본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EA%B8%80%EB%A1%9C%EB%B2%8C%ED%94%84%EB%A1%A0%ED%8B%B0%EC%96%B4%EC%82%AC%EC%97%85
최신순
조회순
최성율 교수, 이차원 소재 이용한 초저전력 유연메모리 개발
〈 최성율 교수, 장병철 박사과정 〉 우리 대학 전기및전자공학부 최성율 교수와 생명화학공학과 임성갑 교수 공동 연구팀이 2차원 소재를 이용한 고집적, 초저전력 비휘발성 유연 메모리 기술을 개발했다. 연구팀은 원자층 두께로 매우 얇은 이황화몰리브덴 채널 소재와 고성능의 고분자 절연막 소재를 이용해 이 기술을 개발했다. 우명훈 석사(현 삼성전자 연구원)와 장병철 박사과정 학생이 공동 1저자로 참여한 이번 연구는 국제적인 재료분야 학술지 ‘어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)’ 11월 17일자 표지 논문으로 게재됐다. 사물인터넷, 인공지능, 클라우드 서버 기술 등의 등장으로 인해 메모리 중심의 컴퓨팅 전환과 함께 웨어러블 기기 산업의 수요 증가로 고집적, 초저전력 비휘발성 유연 메모리에 대한 필요성이 커지고 있다. 특히 원자층 두께의 매우 얇은 이황화몰리브덴 반도체 소재는 최근 포스트 실리콘 소재로 주목받고 있다. 이는 얇은 두께로 인해 기존 실리콘 소자에서 나타나는 단채널 효과를 억제해 고집적도 및 전력 소모 측면에서 장점을 갖기 때문이다. 또한 얇은 두께로 인해 유연한 특성을 가져 웨어러블 전자소자로의 응용이 가능하다는 이점이 있다. 하지만 이황화몰리브덴 반도체 소재는 불포화 결합(dangling bond)을 갖지 않는 표면 특성으로 인해 기존의 원자층 증착 장비로는 얇은 절연막을 균일하고 견고하게 증착하기 어렵다는 한계가 있다. 게다가 현재의 액상 공정으로는 저유전율 고분자 절연막을 10나노미터 이하로 균일하게 대면적으로 증착하기가 어려워 저전압 구동이 불가능하고 포토리소그래피 공정과 호환이 이뤄지지 않았다. 연구팀은 문제 해결을 위해 ‘개시제를 이용한 화학 기상증착법(initiated chemical vapor deposition, iCVD)’을 이용해 고성능의 고분자 절연막을 개발해 해결했다. 연구팀은 iCVD 공정을 이용해 이황화몰리브덴 반도체 소재 위에 10나노미터 두께의 터널링 고분자 절연막이 균일하고 견고하게 증착됨을 확인했다. 연구팀은 기존의 이황화몰리브덴 반도체 메모리 소자가 20V 이상의 전압으로 구동되는 반면 이번에 제작한 소자는 10V 부근의 저전압으로 구동됨을 확인했다. 최 교수는 “인공지능, 사물인터넷 등 4차산업혁명의 근간인 반도체 소자기술은 기존 메모리 소자를 뛰어넘는 저전력성과 유연성 등의 기능을 갖춰야 한다”며 “이번 기술은 이를 해결할 수 있는 소재, 공정, 소자 원천 기술을 개발했다는 의의를 갖는다”고 말했다. 이번 연구는 과학기술정보통신부 한국연구재단이 추진하는 글로벌프론티어사업, 미래소재 디스커버리 사업 등의 지원을 받아 수행됐다. □ 그림 설명 그림1. Advanced Functional Materials 표지 그림2. 제작된 비휘발성 메모리 소자의 개념도 및 소자 단면 고해상도 투과전자현미경 이미지
2017.12.18
조회수 20240
박현규 교수, RNA 분해효소의 활성 검출기술 개발
〈 이 창 열 박사과정 〉 우리 대학 생명화학공학과 박현규 교수 연구팀이 새로운 RNA 분해효소(RNase H)의 활성을 검출하는 기술을 개발했다. 연구팀은 헤어핀 자기조립 반응이라는 고효율의 신호증폭 반응을 이용해 RNA 분해효소의 활성을 효과적으로 분석하는 기술을 개발했다. RNA 분해효소가 HIV 바이러스 증식에 필수적으로 관여하는 물질임을 고려할 때 박 교수 연구팀의 연구가 향후 에이즈를 치료하는 데 기여할 수 있을 것으로 기대된다. 이창열, 장효원 박사과정이 공동 1저자로 참여한 이번 연구는 영국왕립화학회가 발행하는 국제 학술지 ‘나노스케일(Nanoscale)’ 2017년도 42호(11월 14일 발행) 표지논문으로 선정됐다. 현재 개발된 RNA 분해효소의 활성을 검출하는 기술들은 일반적으로 값비싼 형광체, 소광체가 필수적이고 그 도입 과정도 복잡하다는 한계가 있다. 또한 신호를 증폭시킬 수단이 없기 때문에 전반적으로 검출 성능이 매우 낮다. 연구팀은 기술의 한계를 극복하기 위해 헤어핀 자기조립 반응이라는 기술을 이용했다. 이 기술은 검출신호를 증폭시켜 RNA 분해효소 활성이 더 민감하게 검출될 수 있도록 도와준다. 그리고 연구팀은 이 헤어핀 자기조립 반응의 결과물이 형광신호의 발생에 적합한 지-쿼드러플렉스(G-quadruplex) 구조를 갖도록 반응시스템을 설계했다. 지-쿼드러플렉스 구조와 결합해 강한 형광을 내는 형광물질을 사용함으로써 기존의 RNA 분해효소 활성 검출 기술의 한계를 극복하는 고성능의 RNA 분해효소 활성 검출 기술을 개발했다. 또한 이 기술을 이용해 RNA 분해효소의 활성 저해제를 선별할 수 있었다. 연구팀의 연구 성과는 일반에 잘 알려진 에이즈를 치료하는 데 기여할 수 있을 것으로 예상된다. 에이즈는 HIV 바이러스가 발병하면 나타나는 전염병으로 HIV 바이러스는 역전사 반응의 특성을 갖는 일명 레트로 바이러스이다. 레트로 바이러스는 RNA가 DNA로 변하는 특성을 갖는다. 그리고 이 과정에서 RNA 분해효소가 개입해야만 이 특성을 유지할 수 있다. RNA 분해효소의 활성을 막을 수 있다면 HIV 바이러스의 발현을 막을 수 있는 것이다. 박 교수는 “이번 연구에서 개발된 기술은 RNA 분해효소의 활성 외에도 다양한 효소 활성 검출 기술 개발에 응용 가능하다”며 “이를 통해 효소 관련 질병 치료 연구에 다양하게 활용될 수 있을 것으로 기대한다”고 말했다. 이번 연구는 과학기술정보통신부가 시행하는 글로벌프론티어사업(바이오나노헬스가드연구단)과 중견연구자지원사업(도약연구)의 지원을 받아 수행됐다. □ 그림 설명 그림1. 나노스케일 42호 표지
2017.11.22
조회수 16498
김필한 교수, 초고속 레이저 생체현미경 개발
〈 김 필 한 교수 〉 우리 대학 나노과학기술대학원 김필한 교수 연구팀이 개발한 초고속 생체현미경(IVM: IntraVital Microscopy)을 통해 미래 글로벌 바이오헬스 시장을 겨냥한 상용화에 나선다. 김 교수는 (재)의약바이오컨버젼스연구단, 서울대학교 김성훈 교수와의 공동 연구를 통해 개발한 최첨단 초고속 레이저스캐닝 3차원 생체현미경 기술을 토대로 아이빔테크놀로지(주)(IVIM Technology, Inc)를 창업했다. 이 생체현미경(IntraVital Microscopy : IVM)은 수많은 세포들 간 상호작용을 통해 나타나는 생명 현상을 탐구하고 여러 질환의 복잡한 발생 과정을 밝힘으로써 기초 의생명 연구의 차세대 첨단 영상장비가 될 것으로 기대된다. 연구팀의 기술은 살아있는 생체 내부조직을 구성하는 세포의 움직임을 직접 관찰할 수 있다. MRI나 CT 등 기존 생체영상 기술로는 불가능한 신체 다양한 장기 내부의 수많은 세포 하나하나를 구별하고 각 세포들의 움직임을 3차원으로 즉시 확인 가능하다. 이를 통해 다양한 질병이 몸속에서 발생하는 과정에 대해 자세한 세포단위 영상 정보를 제공할 수 있다. 특히 초고속 생체현미경 기술은 여러 색의 레이저 빔을 이용해 기존의 조직분석 기술로는 불가능했던 살아있는 생체 내부의 다양한 세포 및 주변 미세 환경과 단백질 등의 분자를 동시에 영상화할 수 있다. 이를 활용하면 생체 외부에서 수집한 데이터로 수립한 가정을 실제 살아있는 생체 내 환경에서 세포 단위로 검증하고 분석할 수 있다. 생체현미경은 바이오제약 분야에서도 주목받고 있다. 최근 바이오제약 산업은 단순 합성약물개발보다 생체의 미세 구성단위인 세포 수준에서 복합적으로 작용하는 면역치료제, 세포치료제, 유전자치료제, 항체치료제 등 새로운 개념의 바이오의약품 개발에 집중하고 있기 때문이다. 연구팀의 생체현미경은 동물실험에서 목표로 하는 세포, 단백질과 주입된 물질의 움직임을 동시에 3차원 동영상으로 관찰할 수 있다. 현재 (재)의약바이오컨버젼스연구단과 함께 차세대 신약개발을 위한 핵심기술로 발전시키기 위해 노력 중이다. 김 교수가 창업한 회사는 시장성과 성장가능성을 높게 평가받아 벤처기업으로서는 이례적으로 빠르게 창업 3개월 만에 LB인베스트먼트와 에이티넘인베스트먼트로부터 총 30억 원의 투자를 유치했다. 김 교수는 “이 기술은 다양한 생명 현상을 보다 정밀하게 종합 분석하기 위한 원천기술이다”며 “고령화 사회의 도래와 함께 급성장할 글로벌 바이오헬스 시장을 개척할 수 있는 차세대 의료, 의약 기술의 발전을 가속화할 핵심 기술이 될 것으로 확신한다”고 말했다. 김 교수 연구팀의 연구는 창업원의 엔드런(End-Run) 사업과 과학기술정보통신부가 추진하는 글로벌프론티어사업의 혁신형의약바이오컨버전스사업의 지원을 받아 수행됐다. □ 사진 설명 사진1. 초고속 레이저 생체현미경 (IVM) 사진1 사진2. 초고속 레이저 생체현미경 (IVM) 사진2 사진3. 생체 내부 세포수준 변화의 IVM 영상 결과 사진4. 생체 내부 다양한 장기의 세포수준 IVM 영상 결과
2017.11.21
조회수 20109
김상욱 교수, 카메라 플래시로 7나노미터 반도체 패턴 제작 기술 개발
〈 김상욱 교수, 진형민 연구원 〉 우리 대학 신소재공학과 김상욱 교수 연구팀이 카메라의 플래시를 이용해 반도체를 제작하는 기술을 개발했다. 이 기술은 반도체용 7나노미터 패턴 기법으로 한 번의 플래시를 조사하는 것만으로 대면적에서 초미세 패턴을 제작할 수 있다. 향후 고효율, 고집적 반도체 소자 제작 등에 활용 가능할 것으로 기대된다. 진형민 연구원, 박대용 박사과정이 공동 1저자로 참여한 이번 연구 결과는 국제 학술지 ‘어드밴스드 머티리얼즈(Advanced Materials)’ 8월 21일자 온라인 판에 게재됐다. 4차 산업혁명의 주요 요소인 인공지능, 사물인터넷, 빅데이터 등의 기술에는 고용량, 고성능 반도체 소자가 핵심적으로 필요하다. 이러한 차세대 고집적 반도체 소자를 만들기 위해서는 패턴을 매우 작게 형성하는 리소그래피(Lithography) 기술의 개발이 필수적이다. 현재 관련 업계에서는 작은 패턴 제작에 주로 광 리소그래피(Photolithograph) 기술을 이용하고 있다. 하지만 이 기술은 10나노미터 이하의 패턴을 형성하기엔 한계가 있다. 고분자를 이용한 분자조립 패턴 기술은 공정비용이 저렴하고 10나노미터 이하 패턴 형성이 가능해 광 리소그래피를 대신할 차세대 기술로 각광받고 있다. 그러나 고온 열처리나 유독성 증기 처리에 시간이 많이 소요되기 때문에 대량 생산이 어려워 상용화에 한계가 있다. 연구팀은 고분자 분자조립 패턴 기술의 문제 해결을 위해 순간적으로 강한 빛을 내는 카메라 플래시를 활용했다. 플래시 빛을 이용하면 15 밀리 초(1밀리 초 : 천분의 1초) 내에 7나노미터의 반도체 패턴을 구현할 수 있고, 대면적에서 수십 밀리 초의 짧은 시간 내에 수 백도의 고온을 낼 수 있다. 연구팀은 이 기술을 고분자 분자 조립에 응용해 단 한 번의 플래시를 조사하는 것으로 분자 조립 패턴을 형성할 수 있음을 증명했다. 또한 연구팀은 고온 열처리 공정이 불가능한 고분자 유연 기판에도 적용이 가능함을 확인했다. 이를 통해 차세대 유연 반도체 제작에 응용할 수 있을 것으로 보인다. 연구팀은 카메라 플래시 광열 공정을 분자 조립 기술에 도입해 분자 조립 반도체기술의 실현을 앞당길 수 있는 고효율의 기술이라고 밝혔다. 연구를 주도한 김상욱 교수는 “분자조립 반도체 기술은 그 잠재성에도 불구하고 공정효율 제고가 큰 숙제로 남아 있었다”며 “이번 기술은 분자조립기반 반도체의 실용화에 획기적 해결책이 될 것이다”고 말했다. 신소재공학과 이건재 교수, 부산대학교 재료공학과 김광호 교수와의 공동으로 진행된 이번 연구는 과학기술정보통신부 리더연구자지원사업인 다차원 나노조립제어 창의연구단과 글로벌프론티어사업의 지원을 받아 수행됐다. □ 사진 설명 사진1. 플래시 광을 이용한 반도체 패턴 형성 사진2. 플래시 광을 이용한 분자조립 패턴 형성 모식도 사진3. 다양한 가이드 패턴을 이용한 자기조립 패턴 제어와 고분자 유연기판에서의 플래시 자기조립 패턴 형성
2017.09.13
조회수 17657
김용훈 교수, 단일 분자 소자의 전극 계면 특성 규명
〈 김 용 훈 교수와 김후성 박사과정, 김한슬 박사 〉 우리 대학 EEWS 대학원 김용훈 교수 연구팀이 10년 이상 나노 분야 주요 난제로 남아있던 단일분자 전자소자의 금속전극-분자 계면 원자구조와 소자특성 간 상관관계를 규명했다. 이번 연구 성과는 국제 과학 학술지인 ‘미국 화학회지(Journal of the American Chemical Society)’ 6월 21일자에 게재됐다. 단일분자 전자소자는 OLED 등을 통해 알려진 유기소자로서 2003년 미국에서 처음 구현됐다. 분자전자소자(molecular electronics)는 차세대 반도체 소자의 후보군으로 관련 연구들이 활발히 수행되고 있다. 분자를 전자소자로 활용하기 위해선 분자-전극 형태의 원자구조가 구체적으로 어떻게 형성되는지 이해하는 것이 중요하다. 분자 전자소자는 크게 분자, 전극, 둘을 잇는 연결자로 구성된다. 2006년 미국 애리조나 대학의 타오(Nongjian Tao) 교수를 포함한 연구팀은 한 종류의 분자에서 여러 개의 전류 값이 나올 수 있음을 규명했으나 그 전류 값의 크기와 개수, 원인 등은 명확히 밝혀지지 않았다. 특히 그 원인에 대해서는 관련된 분자와 금속전극 간 계면의 원자구조가 여러 가지 형태를 띠고 있기 때문이라는 추측만 있었고 명확히 밝혀지지는 않았다. 김 교수 연구팀은 주사탐침현미경 등을 이용해 단분자 소자가 구현되는 과정을 슈퍼컴퓨터를 활용해 재현했다. 접합 구조의 여러 가지 형태를 찾는 것은 결국 황(S) 원자 주변의 금(Au) 원자 몇 개가 어떤 형태로 배열되는지 확인하는 것인데 이것을 배위수(coordination number)라고 부른다. 〈 김 용 훈 교수와 연구팀 〉 연구팀은 분자와 금속 전극 간 결합의 원자구조 배위수에 따라 금속전극 사이에서 전류 값이 변화하는 것을 확인했다. 또한 분자가 당겨질 때 단순히 금속과 분자 사이 결합이 끊어지는 게 아니라 금속전극의 원자구조가 쉽게 변형돼 결국은 금속과 금속 사이의 결합의 끊어지는 것을 규명했다. 일본 오사카 대학의 카와이(T, Kawai) 교수는 위와 같은 김 교수의 이론을 뒷받침하기 위해 소자 인장에 따른 전류의 증가를 포함하는 실험을 수행했다. 한, 일 공동연구팀은 슈퍼컴퓨터를 이용한 제1원리 계산과 첨단 나노소자 제조 및 측정을 통해 유기 소자의 계면 특성을 원자 수준에서 성공적으로 규명했다. 연구팀은 나노과학-나노기술 분야에서 10년 이상 풀리지 않던 난제를 해결했다. 이번 성과는 향후 OLED, 바이오센서, 유기태양전지 등 다양한 유기소자 분야에 활용 가능할 것으로 기대된다. 김 교수는 “이번 연구는 나노 분야에서 이론 연구가 실험을 선도하는 역할을 성공적으로 수행함을 보여주는 예가 될 것이다”고 말했다. 이번 연구는 미래창조과학부의 중견연구자지원사업, 글로벌프론티어사업, 나노소재기술사업과 KISTI 슈퍼컴퓨터의 지원을 받아 수행됐다. □ 그림 설명 그림1. 분자 전기전도도 실험 측정방법의 개념도 그림2. 대표적인 세 가지 분자-금속전극 접합 원자구조와 이에 상응하는 외력에 따른 전도도 변화 패턴
2017.07.04
조회수 17818
최양규 교수, 실리콘 반도체보다 5배 빠르고 저렴한 탄소나노튜브 반도체 개발
우리 대학 전기및전자공학부 최양규 교수 연구팀이 국민대학교 최성진 교수와의 공동 연구를 통해 탄소나노튜브를 위로 쌓는 3차원 핀(Fin) 게이트 구조를 이용해 대면적의 탄소나노튜브 반도체를 개발했다. 이동일 연구원이 제 1저자로 참여한 이번 연구는 나노 분야 학술지 ‘에이씨에스 나노(ACS Nano)’ 12월 27일자에 게재됐다. (논문명: Three-Dimensional Fin-Structured Semiconducting Carbon Nanotube Network Transistor) 탄소나노튜브로 제작된 반도체는 실리콘 반도체보다 빠르게 동작하고 저전력이기 때문에 성능이 훨씬 뛰어나다. 그러나 대부분의 전자기기는 실리콘 재질로 만들어진 반도체를 이용한다. 높은 순도와 높은 밀도를 갖는 탄소나노튜브 반도체의 정제가 어렵기 때문이다. 탄소나노튜브의 밀도가 높지 않아 성능에 한계가 있었고 순도가 낮아 넓은 면적의 웨이퍼(판)에 일정한 수율을 갖는 제품을 제작할 수 없었다. 이러한 특성들은 대량 생산을 어렵게 해 상용화를 막는 걸림돌이었다. 연구팀은 문제 해결을 위해 3차원 핀 게이트를 이용해 탄소나노튜브를 위로 증착하는 방식을 사용했다. 이를 통해 50나노미터 이하의 폭에서도 높은 전류 밀도를 갖는 반도체를 개발했다. 3차원 핀 구조는 1마이크로미터 당 600개의 탄소나노튜브 증착이 가능해 약 30개 정도만을 증착할 수 있는 2차원 구조에 비해 20배 이상의 탄소나노튜브를 쌓을 수 있다. 그리고 연구팀은 이전 연구를 통해 개발된 99.9% 이상의 높은 순도를 갖는 반도체성 탄소나노튜브를 이용해 고수율의 반도체를 확보했다. 연구팀의 반도체는 50나노미터 이하의 폭에서도 높은 전류밀도를 갖는다. 실리콘 기반의 반도체보다 5배 이상 빠르면서 5배 낮은 소비 전력으로 동작 가능할 것으로 예상된다. 또한 기존의 실리콘 기반 반도체에 쓰이는 공정 장비로도 제작 및 호환이 가능해 별도의 비용이 발생하지 않는다. 제 1저자인 이동일 연구원은 “차세대 반도체로서 탄소나노튜브 반도체의 성능 개선과 더불어 실효성 또한 높아질 것이다”며 “실리콘 기반 반도체를 10년 내로 대체하길 기대한다”고 말했다. 이번 연구는 미래창조과학부 글로벌프론티어사업 스마트IT융합시스템 연구단과 미래유망융합파이오니아 사업의 씨모스 THz 기술 융합 연구단의 지원을 받아 수행됐다. □ 그림 설명 그림1. 3차원 구조의 탄소나노튜브 전자소자의 모식도 및 실제 SEM 이미지 그림2. 개발된 8인치 기반의 대면적 3차원 탄소나노튜브 트랜지스터 전자 소자의 사진 및 단면을 관찰한 투과 전자 현미경 사진
2017.01.04
조회수 15062
양찬호 교수, 자석 아닌 물질이 자성(磁性) 갖게 하는 기술 개발
우리 대학 물리학과 양찬호 교수 연구팀이 전기장을 통해 자석이 아닌 물질이 자성을 갖게 하거나 그 반대로 자석 내의 자성을 없앨 수 있는 기술을 개발했다. 이 연구를 통해 자성 물질 기반의 저장 매체를 개발한다면 대용량의 정보를 빠른 속도로 이용할 수 있을 것으로 기대된다. 장병권 박사과정이 1저자로 참여한 이번 연구 성과는 물리학 분야 학술지 ‘네이처 피직스(Nature Physics)’ 10월 3일자 온라인 판에 게재됐다. 물질의 내부에는 아주 작은 자석들이 존재한다. 그 작은 자석들이 무질서하게 여러 방향으로 향하고 있으면 비 자성 상태이고, 일정한 방향으로 정렬이 이뤄지면 우리가 흔히 볼 수 있는 자석이 된다. 테라바이트 이상의 외장하드를 쉽게 구할 수 있을 정도로 저장 매체의 용량 기술은 발전했다. 그러나 용량 증가는 필연적으로 저장 매체의 읽고 쓰는 속도를 느리게 만든다. 현재 가장 널리 쓰이는 하드 디스크(HDD)의 느린 데이터 접근 속도로는 다른 기술과 조화되기 어려운 상황이다. 이에 따라 SSD, 플로팅 게이트(Floating gate), 저항 방식(Resistive switching) 방식 등이 대안으로 떠오르고 있으나 기록을 할 때마다 흔적을 남기기 때문에 피로 누적 현상을 피할 수 없다는 한계를 갖는다. 정보를 자성 상태로 기록하면 속도가 빠르고 피로 누적 현상을 없앨 수 있기 때문에 저장 매체의 최소 저장 공간인 셀(Cell)을 자성 물질로 구성하려는 시도가 많았다. 주로 전류의 흐름을 통해 유도된 자기장을 이용하는 방식인데, 자기장은 자폐가 매우 어려워 넓은 범위에 영향을 끼치기 때문에 인접한 셀의 자성도 변화시킨다. 셀 하나하나를 조절할 수 없기 때문에 일정한 방향으로 정렬시킬 수 없어 자성의 상태를 바꾸기가 어려웠다. 연구팀은 문제 해결을 위해 자기전기 상호작용을 통해 자성 상태를 조절했다. 자기전기 상호작용은 자기장이 아닌 전기장을 이용해 전류의 흐름 없이 자성 상태를 조절하는 방식으로 에너지 소모가 적다는 장점을 갖는다. 연구팀은 실험을 통해 전기장 인가만으로 무질서하게 임의의 방향을 향하고 있는 셀들이 일정한 방향을 향하고 있음을 확인했다. 또한 반대로 일정한 방향에서 다시 무질서한 상태로도 변화가 가능함을 증명했다. 기존에 보고된 자기전기 현상은 통상적으로 극저온이나 고온에서 발현이 가능했다. 그러나 이번 기술은 화학적 도핑을 통해 상온에서도 작동이 가능하고, 변환이 가역적이며 비휘발성을 갖기 때문에 차세대 정보 저장 소자 개발의 발판이 될 것으로 기대된다. 양 교수는“이번 전기적 자성상태의 변화는 엔트로피 변화를 동반하고 있을 것으로 예상한다”며“자기전기 소자 응용뿐만 아니라 열전 현상의 새로운 가능성을 열 것으로 기대된다”고 말했다. 이번 연구는 재료연구소 최시영 박사, 포항공대 정윤희 교수, 포항 가속기연구소 구태영 박사, 막스플랑크 연구소 고경태 박사, 미국 스탠포드 가속기연구소 이준식 박사 와 헨드릭(Hendrik Ohldag) 박사, 호주 뉴사우스웨일즈 대학 잔(Jan Seidel) 교수 등과 공동으로 진행됐다. 한국연구재단의 중견연구자지원사업, 글로벌연구네트워크지원사업, 선도연구센터지원사업(응집상 양자 결맞음 연구센터)과 글로벌프론티어사업(하이브리드 인터페이스기반 미래소재 연구단) 등의 지원을 통해 수행됐다. □ 그림 설명 그림1. 전기장 인가를 통한 자성 방향의 변화를 나타낸 개념도
2016.10.27
조회수 15976
최양규 교수, 5단 나노선 통한 D램-플래시 융‧복합메모리 개발
우리 대학 전기 및 전자공학부 최양규 교수와 이병현 박사과정이 나노선의 5단 수직 적층 기술을 통해 D램과 플래시 메모리 동작이 동시에 가능한 융합메모리 반도체 소자를 개발했다. 이번 연구 결과는 나노 분야 학술지 ‘나노 레터스(Nano Letters)’ 8월 31일자 온라인 판에 게재됐다. 메모리 반도체는 정보화 기술 사회의 핵심 기기로서 국내 반도체 산업의 주력 제품이다. 메모리 반도체 분야는 크게 D램과 플래시 메모리로 양분되는데 이는 각 메모리가 가진 고유 특성 때문이다. D램은 빠른 동작속도를 자랑하지만 휘발성 메모리이기 때문에 안정적 정보 저장을 위해 전력이 많이 소모된다. 반면 플래시 메모리는 D램에 비해 느린 동작속도가 문제점으로 지적된다. 연구팀은 D램과 플래시 메모리 기능이 하나의 트랜지스터 안에서 동시에 동작하는 전면-게이트 실리콘 나노선 구조 기반의 융합 메모리 소자를 제안했다. 그러나 이 구조는 트랜지스터의 소형화에 따른 나노선 면적 감소로 인해 동작 전류도 같이 감소됐고 이는 메모리 소자 성능의 저하로 이어졌다. 문제 해결을 위해 연구팀은 전면-게이트 실리콘 나노선을 수직으로 5단까지 쌓았다. 이러한 5단 수직 집적 실리콘 나노선 채널을 보유한 융합 메모리소자는 단일 나노선 기반의 메모리 소자와 대비해 5배의 향상된 성능을 보였다. 이 연구를 통해 시스템 레벨에서 칩 사이즈의 소형화 및 전력 효율의 개선, 패키징 공정 단순화를 통한 제작비용 절감 등이 가능하다. 시스템 안에서 칩 간의 간섭효과를 줄여줌으로써 시스템 전체 속도 향상에도 기여가 가능해 융합 메모리의 실효성이 높아질 것으로 기대된다. 또한 수직 집적 나노선 구조는 말 그대로 위쪽으로 채널이 쌓여있기 때문에 단일 구조와 달리 면적이 증가되지 않아 집적도 향상에도 기여할 수 있다. 이러한 수직 집적은 지난 해 최양규 교수 연구팀에서 개발된 일괄 플라즈마 건식 식각 공정을 통해 이뤄졌다. 이병현 연구원은 이 기술을 통해 작년 비 메모리 반도체 소자 개발에 성공했고, 이번 연구를 통해 고성능 융합 메모리 소자를 개발했다. 최양규 교수는 “이번 연구를 통한 메모리 반도체의 제작 공정과 성능의 개선 및 높은 실효성이 기대된다”며 “궁극적으로는 메모리 반도체의 소형화를 계속 이어나갈 것으로 예상한다”고 말했다. 이병현 연구원은 “나노종합기술원의 강민호 박사를 포함한 관련 엔지니어들의 적극적 기술 지원이 큰 도움이 됐다”고 말했다. 이번 연구는 미래창조과학부 글로벌프론티어사업 스마트IT융합시스템 연구단과 미래유망융합파이오니아 사업의 씨모스(CMOS) THz 기술 융합 연구단의 지원을 받아 수행됐다. □ 그림 설명 그림1. 전자 현미경 사진 및 투과 전자 현미경 사진 그림2. 고성능 융합메모리에 대한 요약 모식도
2016.09.21
조회수 11485
박현규 교수 DNA 활성 조절 가능한 스위치 개발
〈 박 현 규 교수 〉 우리 대학 생명화학공학과 박현규 교수 연구팀이 스위치를 켜고 끄듯이 DNA 내부의 핵산중합효소 활성을 조절하는 기술을 개발했다. 이 기술은 수은, 은 등의 금속이온을 스위치로 사용해 DNA 압타머를 조절함으로써 DNA 압타머와 결합돼 있는 핵산중합효소의 활성을 조절하는 원리이다. 이번 연구는 영국왕립화학회가 발행하는 ‘케미컬커뮤니케이션(Chemical communications)’ 4월호에 게재됐고, 중요성을 인정받아 표지 논문으로 선정됐다. 핵산과 금속이온의 상호작용을 이용해 효소 활성을 조절하는 여러 연구들이 수행되고 있다. 하지만 이 연구들은 금속이온에 의해 반응이 진행되고 나면 다시 반응을 되돌릴 수 없어 가역적으로 시스템을 구현해야 하는 분자스위치, 논리게이트 등에 사용이 어렵다는 한계를 갖는다. 핵산중합효소는 핵산의 복제를 돕는 효소로 DNA 압타머와 결합해 있는 상태로는 별다른 역할을 수행할 수 없다. 따라서 특정 외부적 자극을 통해 DNA 압타머를 조절해 핵산중합효소를 활성화시켜야 한다. 연구팀은 문제 해결을 위해 핵산중합효소와 상호작용을 하는 DNA 압타머가 특정 금속이온에 반응하도록 염기서열을 조작했다. 그리고 수은 및 은 등의 금속이온을 도입해 핵산중합효소와 DNA 압타머의 결합을 조절함으로써 중합효소의 활성을 조절 가능하게 만들었다. 연구팀은 이 기술을 기반으로 금속이온에 의해 시스템을 조절할 수 있는 분자 수준의 스위치를 개발했다. 기존 기술의 한계였던 비가역성 문제를 해결해 핵산중합효소의 활성을 가역적으로 조절할 수 있는 것이다. 연구팀은 이를 통해 향후 DNA기반의 분자회로 및 신호전달체계의 원천기술이 될 수 있을 것으로 기대된다고 밝혔다. 박 교수는 “이번 연구에서 개발된 기술은 중합효소 외에 다양한 효소 활성의 가역적 조절에 응용될 수 있다”며 “이를 통해 다양한 분자 스위치의 개발이 가능해질 것으로 기대된다”고 말했다. 이번 연구는 미래창조과학부가 시행하는 글로벌프론티어사업(바이오나노헬스가드연구단)과 중견연구자지원사업(도약연구)의 지원을 받아 수행됐다. □ 그림 설명 그림1. 압타머와 금속이온의 상호작용에 의하 가역적으로 조절되는 중합효소 활성 모식도
2016.05.03
조회수 9748
5단 수직 적층 반도체 트랜지스터 개발
우리 대학 전기 및 전자공학부 이병현 연구원(지도교수 최양규)과 나노종합기술원(원장 이재영) 강민호 박사가 실리콘 기반의 5단 수직 적층 반도체 트랜지스터를 개발했다. 그리고 반도체 트랜지스터를 이용한 비휘발성 메모리 개발에 성공했다. 이번 연구는 나노 분야 학술지 ‘나노 레터스(Nano letters)’ 11월 6일자 온라인판에 게재됐다. 반도체 트랜지스터 분야는 모든 전자기기의 핵심 구성요소로 국내 산업과 경제 발전에 큰 영향을 끼쳤다. 세계적 추세에 따라 치열한 소형화를 통해 생산성과 성능의 향상을 거듭했으나 최근 10나노미터 시대에 접어들며 제작 공정의 한계 및 누설전류로 인한 전력소모 문제가 커지고 있다. 학계 및 산업계는 문제 해결을 위해 전면-게이트 실리콘 나노선 구조를 개발했다. 이는 누설전류 제어에 가장 효과적인 구조로 저전력 트랜지스터 개발에 이용됐다. 그러나 이 역시 소형화에 따른 나노선 면적 감소로 성능 저하의 한계가 있었다. 연구팀은 전면-게이트 실리콘 나노선을 수직으로 5단으로 쌓아 문제를 해결했다. 이 5단 적층 실리콘 나노선 채널을 보유한 반도체 트랜지스터는 단일 나노선 기반의 트랜지스터보다 5배의 향상된 성능을 보였다. 또한 수직 적층 나노선 구조는 말 그대로 위로 쌓기 때문에 단일 구조와 달리 면적이 증가되지 않아 집적도 향상에도 기여할 수 있다. 나노선 수직 적층은 개발된 ‘일괄 플라즈마 건식 식각 공정’ 방식을 통해 이뤄졌다. 이 공정은 고분자 중합체를 이용해 패턴이 형성될 영역에 미리 보호막을 친 뒤 등방성 건식 식각을 통해 나노선 구조를 형성하는 기술이다. 수직 적층 나노선 구조는 이 기술의 연속 작용을 통해 확보한 결과물이다. 이 기술은 지속적 소형화로 인해 기술적 한계에 부딪힌 반도체 트랜지스터 분야에 새로운 돌파구를 제시할 것으로 기대된다. 관련 연구가 이전부터 진행됐지만 더 간단한 공정기술을 이용해 가장 많은 나노선 채널의 적층에 성공했기 때문에 비용절감 및 제작 시간 단축, 반도체 트랜지스터의 성능 향상으로 인한 상용화 등에 크게 기여할 것으로 예상된다. 연구팀은 건식 식각 공정 기술이 기존 방법보다 간단하고 안정적으로 수직 적층 실리콘나노선 구조 제작을 가능하게 함으로써 고성능 트랜지스터 개발에 응용 가능할 것이라고 밝혔다. 이병현 연구원과 강민호 박사는 “이번 기술 개발은 미래창조 국가 나노기술 인프라 기관 나노종합기술원의 훌륭한 반도체 연구 기반과 김진수 부장 포함 관련 연구진들의 우수한 공정 능력이 뒷받침돼 가능했다”고 소감을 말했다. 이번 연구는 글로벌프론티어사업 스마트IT융합시스템 연구단의 지원을 받아 수행됐다. 연구를 주도한 이병현 연구원은 우리 대학 최양규 교수 지도하에 박사과정을 수행 중이며, 삼성전자 메모리 사업부의 책임 연구원으로 재직 중이다. □ 그림 설명 그림1. 일괄 플라즈마 건식 식각 공정 과정의 모식도. 그림2. 서로 다른 방향에서 단면을 관찰한 주사 전자 현미경 사진 및 투과 전자 현미경 사진
2015.11.24
조회수 12746
기체가 저장물질에 흡착되는 과정 관찰
우리 대학 EEWS 대학원 강정구 교수와 오사무 테라사키 공동 연구팀이 2~5 나노미터(10억분의 1m) 크기의 구멍을 갖는 메조다공성 금속유기골격체(metal organic framework, MOF) 안에 기체가 흡착되는 과정을 관찰하는 데 성공했다. 관찰 과정에서 기체들이 각자의 기공에 일정하지 않은 각기 다른 밀도로 흡착된다는 사실을 발견했다. 이는 기존의 학설과 반대되는 개념으로 금속유기골격체에서 기체가 초격자 구조를 형성한다는 사실을 최초로 발견한 것이다. 이번 연구는 국제 과학 학술지 ‘네이처’ 11월 9일자 온라인 판에 게재됐다. 메조다공성 금속유기골격체는 넓은 비표면적을 갖고 있어 수소나 메탄, 이산화탄소 등의 가스 저장에 용이한 저장물질이다. 효율적인 가스 저장을 위해서는 기체가 저장물질에 어떻게 흡착하는지 이해하는 것이 중요하다. 그러나 일반적인 기체 흡착 측정 장비의 경우에는 흡착 거동을 직접적으로 관찰할 수 없다는 한계가 있었다. 문제 해결을 위해 연구팀은 기존에 존재하는 두 개의 장비를 이용했다. 구조적 정보를 얻을 수 있는 X-선 소각산란(small angle X-ray scattering, SAXS) 측정 장비와 기체흡착 측정 장비를 결합했다. 두 장비가 결합된 실시간 기체 흡착 SAXS 시스템을 개발해 메조다공성 금속유기골격체의 결정에 기체가 흡착하는 과정을 실시간으로 관찰했다. 연구팀은 관찰 과정에서 금속유기골격체의 모든 기공에 기체가 균일하게 흡착되지 않고 각자 다른 밀도로 흡착된다는 사실을 발견했다. 그리고 압력이 증가하면서 급격하게 초격자 구조로 변이된 후 서서히 균일하게 분포하는 것 또한 확인했다. 이는 모든 기공에 균일하게 기체가 들어간다는 학설을 뒤집는 발견이다. 이것이 가능했던 이유는 메조다공성 금속유기골격체의 경우 골격이 얇고 기공이 커 다른 구멍의 기체분자끼리도 상호작용하기 때문에 발생하는 현상이다. 따라서 메조다공성 금속유기골격체를 사용한다면 기존 저장물질에 비해 더 적은 용량으로 더 많은 가스를 저장할 수 있는 고효율 저장장치를 개발할 수 있게 된다. 이 기술을 기반으로 새로운 고용량 가스저장 물질의 제작이 가능해짐으로써, 여러 운송수단이나 가스를 사용하는 기계의 성능을 끌어올릴 수 있을 것으로 기대된다. 연구를 주도한 조해성 박사는 “단일 기공 내부의 기체 분자 뿐 아니라 다른 기공의 기체 분자 간 상호작용에 의해 기체의 흡착 메커니즘이 발생함을 새롭게 발견했다”고 말했다. 이번 연구는 미래창조과학부 글로벌프론티어사업, 인공광합성사업, BK21PLUS의 지원을 받아 수행됐다. □ 그림 설명 그림1. 실시간 기체흡착 SAXS 시스템 모식도 그림2. 메조다공성 MOF 결정에 기체가 흡착되는 과정 그림3. 메조다공성 MOF 결정에서 기체분자의 상호작용 모델
2015.11.11
조회수 12445
대장균의 생물막 형성 제어 기술 개발
〈이 영 훈 교수〉 우리 대학 화학과 이영훈 교수 연구팀이 작은 RNA(small RNA : sRNA)의 발현을 조절해 대장균의 생물막 형성을 제어할 수 있는 기술을 개발했다. 연구 결과는 네이처 자매지인 ‘사이언티픽 리포트(Scientific Reports)’ 10월 15일자에 게재됐다. 세균들은 외부의 여러 환경으로부터 스스로를 보호하기 위해 다량체로 이뤄진 세포성분을 분비한다. 이로 인해 고체 표면이나 살아있는 생물 조직에서 생물막(biofilm)이라는 3차원 구조물이 형성된다. 이 생물막은 제거가 어려울 뿐 아니라 세균의 생체 내 증식, 치석, 의료기기 오염, 수도관, 정수기 등에 분포해 각종 산업시설에서 광범위한 문제를 일으키고 있다. 특히 생물막을 형성하고 있는 세균들은 항생제에 매우 높은 내성을 가질 수 있어 슈퍼박테리아의 항생제 내성의 주요 원인이기도 하다. 생물막 형성에 크게 관여하는 세균 내의 sRNA는 표적 메신저 RNA(mRNA) 또는 단백질과 상호작용해 세포대사를 조절하는 핵심 요소로 기능한다. 학자들은 생물막 형성의 원리를 규명하기 위해 이 sRNA를 연구해 왔다. 현재 대장균에서는 100여 종의 sRNA가 보고됐다. 연구팀은 이 중 99종을 분석해 각각의 대장균 sRNA를 발현할 수 있는 라이브러리를 구축했다. 이후 이를 통해 환경적 스트레스 대응과 밀접한 관련성을 가져 생물막 형성에 핵심이 되는 sRNA를 탐색했다. 그 결과로 연구팀은 생물막 형성에 관여하는 sRNA를 새롭게 발견했고, 생물막 형성을 위한 생리적 변화(세포운동성, I형 핌브리아 형성, 컬리핌브리아 형성)를 일으키는 sRNA들을 분석하는 데 성공했다. 이 분석 방식은 기존의 유전체적 분석을 통한 sRNA 작용 원리 규명 연구에 비해 이 교수 연구팀은 특정 sRNA의 기능을 직접 분석할 수 있어 신속하고 효율적으로 작용 원리를 규명할 수 있다는 장점을 갖는다. 이번 연구를 통해 생물막 형성과정에 관여하는 신호 전달체계를 이해하는 후속 연구 뿐 아니라, sRNA를 진단 마커나 약물 타겟으로 삼아 세균의 병원성 제어에 활용할 수 있을 것으로 기대된다. 이 교수는 “세균의 생물막 형성과 분해를 원하는 방향으로 제어할 수 있게 됐다”며 “향후 99종의 sRNA 각각에 대한 돌연변이 균주도 확보해 함께 활용할 예정이다”고 말했다. 화학과 박근우, 이정민 박사가 공동 1저자로 참여한 이번 연구는 미래창조과학부와 한국연구재단이 추진하는 글로벌프론티어사업(지능형 바이오시스템 설계 및 합성 연구), 기초연구실 지원사업, 중견연구자 지원사업(도약연구)을 통해 수행됐다. □ 그림 설명 그림 1 . 세균 생물막 형성과정의 모식도 그림 2. sRNA의 발현양에 비례하여 생물막 형성의 억제. 생물막 형성이 많을수록 진한 보라색 그림 3. 99종의 대장균 sRNA와 라이브러리 구축에 사용된 pHMB1 플라스미드의 구조
2015.10.28
조회수 13422
<<
첫번째페이지
<
이전 페이지
1
2
3
4
>
다음 페이지
>>
마지막 페이지 4