< (왼쪽부터) 전기및전자공학부 이성주 교수, AI대학원 신진우 교수, 공태식 박사과정, 정종헌 박사과정, 김예원 석사과정, 김태원 학사과정 >
우리 대학 전기및전자공학부 이성주 교수와 AI대학원 신진우 교수 연구팀이 공동연구를 통해 스스로 환경변화에 적응하는 테스트타임 적응 인공지능 기술을 개발했다고 밝혔다.
해당 연구는 “NOTE: Robust Continual Test-time Adaptation Against Temporal Correlation”라는 제목으로 인공지능 분야 최고권위 국제학술대회 ‘신경정보처리시스템학회(NeurIPS) 2022'에서12월 발표될 예정이다.
이성주 교수와 신진우 교수 공동 연구팀이 스스로 새로운 환경에 적응하는 “테스트타임 적응 (Test-Time Adaptation)” 인공지능 기술을 개발하였다. 연구팀이 제안한 알고리즘은 기존의 최고 성능 알고리즘보다 평균 11% 향상된 정확도를 보였다.
기계학습 모델들의 한계점은 학습했던 데이터와 다른 분포의 데이터에 적용되면 성능이 급격히 하락한다는 것이다. 이를 푸는 여러 방법 중에서 데이터를 미리 수집할 필요없이 모델이 스스로 테스트 데이터를 분석하여 변하는 환경에 적응하고 성능을 향상시키는 기술인 테스트타임 도메인 적응 (Test-Time Adaptation) 방법이 최근 산학계에서 크게 각광을 받고 있었다.
< 본 연구의 테스트타임 도메인적응 기술의 개요 >
연구팀은 기존의 테스트타임 도메인 적응 기술들이 모두 데이터가 이상적인 균일분포를 따른다는 가정을 한다는 문제점에 착안했다. 실제 데이터는 환경 변화나 시간 변화에 따라 데이터 분포가 변하거나 비균일분포의 데이터에 대해서는 기존 기술을 동작하지 않는다. 하지만 연구팀이 제시한 “NOTE” 기술은 비균일분포의 데이터에서도 기존 최대 성능 알고리즘 보다 평균 11%만큼 향상된 정확도를 보였다.
이성주 교수 연구팀과 신진우 교수 연구팀의 공동연구로, 공태식 박사과정이 제1저자로 연구를 이끌었고, 정종헌 박사과정, 김태원 학사과정, 김예원 석사과정이 공동 저자로 기여하였다.
이성주 교수와 신진우 교수는 ”테스트타임 도메인 적응은 인공지능이 스스로 환경 변화에 적응하여 성능을 향상시키는 기술로, 활용도가 무궁무진하다. 이번에 발표될 NOTE 기술은 실제 데이터 분포에서 성능향상을 보인 최초의 기술이고 자율주행, 인공지능 의료, 모바일 헬스케어 등 다양한 분야에 적용이 가능할 것으로 기대된다.” 라고 밝혔다.
이 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원 (No. NRF-2020R1A2C1004062)과 방위사업청과 국방과학연구소의 지원(UD190031RD)으로 한국과학기술원 미래 국방 인공지능 특화연구센터에서 수행된 연구이다.
우리 대학 연구팀이 당뇨병 등 상처 부위의 시공간 온도 변화 및 열전달 특성 추적을 통해 상처 치유 과정을 효과적으로 모니터링할 수 있는 무선 시스템을 개발했다. 전기및전자공학부 권경하 교수팀이 중앙대학교 류한준 교수와 상처 치유 과정을 실시간으로 추적해 적절한 치료를 제공할 수 있게 해주는 디지털 헬스케어 기술을 개발했다고 5일 밝혔다. 피부는 유해 물질로부터 인체를 보호하는 장벽 기능을 한다. 피부 손상은 집중 치료가 필요한 환자들에게 감염과 관련된 심각한 건강 위험을 초래할 수 있다. 특히 당뇨병 환자의 경우, 정상적인 혈액 순환과 상처 치유 과정에 문제가 생겨 만성 상처가 쉽게 발생한다. 이러한 만성 상처의 재생을 위해 미국에서만 매년 수백억 달러의 의료 비용이 지출되고 있다. 상처 치유를 촉진하는 다양한 방법이 있지만, 환자별 상처 상태에 따라 맞춤 관리가 필요하다. 이에 연구팀은 상처 부위와 주변 건강한 피부 사이의 온도 차이를 활용해 상처 내 발
2024-03-05우리 대학이16일 오후 2시 대전 본원 류근철스포츠컴플렉스에서 2024년도 학위수여식을 개최했다. 이번 학위수여식에서는 박사 756명, 석사 1천564명, 학사 694명 등 총 3천14명이 학위를 받는다. 이로써 우리 대학은 지난 1971년 설립 이래 박사 1만 6천528명을 포함해 석사 3만 9천924명, 학사 2만 1천561명 등 총 7만 8천13명의 고급 과학기술 인력을 배출하게 된다. 학사과정 수석 졸업의 영광은 유장목(24·화학과) 씨가 차지해 과학기술정보통신부 장관상을 받는다. 이사장상은 정우진(23·원자력및양자공학과) 씨, 총장상은 민소영(25·산업디자인학과) 씨, 동문회장상과 발전재단 이사장상은 각각 이한빛(23·산업및시스템공학과) 씨와 홍유승(22·생명화학공학과) 씨가 수상한다.올해 학위수여식에서는 우리 대학이 2020년 신설한 융합인재학부(학부장 정재승)가 첫 졸업생을 배출한다. 융합인재학부는
2024-02-16대면적의 빛을 활용하고 대기 중의 환경에서 0.02초 이내에 연료전지 등 차세대 에너지 저장 및 발전에 광범위하게 적용되는 고엔트로피 촉매 및 단일원자 촉매의 합성을 세계 최초로 구현했다. 우리 대학 전기및전자공학부 최성율 교수 연구팀과 신소재공학과 김일두 교수 연구팀이 공동연구를 통해 강한 빛을 다양한 탄소 기반 소재에 조사해, 0.02초 이내에 나노입자 촉매와 단일원자(single atom) 촉매를 진공 시설이 없는 대기 조건에서 합성하고 우수한 촉매 성능을 구현하는데 성공했다고 6일 밝혔다. 연구팀은 2022년 4월 제논 램프 빛을 조사해 금속산화물의 상(phase) 변화와 표면에 촉매 입자가 생성될 수 있음을 최초로 밝혔고 그 후속으로 소재의 광열효과를 유도하는 합성법에 대한 연구를 진행했다. 이에 초고온(1,800~3,000oC)과 빠른 승/하온 속도(105 oC/초)를 통해 기존의 합성법으로는 구현할 수 없는 촉매 입자를 합성하는 데 성공했다. 이번 기술은
2023-12-06우리 대학 전기및전자공학부 최양규 교수, 명현 교수, 그리고 신소재공학과 이건재 교수 공동연구팀이 ‘인간의 뇌를 모방한 3차원 집적 뉴로모픽 반도체’를 개발하는 데에 성공했다. ‘인간의 뇌를 모방해 동일평면 상에 수평 집적한 뉴로모픽 반도체’를 개발(2021년 Science Advances 게재)하는 데에 성공했던 연구팀은, 뉴런 소자와 시냅스 소자를 상하부에 3차원 방식으로 수직 집적해, 보다 높은 집적도와 전력 효율을 가지는 뉴로모픽 반도체를 구현할 수 있음을 처음으로 보였다. 전기및전자공학부 졸업생 한준규 박사, 전기및전자공학부 이정우 박사과정과 김예은 박사과정, 그리고 신소재공학과 김영빈 박사과정이 공동 제1저자로 참여한 이번 연구는 저명 국제 학술지 ‘Advanced Science’ 2023년 9월 온라인판에 출판됐다. (논문명 : 3D Neuromorphic Hardware with Single T
2023-09-21전자 섬유는 최근 각광받고 있는 사용자 친화 웨어러블 소자, 헬스케어 소자, 최소 침습형 임플란터블 전자소자에 핵심 요소로 여겨져 활발하게 연구가 진행되고 있다. 하지만 고체 금속 전도체 필러(Conductive filler)를 사용한 전자 섬유를 늘려서 사용하려 할 경우, 전기전도성이 급격하게 감소해 전기적 성질이 망가진다는 단점이 있다. 우리 대학 신소재공학과 스티브 박, 전기및전자공학부 정재웅, 바이오및뇌공학과 박성준 교수 공동 연구팀이 높은 전도도와 내구성을 가지는 액체금속 복합체를 이용해 신축성이 우수한 전자 섬유를 개발했다고 25일 밝혔다. 전자 섬유의 늘어나지 않는 단점을 해결하기 위해 연구팀은 고체처럼 형상이 고정된 것이 아닌 기계적 변형에 맞춰 형태가 변형될 수 있는 액체금속 입자 기반의 전도체 필러를 제시했다. 액체금속 마이크로 입자는 인장이 가해질 경우에 그 형태가 타원형으로 늘어나면서 전기 저항 변화를 최소화할 수 있다. 하지만 그 크기가 수 마이크로
2023-07-25