준입자 애니온 (anyon)의 새로운 현상을 발견했다.
이는 새로운 입자인 가환 애니온 (Abelian anyon)의 기본 성질인 braiding 특성을 입증한 것으로, 가환 애니온의 존재 규명에 기여한 성과이다. 이는 물리학의 난제로 남아있는 비가환 애니온 (non-Abelian anyon, Majorana fermion) 발견을 위한 후속 연구에 활용될 것으로 기대된다.
우리 대학 물리학과 이준영 박사과정 학생이 1저자로 참여하고, 이스라엘 와이즈만 연구소와 공동으로 수행한 이번 연구 결과는 국제 학술지 ‘네이처(Nature)’ 5월 11일 자에 게재됐다. (논문명 : Partitioning of diluted anyons reveals their braiding statistics)
여기에 추가로, 심흥선 교수 연구팀은 관련 연구를 기본 입자인 전자 (electron)의 경우에도 수행해, 국제 학술지 ‘네이처 나노테크놀러지(Nature Nanotechnology)’에 논문 2편을 연이어 게재하였다. (5월 11일 온라인 게재) 이 연구에는 물리학과 박완기 박사과정 학생이 주저자로 참여하였다. (논문명 : Time-resolved Coulomb collision of single electrons, 논문명 : Coulomb-mediated antibunching of an electron pair surfing on sound)
애니온이 특이한 입자로 불리는 이유는 알려진 기본 입자들의 성질을 따르지 않기 때문이다. 자연계의 모든 기본 입자들은 보존 (boson)이나 페르미온 (fermion)으로 분류되는데, 애니온은 그 분류를 따르지 않는다. 가령, 이차원 계에서 전자 (electron)가 다른 전자 주위를 아주 천천히 한바퀴 돌게 되면, 돌기 전 상태와 후 상태가 정확하게 같게 된다. 모든 보존과 페르미온이 이러한 특성을 보인다. 하지만, 애니온 경우에는 돌기 전 상태와 후 상태가 달라지며 (아래 그림 a), 어떻게 달라지냐에 따라 가환 애니온, 비가환 애니온으로 분류된다. 이러한 특성은 braiding이라고 불리운다. 특정 애니온의 braiding을 이용하면 국소적 에러에 둔감한 위상 양자컴퓨터 (topological quantum computing)를 구현할 수 있다는 기대 방향도 있다.
애니온 발견에 있어 핵심은 braiding 현상을 입증하는 것이다. 세계 최선도 그룹들이 braiding을 관측하기 위해 지난 30 여년 동안 경주해왔다. 심흥선 교수 연구팀은 애니온이 포텐셜 장벽에서 산란(scattering)될 때, 기존 현상과는 완전히 다른 현상이 발현되는 것을 예측하고 [Phys. Rev. Lett. (2019)], 이를 관측하는 방법을 제시한 바 있다 [Nat. Comm (2022)]. 이 현상에서는 포텐셜 장벽에 애니온이 입사될 때, 포텐셜 장벽에서 발생한 애니온 진공 요동 (anyonic virtual vacuum fluctuation)과 입사된 애니온 사이에 braiding이 일어난다 (아래 그림 c). 제시한 방법을 기반으로 심흥선 교수 연구팀은 이스라엘 와이즈만 연구소 Moty Heiblum 교수 실험팀과 협력하여, 예측한 braiding 현상을 입증하고 교신저자 논문을 발표하였다 [Nature (2023)]. 관측된 현상은 가환 애니온 존재에 대한 증거로 학계에 받아들여지고 있다.
심흥선 교수는 “비가환 애니온의 발견은 학계의 숙원으로, 이번 연구에서 확립한 가환 애니온 관측 방법은 비가환 애니온의 존재 입증에 활용될 것으로 기대된다”라며, “이러한 노력은 새로운 특이 입자의 존재를 입증하는 일련의 주요 여정으로 받아들여질 것이다”라고 말했다.
이 연구는 한국연구재단의 기초과학 SRC 선도연구센터 지원사업의 지원을 통해 수행됐다.
2023.06.01
조회수 4265
-
111배 빠른 검색엔진용 CXL 3.0 기반 AI반도체 세계 최초 개발
최근 각광받고 있는 이미지 검색, 데이터베이스, 추천 시스템, 광고 등의 서비스들은 마이크로소프트, 메타, 알리바바 등의 글로벌 IT 기업들에서 활발히 제공되고 있다. 하지만 실제 서비스에서 사용되는 데이터 셋은 크기가 매우 커, 많은 양의 메모리를 요구하여 기존 시스템에서는 추가할 수 있는 메모리 용량에 제한이 있어 이러한 요구사항을 만족할 수 없었다.
우리 대학 전기및전자공학부 정명수 교수 연구팀(컴퓨터 아키텍처 및 메모리 시스템 연구실)에서 대용량으로 메모리 확장이 가능한 컴퓨트 익스프레스 링크 3.0 기술(Compute eXpress Link, 이하 CXL)을 활용해 검색 엔진을 위한 AI 반도체를 세계 최초로 개발했다고 25일 밝혔다.
최근 검색 서비스에서 사용되는 알고리즘은 근사 근접 이웃 탐색(Approximate Nearest Neighbor Search, ANNS)으로 어떤 데이터든지 특징 벡터로 표현할 수 있다. 특징 벡터란 데이터가 가지는 특징들 각각을 숫자로 표현해 나열한 것으로, 이들 사이의 거리를 통해 우리는 데이터 간의 유사도를 구할 수 있다. 하지만 벡터 데이터 용량이 매우 커서 이를 압축해 메모리에 적재하는 압축 방식과 메모리보다 큰 용량과 느린 속도를 가지는 저장 장치를 사용하는 스토리지 방식(마이크로소프트에서 사용 중)이 사용되어 왔다. 하지만 이들 각각은 낮은 정확도와 성능을 가지는 문제가 있었다.
이에 정명수 교수 연구팀은 메모리 확장의 제한이라는 근본적인 문제를 해결하기 위해 CXL이라는 기술에 주목했다. CXL은 CPU-장치 간 연결을 위한 프로토콜로, 가속기 및 메모리 확장기의 고속 연결을 제공한다. 또한 CXL 스위치를 통해 여러 대의 메모리 확장기를 하나의 포트에 연결할 수 있는 확장성을 제공한다. 하지만 CXL을 통한 메모리 확장은 로컬 메모리와 비교해 메모리 접근 시간이 증가하는 단점을 가지고 있다.
데이터를 책으로 비유하자면 기존 시스템은 집에 해당하는 CPU 크기의 제한으로 서재(메모리 용량)를 무한정 늘릴 수 없어, 보관할 수 있는 책 개수에 제한이 있는 것이다. 이에 압축 방식은 책의 내용을 압축하여 더 많은 책을 보관하는 방법이고, 스토리지 방식은 필요한 책들을 거리가 먼 도서관에서 구해오는 것과 비슷하다. CXL을 통한 메모리 확장은 집 옆에 창고를 지어 책을 보관하는 것으로 이해될 수 있다.
연구진이 개발한 AI 반도체(CXL-ANNS)는 CXL 스위치와 CXL 메모리 확장기를 사용해 근사 근접 이웃 탐색에서 필요한 모든 데이터를 메모리에 적재할 수 있어 정확도를 높이고 성능 감소를 없앴다. 또한 근사 근접 이웃 탐색의 특징을 활용해 데이터 근처 처리 기법과 지역성을 활용한 데이터 배치 기법으로 CXL-ANNS의 성능을 한 단계 향상했다. 이는 마치 창고 스스로가 필요한 책들의 내용을 요약하고 정리해 전달하고, 자주 보는 책들은 서재에 배치해 집과 창고를 오가는 시간을 줄이는 것과 유사하다.
연구진은 CXL-ANNS의 프로토타입을 자체 제작해 실효성을 확인하고, CXL-ANNS 성능을 기존 연구들과 비교했다. 마이크로소프트, 메타, 얀덱스 등의 글로벌 IT 기업에서 공개한 검색 데이터 셋을 사용한 근사 근접 이웃 탐색의 성능 비교에서 CXL-ANNS는 기존 연구들 대비 평균 111배 성능 향상이 있었다. 특히, 마이크로소프트의 상용화된 서비스에서 사용되는 방식과 비교하였을 때 92배의 성능 향상을 보여줬다.
정명수 교수는 "이번에 개발한 CXL-ANNS는 기존 검색 엔진의 문제였던 메모리 용량 제한 문제를 해결하고, CXL 기반의 메모리 확장이 실제 적용될 때 발생하는 메모리 접근 시간 지연 문제를 해결했다ˮ며, “제안하는 CXL 기반 메모리 확장과 데이터 근처 처리 가속의 패러다임은 검색 엔진뿐만 아니라 빅 데이터가 필요한 고성능 컴퓨팅, 유전자 탐색, 영상 처리 등의 다양한 분야에도 적용할 수 있다ˮ라고 말했다.
이번 연구는 미국 보스턴에서 오는 7월에 열릴 시스템 분야 최우수 학술대회인 유즈닉스 연례 회의 `USENIX Annual Technical Conference, 2023'에 ‘CXL-ANNS’이라는 이름으로 발표된 예정이다. (논문명: CXL-ANNS: Software-Hardware Collaborative Memory Disaggregation and Computation for Billion-Scale Approximate Nearest Neighbor Search)
한편 해당 연구는 파네시아(http://panmnesia.com)의 지원을 받아 진행됐다.
2023.05.25
조회수 5221
-
연어 DNA를 활용해서도 위조방지 가능
30년이 걸린 천경자 화백의 미인도 관련 위작 스캔들을 보면 알 수 있듯이, 복제방지 분야에 문외한일 가능성이 큰 예술창작자에게 추가적인 짐을 지우고 있다. 이를 해결하기 위한 전자적 방식보다는 광학적 방식으로 예술가에게 친화적인 방식인 브러시로 바르는 즉시 형성되는 물리적 복제 방지 기능(PUF)의 위조 방지 플랫폼 기술이 필요하다.
우리 대학 화학과 윤동기 교수 연구팀이 연성 소재(Soft material)의 자기조립(Self-assembly) 시 발생하는 무작위 패턴을 이용해 보안․인증 원천기술을 개발했다고 23일 밝혔다.
최근 사물인터넷의 발달로 다양한 전자기기 및 서비스가 인터넷으로 연결되어 신기능 창출이 가능하게 되는 동시에 개인의 프라이버시를 침해하는 위조 기술도 발달되어 그 피해를 입는 사례가 빈번하게 보고되고 있다. 그에 따라 더욱 강력하고 높은 보안성을 갖춘 위조 방지 기술에 대한 요구가 꾸준히 증가하고 있다.
연구팀이 개발한 이번 연구는 두 종류의 연성 소재가 자기조립되는 과정에서 자발적으로 발생하는 무작위 패턴을 활용해 사람의 지문과 같이 복제 불가능한 보안 기능을 할 수 있다는 것으로, 보안 분야의 전문가가 아니라도 마치 그림을 그리듯이 위조 방지 기술을 구현할 수 있다는 측면에서 큰 의의를 갖는다. 연구팀은 두 가지 방법을 개발했다.
첫 번째 방법은 액정물질을 이용한 것이다. 액정물질이 패턴 기판 속에 갇혀있을 때, 자발적으로 구조체의 대칭 파괴가 발생해 미로와 같은 구조체가 형성된다(그림 1). 오른쪽으로 트인 구조를 0(파랑), 왼쪽으로 트인 구조를 1(빨강)으로 정의하면, 이를 머신러닝을 이용한 객체 인식을 통해 디지털 코드(0과 1)로 변환돼 지문과 같은 역할을 할 수 있다고 연구팀은 확인했다. 본 연구의 경우 기존의 복잡한 반도체 패턴이 필요하지 않고, 핸드폰 카메라 정도의 해상도로 관찰할 수 있기에 비전문가도 사용할 수 있는 획기적인 기술이다. 이들은 기존의 반도체 칩을 이용한 방법에 비해 쉽게 정보를 재구성할 수 있다는 특이점을 가지고 있다.
두 번째 방법은 연어에서 추출한 DNA를 이용한 것이다. 추출된 DNA를 물에 녹여 붓으로 바르게 되면 좌굴 불안정성(Buckling instability)이 발생해 얼룩말의 무늬와 같은 무작위 패턴을 형성하게 된다. 이때, 무작위한 패턴들은 지문의 특징인 능선 끝 (Ridge Ending)과 분기점 (Bifurcation)이 나타나며 이 또한, 0, 혹은 1로 정의하여, 머신러닝을 통해 디지털화를 할 수 있다. 연구팀은 기존에 널리 사용되고 있는 지문 인식 기술을 이 패턴에 적용해 인공지문과 같이 사용했다. 이 방법은 쉽게 붓으로 제작 가능하며 다양한 색을 혼입시킬 수 있으므로 새로운 보안 잉크로 사용될 수 있다.
연구팀이 개발한 보안기술은 간단한 유기 물질만 사용하고 공정이 단순해 저비용으로 쉽게 보안 코드를 제작할 수 있다. 또한, 제조자의 목적에 따라 원하는 모양 및 크기대로 만들 수 있을 뿐만 아니라 같은 방법으로 제작하더라도 형성되는 무작위 패턴은 모두 다르므로 높은 보안 기능을 가능하게 함으로써 무궁무진한 시장성과 잠재력을 가지고 있다.
윤동기 교수는 “이번 연구들은 자기조립 시 발생하는 자연의 무작위성을 있는 그대로 받아들여 제조자조차 복제할 수 없는 인간의 지문과 같은 역할을 하는 패턴을 제작한 것ˮ이라며, “이러한 아이디어는 자연계에 존재하는 수많은 무작위성을 보안 시스템에 적용할 수 있는 기술의 초석이 될 수 있다ˮ고 설명했다.
한편, 두 연구는 모두 국제 학술지 어드밴스드 머터리얼즈(Advanced Materials)에 “1Planar Spin Glass with Topologically-Protected Mazes in the Liquid Crystal Targeting for Reconfigurable Micro Security Media”와 “2Paintable Physical Unclonable Function Using DNA”의 이름으로 5월 6일과 5일 자에 각각 게재됐다.
1박건형, 최윤석, 권석준*, 윤동기* / 2박순모†, 박건형†, 윤동기* : 공동 제1 저자, * 교신저자.
한편 이번 연구는 과학기술정보통신부-한국연구재단의 지원을 받은 멀티스케일 카이랄 구조체 연구센터, BRIDGE융합연구개발사업, 함께달리기사업, 삼성미래기술육성사업 등의 지원을 받아 수행됐다.
2023.05.23
조회수 7377
-
그린수소 저가 생산 실마리 풀어
탄소중립의 필요성이 대두됨에 따라 수소를 에너지 캐리어로 활용하는 수소 에너지 사회로의 변화가 선택이 아닌 필수가 되어가고 있다. 이를 위해 수소를 생산하는 다양한 기술들이 제시되고 있으며, 수소 생산시 이산화탄소 배출이 전혀 없는 수소를 ‘그린수소 기술’이라고 한다. 그 중, 물을 전기분해하여 수소와 산소를 생성하는 수전해 기술이 변동성이 높은 재생에너지 기반 전력 시스템에 우수한 안정성을 가져, 앞으로 급증할 그린 수소의 수요를 책임질 차세대 시스템으로 주목받고 있다.
우리 대학 생명화학공학과 김희탁 교수 연구팀이 얇은 고분자 막을 분리막으로 사용하는 고분자전해질 수전해 시스템에서 양극 귀금속 촉매 함량을 낮췄을 때 발생하는 성능 악화 현상을 규명해 그린 수소 생산기술 저가화에 대한 실마리를 찾았다고 22일 밝혔다.
생명화학공학과 두기수 박사가 제1 저자로 참여한 이번 연구 결과는 국제학술지 `ACS 에너지 레터스(ACS Energy Letters)' 5월 12일 자 온라인판 표지논문으로 게재됐다. (논문명: Contact Problems of IrOx Anodes in Polymer Electrolyte Membrane Water Electrolysis)
양이온 전도성 고분자전해질 수전해는 물을 전기분해하여 수소 기체를 발생시키는 친환경 수소생산 장치로 기존의 알칼리성 수전해 대비 높은 성능과 높은 수소생산 순도를 강점으로 지닌다.
이 수전해 시스템은 산성 환경에서 작동하며 효율적인 물의 분해를 위해 귀금속 기반의 촉매를 사용한다. 하지만 백금, 이리듐 등의 귀금속 소재들은 수급 부족과 높은 가격 문제를 수반한다. 특히, 이리듐 기반 촉매는 양극 반응에 가장 적합하지만 매장량이 적어 현재보다 십 분의 일 수준의 촉매가 요구되는 고분자전해질 수전해 장치를 개발할 필요가 있다. 하지만 이리듐 촉매 함량을 줄일 때 발생하는 급격한 성능 저하 현상이 고분자전해질 수전해 저가화의 발목을 잡고 있다. 이러한 문제해결을 위한 대부분의 연구는 이리듐을 대체하는 새로운 촉매의 발굴에 주력하고 있다.
수전해 시스템에 사용하는 전극은 이리듐 촉매와 바인더로 구성된 촉매층과 티타늄 확산층 결합된 구조를 가지고 있다. 김희탁 교수 연구팀은 고분자전해질 수전해의 양극 내 이리듐 촉매 함량을 낮췄을 때 발생하는 성능 저하 문제가 촉매층과 확산층 계면에서 바인더의 함량이 증가하기 때문이라는 새로운 시각을 제시하고 이를 규명했다.
이리듐 촉매와 티타늄 확산층이 접촉하면, 티타늄 표면에 존재하는 자연 산화막의 전자띠가 굽는 띠굽음(band bending) 현상이 일어난다. 연구팀의 결과에 따르면 낮은 이리듐 함량의 전극에서는 이 띠굽음 현상이 바인더에 의해 증폭된다. 전자띠가 굽을수록 전자전달이 더욱 어려워지므로 성능 저하가 발생하게 되는 것이다.
연구팀은 띠굽음 현상이 완화된 계면을 설계하는 경우, 이리듐 함량을 1/10 수준으로 저감시켜도 동일한 수전해 성능을 얻을 수 있음을 확인하였다. 이는 전극계면의 조성을 변화시킴으로써 비싼 귀금속 촉매 사용량을 획기적으로 저감 가능하다는 것을 증명했다.
김희탁 교수는 "이번 연구결과는 그동안 베일에 싸여있던 이리듐 저감형 수전해 전극의 성능 문제를 짚어 그 이유를 규명하고 해결 전략을 제공했다는 점에서 중요한 의미가 있다ˮ라고 말하면서, "이를 바탕으로 효율과 가격을 동시에 잡을 수 있는 그린 수소 생산 시스템의 개발에 응용되기를 기대한다ˮ고 말했다.
한편 이번 연구는 산업통상지원부 에너지기술개발사업의 지원을 받아 수행됐다.
2023.05.22
조회수 4277
-
반도체 소자 내 과열 해결방법 제시
최근 반도체 소자의 소형화로 인해 과열점(hot spot)에서 발생한 열이 효과적으로 분산되지 않아 소자의 신뢰성과 내구성이 저하되고 있다. 기존의 열관리 기술만으로는 심각해지는 발열 문제를 관리하는 데 한계가 있으며, 소자가 더욱 집적화됨에 따라 전통적 열관리 기술에서 탈피해 극한 스케일에서의 열전달 현상에 대한 근본적 이해를 바탕으로 한 접근이 필요하다. 기판 위에 증착된 금속 박막에서 발생하는 표면파에 의한 새로운 열전달 방식을 발견해 해결책을 제시하여 화제다.
우리 대학 기계공학과 이봉재 교수 연구팀이 세계 최초로 기판 위에 증착된 금속 박막에서 ‘표면 플라즈몬 폴라리톤’에 의해 발생하는 새로운 열전달 모드를 측정하는 데 성공했다고 밝혔다.
☞ 표면 플라즈몬 폴라리톤: 유전체와 금속의 경계면의 전자기장과 금속 표면의 자유 전자가 집단적으로 진동하는 유사 입자들이 강하게 상호작용한 결과로, 금속 표면에 형성되는 표면파(surface wave)를 의미한다.
연구팀은 나노 스케일 두께의 금속 박막에서 열확산을 개선하기 위해 금속과 유전체 경계면에서 발생하는 표면파인 표면 플라즈몬 폴라리톤을 활용했다. 이 새로운 열전달 모드는 기판에 금속 박막을 증착하면 발생하기 때문에, 소자 제작과정에 활용성이 높으며 넓은 면적에 제작이 가능하다는 장점이 있다. 연구팀은 반경이 약 3cm인 100나노미터 두께의 티타늄 박막에서 발생하는 표면파에 의해 열전도도가 약 25% 증가함을 보였다.
연구를 주도한 이봉재 교수는 "이번 연구의 의의는 공정난이도가 낮은 기판 위에 증착된 금속 박막에서 일어나는 표면파에 의한 새로운 열전달 모드를 세계 최초로 규명한 것으로, 이는 초고발열 반도체 소자 내 과열점 바로 근처에서 효과적으로 열을 분산시킬 수 있는 나노스케일 열 분산기(heat spreader)로 응용 가능하다ˮ고 말했다.
연구팀의 연구는 나노스케일 두께의 박막에서 열을 평면 방향으로 빠르게 분산시키는데 적용될 수 있다는 점에서 향후 고성능 반도체 소자 개발에 시사하는 바가 크다. 특히, 나노스케일 두께에서는 경계 산란에 의해 박막의 열전도도가 감소하는데, 연구팀이 규명한 이 새로운 열전달 모드는 오히려 나노스케일 두께에서 효과적인 열전달을 가능하게 해 반도체 소자 단위 열관리의 근본적인 문제를 해결해 줄 것으로 기대된다.
이번 연구는 국제학술지 `피지컬 리뷰 레터스(Physical Review Letters)'에 지난 4월 26일 字에 온라인 게재됐으며, 편집자 추천 논문(Editors' Suggestion)에 선정됐다. 한편 이번 연구는 한국연구재단의 기초연구실 지원사업의 지원을 받아 수행됐다.
2023.05.18
조회수 5434
-
항암 백신 찾는 ‘딥네오(DeepNeo)’ 개발
신생항원이란 암세포의 돌연변이에서 나온 단백질 조각 중 면역반응을 유도할 수 있는 항원들로서 항암 백신 개발의 이상적인 대상으로 주목받고 있다. 모더나 및 바이오엔텍은 암 치료를 위한 신생항원 백신용으로 개발하던 mRNA 플랫폼을 사용해 COVID-19 백신을 성공적으로 개발한 바 있으며, 현재 대규모 제약회사들과 함께 신생항원 암 백신 임상시험을 진행하고 있다. 이런 암 백신 개발을 위해 핵심적인 단계인 환자 맞춤형 신생항원 발굴에 활용될 인공지능 플랫폼이 개발되어 화제다.
우리 대학 바이오및뇌공학과 최정균 교수가 ㈜펜타메딕스와의 공동연구를 통해 개인 맞춤 치료용 암 백신에 사용될 수 있는 신생항원을 예측하는 인공지능(AI) 모델을 개발하고 웹서비스를 구축했다고 17일 밝혔다.
최정균 교수 연구팀은 딥러닝을 이용해 실제로 T 세포 면역반응을 유도할 수 있는 신생항원을 발굴하는 AI 모델을 개발했으며, 연구자들이 손쉽게 활용할 수 있는 웹서비스를 구축해 DeepNeo라는 이름으로 공개했다 (https://deepneo.net).
기존의 신생항원 발굴 방법론은 MHC* 단백질과 결합할 수 있는 돌연변이를 예측하는 데에 한정되어 있었다. 그러나 암 백신이 효과가 있으려면 돌연변이가 MHC와 결합할 뿐만 아니라 그 결합체가 실제로 T 세포 면역반응을 유발할 수 있어야 하는데, 기존 기술로는 그것이 불가능했다. 따라서 현재 암 백신 임상시험들은 이 결합체들이 실제로 면역반응을 자극할 수 있는지를 알 수 없는 상태로 진행되고 있다.
*MHC란 외부에서 들어온 병원균이나 암세포에서 발생한 항원과 결합하여 우리 몸의 면역세포에 제시해 줌으로써 면역반응을 활성화시키는 역할을 하는 단백질을 일컬음
연구팀은 이러한 문제를 해결하기 위해 새로운 개념의 딥러닝 모델을 구축했고, 여러 빅데이터 분석을 통하여 면역성 및 항암 반응성이 뛰어난 신생항원을 발굴할 수 있음을 확인했다. 따라서 이번에 웹서비스 형태로 구축한 방법론은T 세포 반응을 효과적으로 유도할 수 있는 항암 백신 개발에 활용될 수 있다.
우리 대학 바이오및뇌공학과 김정연 박사과정이 제1 저자로 개발한 핵심 알고리즘은 지난 1월 국제 학술지 ‘네이처 지네틱스(Nature Genetics)’ 에 출판됐으며, 이후 ㈜펜타메딕스의 노승재 박사, 방효은 연구원과의 공동연구를 통해 딥러닝 성능이 더욱 개선된 AI 모델이 웹서비스 형태로 개발돼 이번 4월 국제 학술지 ‘핵산 연구(Nucleic Acids Research)’를 통해 공개됐다.
최정균 교수는 “코로나 백신에서 mRNA 플랫폼이 검증된 만큼 이번에 개발된 AI 기술이 암 백신의 상용화에도 도움이 되기를 희망한다.”고 밝혔다. ㈜펜타메딕스 조대연 대표는 “이번 공동연구를 통해 개발된 플랫폼을 적용한 개인맞춤형 암 백신의 사업화에 박차를 가하겠다”고 전했다.
이번 연구는 한국연구재단 기초연구실지원사업의 지원을 받아 수행됐다.
2023.05.17
조회수 5487
-
정크 DNA가 노화와 발암에 관여한다
인간 유전체 중 일반적인 단백질 생성 유전자는 전체 염기서열의 1% 정도에 불과하며 나머지 99%의 유전체 영역은 그 기능이 뚜렷하게 알려지지 않아 ‘쓸모없는 DNA’라는 뜻으로 ‘정크 DNA’라고 불리고 있다. 정크 DNA 가운데 약 1/6을 차지하는 L1 점핑 유전자는 활성화될 경우 세포의 유전정보를 파괴하거나 교란하는 역할을 할 수 있어 사람의 진화 과정에서 불활성화(화석화) 됐다고 알려져 있었다. 하지만 이번 연구에서 L1 점핑 유전자가 활성화되며, 노화와 발암 과정에 연관이 있음을 처음 확인하였다.
우리 대학 의과학대학원 주영석 교수 연구팀이 서울대학교병원 외과 김민정 교수, 고려대학교 의과대학 권현우 교수팀과의 공동연구로 ‘L1 점핑 유전자’의 활성화에 의한 사람 대장 상피 세포의 유전체 파괴 현상을 규명했다고 15일 밝혔다.
의과학대학원 남창현 박사과정과 육정환 박사(現 서울대병원 내과 임상조교수)가 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처(Nature)' 5월 10일 字 온라인판(영국 현지시간)에 게재됐다 (논문명 : Widespread somatic L1 retrotransposition in normal colorectal epithelium). 이번 연구에는 한국과학기술정보연구원 (KISTI), 서울대학교병원 내과, 연세대학교 의과대학, 서울시립대학교, 및 KAIST 교원창업기업 지놈인사이트(Genome Insight)의 연구자들도 참여했다.
우리 몸에서 L1 점핑 유전자의 활성화는 유전체 서열의 ‘파괴적 혁신’을 일으킬 수 있기 때문에 인간 종의 진화 과정을 촉진하였다고 알려져 있으나, 사람 개개인의 입장에서는 L1 점핑 유전자의 활성화가 세포 유전체의 파괴 및 암 등 질병 발생을 촉진하여 생존에 불리하기 때문에 현생 인류에서 대다수의 L1 점핑 유전자는 불활성화(화석화)된 것으로 여겨졌다.
이번 연구는 이러한 일반적인 믿음과는 달리 L1 점핑 유전자의 일부는 아직도 특정 조직에서 활성화될 수 있고, 노화 과정에서 이들이 유전체 돌연변이를 빈번하게 생성하고 있음을 명확하게 규명하여, 세포의 노화 및 암 발생 과정을 이해하는 새로운 관점을 제시한 것으로 평가된다.
연구팀은 28명의 개인의 피부(섬유아세포), 혈액 및 대장 상피 조직에서 확보한 총 899개 단일세포의 전장 유전체(whole-genome sequencing) 서열을 생명정보학 기법으로 분석했다. L1 점핑 유전자에 의한 돌연변이의 빈도는 세포 종류에 따라 큰 차이를 보였으며 노화된 대장 상피세포에서 주로 발견됐다. 연구팀은 L1 점핑 유전자의 활성화에 의한 대장 상피세포의 유전체 돌연변이가 태어나기 전 배아 발생단계에서부터 평생에 걸쳐서 지속적으로 일어나고 있음을 확인했다. 연구에 따르면 40세가 된 개인의 대장 상피 세포들은 평균적으로 1개 이상의 L1 점핑 유전자에 의한 돌연변이를 갖게 된다.
연구팀은 L1 점핑 유전자 활성화 기전을 추적하기 위해 DNA 뿐만 아니라 후성 유전체 (DNA 메틸레이션) 서열을 함께 확인하였다. L1 점핑 유전자가 활성화된 세포에서는 후성 유전체의 불안정성이 발견되어 후성 유전체의 변화가 L1 점핑 유전자의 활성을 조절하는 스위치임을 확인하였다. 연구팀은 세포들의 배아발생과정을 추적하여, 이러한 후성 유전체 불안정성의 대다수가 초기 배아 발생과정에 형성되었음을 제시하였다.
이번 연구는 향후 더 많은 조직에서 L1 점핑유전자 활성화에 의한 노화 및 발암 과정을 확인하고 이의 활성화를 억제하여 인체 노화 및 질환 발생을 제어하는 기술개발에 이바지할 수 있을 것으로 연구팀은 기대했다.
의과학대학원 주영석 교수는 "전장유전체 및 생명정보학의 광범위한 적용을 통해 그동안 규명하기 어려웠던 L1 점핑 유전자에 의한 생명현상을 확인한 대표적인 연구ˮ라며 “이번 연구는 DNA 돌연변이가 암이나 질환을 갖고 있는 세포의 전유물이 아니며, 인간의 정상 세포의 노화과정에서 세포 자체의 불안정성에 의해 끊임없이 돌연변이가 생성되고 있음을 보여준다”라고 말했다.
서울대학교병원 외과 김민정 교수는 "임상현장에서 체계적으로 확보한 사람 유래 조직이 실제 인간에서 일어나는 질병 과정을 발견하는 데 큰 역할을 할 수 있음을 보여주는 사례ˮ라며 "향후 임상 및 기초의학의 밀접한 공동연구가 필요하다ˮ라고 말했다.
고려대학교 의과대학 핵의학과 권현우 교수는 “그동안 연구팀에서 고도화한 단일세포 유전체 기술이 큰 결실을 맺게 되어 기쁘다”라며 “앞으로 지속적으로 단일세포 유전체 기술을 선도할 수 있도록 매진할 것”이라고 말했다.
한편 이번 연구는 한국연구재단 리더연구, 한국연구재단 생애첫연구, 한국보건산업진흥원 융합형 의사과학자 양성 지원 사업, 서경배과학재단 신진과학자 연구지원 프로그램의 지원을 받아 수행됐다.
2023.05.15
조회수 5729
-
백금보다 80배 저렴한 수소전지 대체 촉매 개발
탄소 중립에 도달하기 위해 수소가 미래 에너지원으로 주목받고 있다. 수소 연료전지는 수소와 공기 중의 산소를 반응시켜 전기를 생산하는 발전장치로, 중소형 발전뿐만 아니라 승용차, 버스, 선박 등과 같은 운송 수단의 동력원으로 개발되고 있다. 그러나, 현재 전극 재료로 귀금속인 백금을 사용하고 있어 가격을 낮추는 데 걸림돌이 되고 있다.
우리 대학 신소재공학과 에너지 변환 및 저장재료 연구실 조은애 교수 연구팀이 백금을 대체할 수 있는 저렴하지만 고성능을 가진 전극 소재를 개발하는 데 성공했다고 11일 밝혔다.
조은애 교수 연구팀은 차세대 연료전지로 개발되고 있는 음이온 교환막 연료전지용 전극 소재로 백금보다 우수한 성능을 갖는 `니켈-몰리브데넘 소재'를 개발했다고 밝혔다. 특히, 신규 개발 촉매를 실제 연료전지에 적용하는 경우 다양한 변수에 의해 실성능을 얻지 못하는 경우가 많다. 그러나, 연구팀은 이번 연구에서 이를 극복하고 실제 연료전지에 신규 개발 촉매를 적용하는 것에 성공했다.
니켈은 음이온 교환막 연료전지용 비귀금속 전극 소재로 주목받았으나, 백금 성능의 100분의 1에도 미치지 못하여 실제 적용되지 못하고 있었다. 그러나 이번에 연구팀이 개발한 니켈-몰리브데넘 촉매는 백금보다 성능이 우수하고 (백금: 1.0 mA/cm2, 니켈-몰리브데넘 촉매: 1.1 mA/cm2), 가격은 80분의 1에 불과하여 백금을 대체할 수 있을 것으로 기대된다. 연구팀은 니켈-몰리브데넘 촉매를 연료전지에 적용하여 성능을 확보하는 데에도 성공하였다.
조은애 교수는 "순수한 니켈은 성능이 낮지만, 산화 몰리브데넘을 이용해 니켈의 전자구조를 변화시켜 성능을 비약적으로 향상했다ˮ고 설명하며 “공정 특성상 대량 생산에도 적합하며 향후 음이온 교환막 연료전지에 적용할 수 있을 것으로 기대한다”고 말했다.
신소재공학과 권용근 박사가 제1 저자로 참여한 이번 연구 결과는 재료 분야 저명 국제 학술지 `어플라이드 카탈리시스 비: 엔바이론멘탈(Applied Catalysis B: Environmental)' 2023년 4월 5일 자 온라인판에 게재됐다. (논문명: A Ni-MoOx composite catalyst for the hydrogen oxidation reaction in anion exchange membrane fuel cell)
한편, 조은애 교수팀이 수행한 이번 연구는 한국연구재단이 추진하는 중 나노 및 소재기술개발사업의 지원을 받아 이뤄졌다.
2023.05.11
조회수 5687
-
산업 균주 제작 및 병원균 억제 범용기술 개발
박테리아는 우리 일상에서 김치, 된장, 술 등 식품에 활용되어 왔을 뿐만 아니라 최근에는 대사 공학을 통해 플라스틱, 영양제, 사료, 의약품 등을 생산하는 산업용 세포 공장으로 활약하고 있다. 하지만 유익한 박테리아 외에도 다양한 감염성 질병을 일으키는 폐렴균, 살모넬라균 등 병원균이 있어 대사공학적 기법을 통해 유해한 병원균은 병원성을 억제하거나 사멸을 유도하고, 유익한 산업용 박테리아는 고부가가치 물질을 고효율로 생산할 수 있도록 조작하는 것이 중요하다.
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 그람 음성균과 양성균 모두를 포함한 다양한 박테리아에서 표적 유전자를 효과적으로 억제할 수 있는 신규 sRNA 도구를 개발했다고 10일 밝혔다. 해당 연구 결과는 국제 학술지인 ‘네이처 커뮤니케이션즈(Nature Communications)'에 4월 24일 字 온라인 게재됐다.
※ 논문명 : Targeted and high-throughput gene knockdown in diverse bacteria using synthetic sRNAs
※ 저자 정보 : 이상엽(한국과학기술원, 교신저자), 조재성(한국과학기술원, 현 MIT 박사후연구원, 공동 제1저자), 양동수(한국과학기술원, 현 고려대학교 조교수, 공동 제1저자), Cindy Prabowo (한국과학기술원, 공동저자), Mohammad Ghiffary (한국과학기술원, 공동저자), 한태희 (한국과학기술원, 공동저자), 최경록 (한국과학기술원, 공동저자), 문천우 (한국과학기술원, 공동저자), Hengrui Zhou (한국과학기술원, 공동저자), 류재용 (한국과학기술원, 현 덕성여자대학교 조교수, 공동저자), 김현욱 (한국과학기술원, 공동저자) - 총 11명
sRNA는 대장균에서 표적 유전자를 억제하기 위해 합성 조절하는 효과적인 도구이지만 그동안 대장균과 같은 그람 음성균 외에 산업적으로 유용한 고초균이나 코리네박테리움 같은 그람 양성균에서는 적용이 어려웠다.
이에 생명화학공학과 이상엽 특훈교수 연구팀은 그람 음성균과 양성균 모두를 포함한 다양한 박테리아에서 표적 유전자를 효과적으로 억제할 수 있는 신규 sRNA 도구를 개발했다. 연구팀은 우선 미생물 데이터베이스를 이용해 수천 종의 미생물 유래 sRNA 시스템을 검토했고, 그중 가장 높은 유전자 억제능을 보여준 `고초균(Bacillus subtilis)' 박테리아 유래 sRNA 시스템을 최종 선정했고 이를 ’광범위 미생물 적용 sRNA‘(Broad-Host-Range sRNA, 이하 BHR-sRNA)라고 명명했다.
sRNA와 유사한 시스템으로는 유전자 가위로 잘 알려진 크리스퍼(CRISPR)를 개량한 크리스퍼 간섭(CRISPR interference, CRISPRi) 시스템이 있다. 유전자 가위의 핵심인 Cas9 단백질에 돌연변이를 일으켜 DNA를 자르지 않으면서 유전자 전사 과정만을 억제해 유전자 발현을 억제하는 시스템인데, Cas9 단백질의 분자량이 매우 높아 몇몇 박테리아에서 성장을 저해하는 현상이 보고됐다. 하지만 이번 연구에서 개발한 BHR-sRNA 시스템은 박테리아의 성장에 전혀 영향을 끼치지 않으면서도 CRISPR 간섭과 유사한 유전자 억제능을 보였다.
BHR-sRNA 시스템의 범용성을 검증하기 위해 연구팀은 다양한 그람 음성균 및 그람 양성균 16종을 선정하여 테스트했고, 그중 15종의 박테리아에서 BHR-sRNA 시스템이 성공적으로 작동함을 증명했다. 또한, 10종의 박테리아에서 기존의 대장균 기반 sRNA 시스템보다 유전자 억제능이 뛰어남을 증명했다. 이와 같이 BHR-sRNA 시스템은 다양한 박테리아에서 효과적으로 유전자 발현을 억제할 수 있는 범용 도구임을 입증했다.
최근 점차 심각해져 가는 항생제 내성 병원균 문제를 해결하기 위해, 연구팀은 BHR-sRNA를 이용해 독성인자를 생산하는 유전자를 억제하고, 결과적으로 병원성을 억제하고자 했다. 특히 BHR-sRNA를 활용해 병원 발생 감염균인 표피포도상 구균(Staphylococcus epidermidis)에서 항생제 내성의 원인 중 하나인 바이오필름 형성을 73% 억제할 수 있었고, 폐렴균인 폐렴막대균(Klebsiella pneumoniae)에서 항생제 내성을 58% 약화하는 결과를 보였다. 연구팀은 또한, BHR-sRNA를 산업용 박테리아에 적용해 표적 물질을 고효율로 생산하고자 했다. 특히 폴리아마이드 고분자의 원재료인 발레로락탐(valerolactam), 포도향 첨가제인 메틸안트라닐산(methyl anthranilate), 그리고 청색 천연염료인 인디고이딘(indigoidine)을 최고 농도로 생산할 수 있었다.
이번 연구를 통해 개발한 BHR-sRNA를 활용해 다양한 산업공정으로의 응용이 기대되며, 항생제 내성 병원균 퇴치를 통한 연구에도 활용될 수 있으리라 기대된다. 교신저자인 이상엽 특훈교수는 “기존에는 각각의 박테리아마다 유전자 억제 도구를 새로 개발해야 했는데, 이번 연구를 통해 다양한 박테리아에서 범용으로 작동하는 도구를 개발했다”며 “앞으로 합성생물학과 대사공학, 그리고 병원균 대응연구 발전에 큰 도움이 될 것”이라고 밝혔다.
한편, 이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발 과제의 지원을 받아 수행됐다.
2023.05.10
조회수 5632
-
천 조분의 1초 까지 정확한 반도체칩용 클럭 개발
최근 반도체 칩의 성능이 급격하게 향상됨에 따라, 보다 정확한 타이밍으로 칩 내의 다양한 회로 블록들의 동작을 동기화(synchronization)시키는 클럭(clock) 신호를 공급하는 기술이 중요해지고 있다.
우리 대학 기계공학과 김정원 교수 연구팀이 레이저를 이용해 반도체 칩 내에서 초저잡음 클럭 신호를 생성하고 분배할 수 있는 기술을 개발했다고 9일 밝혔다.
기존에는 클럭 신호의 정확성이 통상적으로 피코초(1조 분의 1초) 수준이었으나 이번에 개발된 기술을 이용하면 기존의 방식보다 월등한 펨토초(femtosecond, 10-15초, 천 조 분의 1초) 수준의 정확한 타이밍을 가지는 클럭 신호를 칩 내에서 생성하고 분배할 수 있으며, 클럭 분산 과정에서 발생하는 칩 내에서의 발열 또한 획기적으로 줄일 수 있다.
기계공학과 현민지 박사과정 학생이 제1 저자로 참여하고 고려대학교 세종캠퍼스 정하연 교수팀과의 공동연구로 이루어진 이번 논문은 국제학술지 `네이처 커뮤니케이션즈(Nature Communications)' 4월 24일 字에 게재됐다. (논문명: Femtosecond-precision electronic clock distribution in CMOS chips by injecting frequency comb-extracted photocurrent pulses)
고성능의 반도체 칩 내에서 클럭 신호를 분배하기 위해서는 클럭 분배 네트워크(clock distribution network, CDN)에 많은 수의 클럭 드라이버(clock driver)들을 사용해야 하는데, 이로 인해 발열과 전력 소모가 커질 뿐 아니라 클럭 타이밍도 나빠지게 된다. 칩 내의 클럭 타이밍은 무작위적으로 빠르게 변화하는 지터(jitter)와 칩 내의 서로 다른 지점 간의 클럭 도달 시간 차이에 해당하는 스큐(skew)에 의하여 결정되는데, 클럭 드라이버들의 개수가 늘어남에 따라 지터와 스큐 모두 통상 수 피코초 이상으로 커지게 된다.
연구팀은 이 문제를 해결하기 위해 펨토초 이하의 지터를 가지는 광주파수빗(optical frequency comb) 레이저를 마스터 클럭으로 하는 새로운 방식의 클럭 분배 네트워크 기술을 선보였다. 이는 광주파수빗 레이저에서 발생하는 광 펄스들을 고속 광다이오드를 이용해 광전류 펄스(photocurrent pulse)로 변환한 후 반도체 칩 내의 금속 구조 형태로 된 클럭 분배 네트워크를 충전 및 방전하는 과정을 통해 구형파 형태의 클럭 신호를 생성하는 방식이다.
특히 이 기술을 사용하면 클럭 분배 네트워크의 클럭 드라이버들을 제거한 금속 구조만을 통해 칩 내에서 클럭을 분배할 수 있어, 타이밍 성능을 개선할 수 있을 뿐 아니라 칩 내 발열도 획기적으로 줄일 수 있다. 그 결과 지터와 스큐를 기존 대비 1/100 수준인 20펨토초 이하로 낮춘 뛰어난 타이밍 성능을 보일 수 있었으며, 칩내 클럭 분산 과정에서의 전력소모 및 발열 역시 기존 방식 대비 1/100 수준으로 낮출 수 있었다.
김정원 교수는 "현재 아날로그-디지털 변환기와 같은 고속 회로에 매우 낮은 지터의 샘플링 클럭 신호를 공급해 성능을 향상하는 연구를 진행 중ˮ이라고 밝히면서 "3차원 적층 칩과 같은 구조에서 발열을 줄일 수 있을 지에 대한 후속 연구도 계획 중ˮ이라고 밝혔다.
한편 이번 연구는 삼성미래기술육성센터의 지원을 받아 수행됐다.
2023.05.09
조회수 5245
-
파킨슨병 발병 3차원 게놈 지도 최초 제시
파킨슨병은 60세 이상 인구의 1.2% 이상 발병하는 흔한 퇴행성 뇌 질환으로 급격한 인구 고령화에 따라 전 세계적으로 발병률이 증가하고 있어, 2040년 약 1,420만 명의 환자가 발병할 것으로 예측되고 있다. 현재 파킨슨병의 다양한 발병 원인이 명확하게 규명되지 않은 상황에서, 비정상적으로 발생하는 후성 유전학적 특징들이 파킨슨병 발병에 관여하는 것을 최초로 확인되어 화제다.
우리 대학 생명과학과 정인경 교수 연구팀이 미국 국립보건원(National Institute of Health, NIH) 산하 국립노화연구소(National Institute on Aging, NIA) 엘리에자 매슬리아(Eliezer Masliah) 교수와의 공동연구를 통해 전 세계 최초로 파킨슨병 발병 뇌 조직의 단일세포 3차원 후성유전체 지도를 작성하고, 이를 토대로 656개의 파킨슨병 연관 신규 유전자들을 제시했다고 8일 밝혔다.
이번 연구에서 연구팀은 최신 개발된 단일세포 유전체 기술과 3차원 후성 유전체 기술을 접목하여 신경세포 뿐 아니라 뇌 환경 유지에 주요한 역할을 하는 것으로 알려진 신경교세포 (희소돌기아교세포, 미세아교세포 등)의 후성유전적 변화들이 3차원 게놈 구조를 통해 파킨슨병 발병에 관여하는 것을 밝혔다. 이러한 비정상적인 후성유전학적 특징들은 파킨슨병의 원인 또는 진행에 관여하는 유전자 발현 조절에 핵심적인 역할을 하기 때문에, 본 연구 결과는 차후 진단과 치료 연구에 중요한 단서를 제공하게 될 것이라고 연구팀은 전했다.
이번 연구를 수행한 생명과학과 이정운 박사는 단일세포 수준에서 환자 뇌조직을 분석한 결과 기존의 신경세포에 국한된 연구에서 한발 나아가, 신경교세포 또한 파킨슨병에 중요한 역할을 할 수 있다는 단서를 제시하였다는 점에서 중요한 발견이라고 밝혔다.
이번 연구 결과는 국제 학술지, ‘사이언스 어드벤시스(Science Advances, IF=14.14)'에 4월 14일 게재됐다. (논문명 : Characterization of altered molecular mechanisms in Parkinson’s disease through cell type-resolved multi-omics analyses)
교신 저자인 정인경 교수는 "이번 연구 결과는 퇴행성 뇌 질환의 표적 발굴에 있어 3차원 후성유전체 지도 작성의 중요성을 보였기에 차후 다양한 복합유전질환 규명에도 중요하게 활용될 것이다ˮ라고 말했다.
한편 이번 연구는 서경배과학재단, 보건복지부, 과학기술정보통신부의 지원을 받아 수행됐다.
2023.05.08
조회수 4452