-
수면 및 단기 기억력 조절을 위한 초소형 초음파 자극·뇌파 측정 시스템 개발
우리 대학 전기및전자공학부 이현주 교수, 한국뇌연구원 김정연 박사 공동연구팀이 소형 동물에서 초음파 뇌 자극과 뇌파 측정이 동시에 가능한 초소형 시스템을 개발했다고 9일 밝혔다. 수면 상태에 따라 실시간으로 초음파 뇌 자극이 가능한 해당 기술을 이용해, 연구팀은 비 급속 안구 운동(NREM, Non-rapid-eye Movement) 수면 시 전전두엽(PFC, Prefrontal cortex)을 실시간으로 자극해 수면 및 단기 기억력 조절이 가능함을 밝혔다.
☞ 미세 전자 기계 시스템(Micro Electro Mechanical Systems, MEMS): 마이크로 단위의 기계적 구조물과 전자 회로가 결합된 초소형 정밀 기계 제작 기술. 전자(반도체) 기술·기계 기술·광 기술 등을 융합해 마이크로 단위의 작은 부품과 시스템을 설계·제작하고 응용하는 기술을 의미한다.
☞ 초음파: 사람이 들을 수 있는 청각 영역에서 벗어난 고주파수 내역의 음파(>20 kHz).
☞ 뇌파: 저주파수 대역의 뇌 전기신호. 비침습적으로 두개골이나 두피에서 전반적인 뇌 활동을 뇌파로 측정할 수 있다. 영문으로 EEG라고 부른다.
☞ 전전두엽: 전두엽에서 인간 고유의 정신 기능을 담당하는 앞부분이다. 행동을 주시하고, 감독하고, 이끌고, 지시하고, 집중시키는 일을 하는 부위다.
이번 연구에서 개발된 초소형 초음파 자극 및 뇌파 측정 시스템은 기존의 마취가 필요한 시스템과는 달리 자유롭게 행동하는 쥐에 장기간 동시 자극과 측정을 할 수 있다. 초음파 자극 소자는 미세 전자 기계 시스템(이하 MEMS, Micro Electro Mechanical Systems)의 실리콘 공정을 활용했기 때문에 매우 정밀하고 초소형으로 제작할 수 있으며 대량생산이 가능하다. 초경량의 해당 시스템을 향후 다양한 뇌 질환 동물 모델에 적용한다면, 여러 뇌 질환에 대한 초음파 뇌 자극의 효과를 평가할 수 있을 것으로 기대된다.
기존 신경 자극 기술과는 달리 초음파는 수술 없이 뇌 심부의 국소적인 작은 영역까지도 자극할 수 있어, 저강도 집속 초음파 치료 기술이 주목받고 있다. 최근 저강도 집속 초음파 기술의 치료 효과와 유효성에 관한 연구가 활발히 진행되고 있다. 초음파를 뇌 또는 인체에 조사했더니, 알츠하이머병, 파킨슨병, 간질, 비만, 관절염 등이 호전되는 연구들이 다수 발표되고 있다.
신경 자극의 효능을 확인하는 방법으로는 생체 내 신호 측정과 행동 관찰을 들 수 있다. 그러나 이를 질병 모델이 많이 존재하는 소형 동물에서 구현하기는 쉽지 않다. 기존의 초음파 자극 기술은 부피가 커서 움직이는 생쥐에 사용이 불가능하거나 작동할 때 생기는 잡음 신호로 동시 전기 생리 신호 측정이 어렵다. 특히, 생쥐처럼 작은 동물에서 장기간으로 초음파 자극을 주면서 생체 내 반응을 실시간으로 측정하는 시스템이 없었다. 따라서 소형 동물에 인가되는 초음파 자극 실험은 통상적으로 짧게 자극 후 즉각적인 반응을 보거나 마취 상태에서 여러 차례 자극을 인가하고 장기적인 반응을 보는 연구들이 주를 이루고 있다.
이현주 교수팀은 그간 이런 문제를 해결하기 위해 MEMS 기반의 초소형 초음파 소자(CMUT, Capacitive Micromachined Ultrasound Transducer) 연구를 지속해서 수행해왔는데, 이번 연구에서 뇌파 신호 측정 및 실시간 수면 분석 기술을 접목해, 뇌의 현재 상태에 따라 자극을 주는 맞춤형, 폐루프 자극 시스템을 개발했다. 폐루프 자극 알고리즘은 6초 단위로 수면 단계를 실시간으로 분석해 비 급속 안구 운동(NREM, Non-rapid-eye Movement) 수면 단계일 때 초음파 자극을 전달한다. 이 시스템은 잡음 신호 없이 자극과 측정이 동시에 가능하다. NREM 상태 시 10시간 동안 수면 박탈 쥐의 전전두엽을 자극한 결과, 단기 공간 기억력이 보호되고 급속 안구 운동(REM, Rapid-eye Movement) 수면량이 증가함을 보였다.
연구팀은 현재 이 신기술을 고도화하기 위해 뇌 단일 영역의 매우 작은 부위를 자극할 수 있는 후속 시스템을 개발하고 있다. 국소 부위 자극을 통해 향후 정밀한 수면 단계 조절이 가능하게 된다면, 수술 없이 비침습적으로 수면 질환, 알츠하이머병, 파킨슨병 등의 뇌 질환 치료의 길이 열릴 것으로 연구팀은 기대하고 있다.
이현주 교수는 "초음파는 태아 영상화에도 활용될 만큼 안전한 인체 조사 기술 중 하나인데, 인체 내부 깊숙이까지 전달되며 펴지지 않고 집중 조사가 가능해 치료를 위한 비수술적 인체 조사 기술로 매우 매력적인 기술이다ˮ라고 말했다. "하지만, 전임상 자극 시스템의 부재로 현재 초음파 자극의 효능 평가 연구가 부족한 상황이며, 이번에 개발한 시스템을 많은 뇌과학 연구팀들이 활용해 초음파의 다양한 치료 효과를 밝혀낼 수 있기를 바란다ˮ라고 전했다.
전기및전자공학부 이현주 교수 연구팀의 조예현 박사과정, 그리고 한국뇌연구원 김정연 박사 연구팀이 주도하고 기초과학연구원 김성기 단장, 한국과학기술연구원 이병철 박사, 우리 대학 생명과학과 서성배 교수가 참여한 이번 연구 결과는 국제 학술지 `어드밴스드 사이언스(Advanced Science)'誌 10월 19일 字에 게재됐으며 출판사 와일리(Wiley)의 리서치 헤드라인(Research Headline) 논문으로 선정돼 이현주 교수와 김정연 박사 인터뷰가 어드밴스드 사이언스 뉴스(Advanced Science News)에 11월 1일 실렸다. (논문명: General-purpose ultrasound neuromodulation system for chronic, closed-loop preclinical studies in freely behaving rodents)
한편, 이 연구는 과학기술정보통신부 한국연구재단 차세대지능형반도체 사업의 지원으로 수행됐다.
2022.11.09
조회수 7444
-
악성 뇌종양 탐지 대식세포 발견 및 기능 규명
뇌에서 발생하는 악성 종양인 교모세포종은 미국에서만 매년 1만 명 이상의 환자가 발생하지만 최근 주목받는 면역치료제도 유의미한 효과를 보지 못한, 치료가 매우 어려운 암 중 하나다. 국내 연구진은 이러한 교모세포종에 대한 면역반응을 증가시키는 *대식세포와 그 작용 기전을 밝혀 새로운 면역치료법의 가능성을 열었다.
☞ 대식세포: 세포 찌꺼기, 이물질, 미생물, 암세포 등을 집어삼켜서 분해하는 식세포작용을 하는 백혈구의 한 유형
우리 대학 의과학대학원 이흥규 교수 연구팀이 교모세포종 내에서 항암 면역반응에 중요한 대식세포를 찾고, 이 세포가 *세포독성 T 세포를 활성화하고 *포식작용으로 암세포를 제거할 수 있다는 것을 발견했다고 4일 밝혔다.
☞ 세포독성 T 세포: 바이러스에 감염된 체세포나 종양 세포를 파괴하는, 흉선에서 유래한 림프구
☞ 포식작용: 세균이나 죽은 세포 등 체내의 이물질을 섭취하여 제거하는 작용
교모세포종 환자는 진단 후 평균 생존 기간이 8개월에 불과하며 5년 이상 생존율은 6.8%로 매우 낮은 수준이다. 종양 치료를 위한 활발한 연구로 면역관문 치료제 등 다양한 치료법이 개발돼 지난 30년간 전체 암 환자의 생존율이 20% 가까이 증가했지만, 교모세포종 환자의 생존율 증가는 2%에 그쳤다.
종양 내 면역세포의 상당수를 차지하는 대식세포는 일반적으로 종양을 제거하는 대신 종양 환경에 적응해 종양세포의 성장 및 전이를 돕고 다른 면역세포들의 활성 및 작용을 억제해 항암 면역반응을 감소시킨다고 알려져 있다. 최근 흑색종 등에서 큰 효과를 나타내는 면역관문 치료제가 교모세포종 치료에서는 효과가 거의 없다는 것이 보고됐는데, 그 이유 중 하나로 손꼽히는 것이 이러한 면역 억제성 대식세포의 과다한 유입이다. 하지만 최근 보고된 연구 결과들은 종양 내 대식세포는 매우 다양한 표현형을 나타내는 여러 대식세포 아형으로 나눌 수 있으며, 이 세포들이 면역관문 치료제 등이 효과를 나타내는 데에 중요하다고 밝혔다.
이 교수 연구팀은 미국 국립암연구소(National Cancer Institute, NCI)와 국립인간유전체연구소(National Human Genome Research Institute, NHGRI)에서 운영하는 암 유전체 아틀라스(The Cancer Genome Atlas, TCGA)에 공개된 교모세포종 환자의 유전자 발현을 비교해 교모세포종 내에서 항암 면역반응을 증가시키는 대식세포의 마커로 CD169 유전자를 발굴하고, 마우스 교모세포종 모델을 사용해 CD169 단백질을 발현하는 대식세포가 없으면 항암 면역반응이 감소해 마우스의 생존이 감소하는 것을 밝혔다.
특히 연구팀은 CD169를 발현하는 대식세포가 세포독성 T 세포의 종양 내 유입에 중요한 CXCL10과 같은 *케모카인을 증가시켜 활성화된 T 세포의 종양 내 유입을 증가시킨다는 것을 밝혔다. 또한, CD169는 이 대식세포의 마커일 뿐 아니라 암세포에 대한 포식작용을 증가시키는 기능을 하며, CD169로 인해 포식작용이 증가한 대식세포는 암세포 특이적인 세포독성 T 세포의 활성을 직접 증가시키는 것을 밝혔다.
☞ 케모카인(chemokine): 백혈구 유주작용, 활성화 작용을 하는 단백질
이 교수는 "이번 연구 결과는 교모세포종에 대한 항암 면역반응에 중요한 대식세포의 마커를 발굴한 것뿐만 아니라, 이들 대식세포가 항암 면역반응을 증가시키는 기전을 확인해 면역관문 치료제의 효과를 높이는 복합치료제 개발에 실마리를 제공할 수 있을 것으로 기대한다ˮ고 밝혔다.
의과학대학원 연수연구원 김현진 박사가 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)' 10월 20일 字 온라인판에 게재됐다. (논문명: Blood monocyte-derived CD169⁺ macrophages contribute to antitumor immunity against glioblastoma)
한편 이번 연구는 삼성미래기술육성재단 및 한국연구재단의 지원을 받아 수행됐다.
2022.11.04
조회수 7451
-
상상만으로 원하는 방향으로 사용가능한 로봇 팔 뇌-기계 인터페이스 개발
우리 대학 뇌인지과학과 정재승 교수 연구팀이 인간의 뇌 신호를 해독해 장기간의 훈련 없이 생각만으로 로봇 팔을 원하는 방향으로 제어하는 뇌-기계 인터페이스 시스템을 개발했다고 24일 밝혔다.
서울의대 신경외과 정천기 교수 연구팀과 공동연구로 진행된 이번 연구에서 정 교수 연구팀은 뇌전증 환자를 대상으로 팔을 뻗는 동작을 상상할 때 관측되는 대뇌 피질 신호를 분석해 환자가 의도한 팔 움직임을 예측하는 팔 동작 방향 상상 뇌 신호 디코딩 기술을 개발했다. 이러한 디코딩 기술은 실제 움직임이나 복잡한 운동 상상이 필요하지 않기 때문에 운동장애를 겪는 환자가 장기간 훈련 없이도 자연스럽고 쉽게 로봇 팔을 제어할 수 있어 앞으로 다양한 의료기기에 폭넓게 적용되리라 기대된다.
바이오및뇌공학과 장상진 박사과정이 제1 저자로 참여한 이번 연구는 뇌공학 분야의 세계적인 국제 학술지 `저널 오브 뉴럴 엔지니어링 (Journal of Neural Engineering)' 9월 19권 5호에 출판됐다. (논문명 : Decoding trajectories of imagined hand movement using electrocorticograms for brain-machine interface).
뇌-기계 인터페이스는 인간이 생각만으로 기계를 제어할 수 있는 기술로, 팔을 움직이는 데 장애가 있거나 절단된 환자가 로봇 팔을 제어해 일상에 필요한 팔 동작을 회복할 수 있는 보조기술로 크게 주목받고 있다.
로봇 팔 제어를 위한 뇌-기계 인터페이스를 구현하기 위해서는 인간이 팔을 움직일 때 뇌에서 발생하는 전기신호를 측정하고 기계학습 등 다양한 인공지능 분석기법으로 뇌 신호를 해독해 의도한 움직임을 뇌 신호로부터 예측할 수 있는 디코딩 기술이 필요하다.
그러나 상지 절단 등으로 운동장애를 겪는 환자는 팔을 실제로 움직이기 어려우므로, 상상만으로 로봇 팔의 방향을 지시할 수 있는 인터페이스가 절실히 요구된다. 뇌 신호 디코딩 기술은 팔의 실제 움직임이 아닌 상상 뇌 신호에서 어느 방향으로 사용자가 상상했는지 예측할 수 있어야 하는데, 상상 뇌 신호는 실제 움직임 뇌 신호보다 신호대잡음비(signal to noise ratio)가 현저히 낮아 팔의 정확한 방향을 예측하기 어려운 문제점이 오랫동안 난제였다. 이러한 문제점을 극복하고자 기존 연구들에서는 팔을 움직이기 위해 신호대잡음비가 더 높은 다른 신체 동작을 상상하는 방법을 시도했으나, 의도하고자 하는 팔 뻗기와 인지적 동작 간의 부자연스러운 괴리로 인해 사용자가 장기간 훈련해야 하는 불편함을 초래했다.
따라서 팔을 뻗는 상상을 할 때 어느 방향으로 뻗었는지 예측하는 디코딩 기술은 정확도가 떨어지고 환자가 사용법을 습득하기 어려운 문제점이 있다. 이 문제가 오랫동안 뇌-기계 인터페이스 분야에서 해결해야 할 난제였다.
연구팀은 문제 해결을 위해 사용자의 자연스러운 팔 동작 상상을 공간해상도가 우수한 대뇌 피질 신호(electrocorticogram)로 측정하고, 변분 베이지안 최소제곱(variational Bayesian least square) 기계학습 기법을 활용해 직접 측정이 어려운 팔 동작의 방향 정보를 계산할 수 있는 디코딩 기술을 처음으로 개발했다.
연구팀의 팔 동작 상상 신호 분석기술은 운동피질을 비롯한 특정 대뇌 영역에 국한되지 않아, 사용자마다 상이할 수 있는 상상 신호와 대뇌 영역 특성을 맞춤형으로 학습해 최적의 계산모델 파라미터 결괏값을 출력할 수 있다.
연구팀은 대뇌 피질 신호 디코딩을 통해 환자가 상상한 팔 뻗기 방향을 최대 80% 이상의 정확도로 예측할 수 있음을 확인했다.
나아가 계산모델을 분석함으로써 방향 상상에 중요한 대뇌의 시공간적 특성을 밝혔고, 상상하는 인지적 과정이 팔을 실제로 뻗는 과정에 근접할수록 방향 예측정확도가 상당히 더 높아질 수 있음을 연구팀은 확인했다.
연구팀은 지난 2월 인공지능과 유전자 알고리즘 기반 고 정확도 로봇 팔 제어 뇌-기계 인터페이스 선행 연구 결과를 세계적인 학술지 `어플라이드 소프트 컴퓨팅(Applied soft computing)'에 발표한 바 있다. 이번 후속 연구는 그에 기반해 계산 알고리즘 간소화, 로봇 팔 구동 테스트, 환자의 상상 전략 개선 등 실전에 근접한 사용환경을 조성해 실제로 로봇 팔을 구동하고 의도한 방향으로 로봇 팔이 이동하는지 테스트를 진행했고, 네 가지 방향에 대한 의도를 읽어 정확하게 목표물에 도달하는 시연에 성공했다.
연구팀이 개발한 팔 동작 방향 상상 뇌 신호 분석기술은 향후 사지마비 환자를 비롯한 운동장애를 겪는 환자를 대상으로 로봇 팔을 제어할 수 있는 뇌-기계 인터페이스 정확도 향상, 효율성 개선 등에 이바지할 수 있을 것으로 기대된다.
연구책임자 정재승 교수는 "장애인마다 상이한 뇌 신호를 맞춤형으로 분석해 장기간 훈련을 받지 않더라도 로봇 팔을 제어할 수 있는 기술은 혁신적인 결과이며, 이번 기술은 향후 의수를 대신할 로봇팔을 상용화하는 데에도 크게 기여할 것으로 기대된다ˮ고 말했다.
2022.10.24
조회수 7034
-
헌팅턴병 발병원인 제거를 위한 치료제 개발 방법 제시
우리 대학 생명과학과 송지준 교수 연구팀이 헌팅턴병(Huntington's disease)을 치료할 수 있는 새로운 개념의 방법을 제시했다고 2일 밝혔다.
헌팅턴병은 희귀 유전성 질환으로 근육 간 조정 능력 상실과 인지능력 저하, 정신적인 문제가 동반되는 신경계 퇴행성 질환이다. 이는 유전되는 퇴행성 뇌 질환이며 헌팅턴 단백질에 글루타민 아미노산이 여러 개가 연속적으로 확장되는 돌연변이로 인해 발병된다.
헌팅턴병은 약 1~3만 명 중 1명의 발병률을 가지고, 10여 년의 퇴행과정을 거쳐 죽음에 이르게 하는 병이다. 아미노산이 3,000개 이상 연결돼 만들어지는 거대 단백질인 헌팅틴(Huntingtin) 단백질은 질병을 일으키기는 하지만, 생체기능에 필수적인 단백질이고, 병을 일으키는 형태의 단백질만을 치료 표적으로 골라내는 것이 매우 중요하다.
송 교수 연구팀은 네델란드 프로큐알 테라퓨틱스(ProQR Therapeutics NV), 프랑스 그레노블 대학, 스웨덴 왕립 공대의 연구그룹이 참여한 국제 공동연구를 통해, 헌팅턴병을 유발하는 돌연변이 헌팅틴 단백질을 고유의 기능을 유지하면서 질병을 일으키지 않는 형태로 전환해 헌팅턴병을 치료하는 새로운 방법론을 제시했다. 이 결과는 헌팅턴병 치료제를 개발하는데 적용될 수 있을 것으로 기대된다.
우리 대학 생명과학과 김형주 연구원이 공동 제1 저자로 참여한 이번 연구는 국제 저명 학술지 `임상연구저널(Journal of Clinical Investigation Insights)' 온라인판에 출판됐다.
(논문명 : A pathogenic proteolysis-resistant huntingtin isoform induced by an antisense oligonucleotide maintains huntingtin function) https://elifesciences.org/articles/76823
연구팀은 알엔에이(RNA)의 일종인 안티센스올리고뉴클레오타이드(antisense oligonucleotide)를 이용해 생성이 유도된 헌팅틴 델타 12의 형태가, 헌팅턴병을 유발하는 주요 원인인 단백질 아미노산 말단부위로 인해 절단되지 않으면서도 헌팅틴 단백질 고유의 기능을 유지한다는 사실 밝혔다. 연구팀이 결과는 헌팅턴병 치료제 개발의 새로운 개념으로 이용될 수 있을 것으로 기대된다.
이번 연구를 주도한 생명과학과 송지준 교수는 "이번 연구는 한국을 포함한 4개국의 공동연구를 통해 이뤄진 것으로, 질병을 유발하는 헌팅틴 단백질을 정상상태로 유도하는 방법이 헌팅턴병 치료제 개발에 새로운 길을 열어줄 것으로 기대한다ˮ이라고 설명했다.
한편 이번 연구는 한국연구재단 글로벌연구실(Global Research Laboratory) 사업의 지원을 받아 수행됐다.
2022.09.02
조회수 5800
-
뇌 모방 스핀 소자 핵심기술 개발
우리 대학 물리학과 김갑진 교수와 신소재공학과 박병국 교수 공동연구팀이 뇌 모방 소자로 개발 중인 스핀토크발진기 주파수 대역을 증대시킬 핵심 기술을 개발했다고 18일 밝혔다.
두 연구팀은 비자성체/강자성체/산화물 3중층 구조의 자기발진소자에 게이트 전압을 인가하여 GHz 수준의 발진주파수 조절에 성공하였다. 이는 기존 기술보다 약 10배 이상 향상된 결과로 스핀토크 기반 뉴로모픽 소자가 가진 학습 효과의 휘발성, 좁은 주파수 대역 등의 문제를 해결할 핵심 기술로 제안되었다.
본 소자는 게이트 전압이 영구적으로 수직자기이방성을 변화시켜 소자에 전류가 흐르지 않아도 학습 내용이 저장되어 있는 비휘발성 특성을 가지고 있으며 그 폭이 GHz 수준으로 넓어 뉴로모픽 소자 활용성을 증대시켜줄 것으로 기대된다.
신소재공학과 최종국 박사과정과 물리학과 박재현 박사가 공동 제1저자로 참여하고, KAIST 신소재공학과 강민구 연구원, 고려대학교 이재성 교수와 김도윤 연구원, KAIST 물리학과 이경진 교수가 공동저자로 참여한 본 논문은 국제학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’에 6월 30일 온라인 게재됐다. (논문명 : Voltage-driven gigahertz frequency tuning of spin Hall nano-oscillators)
기존의 스핀토크발진기 기반 뉴로모픽 소자는 학습 대상을 주파수 대역에 대응시켜 학습하는 소자로, 전류가 흐르지 않으면 학습 내용이 사라지는 휘발성과 200MHz 이내의 제한적인 학습 가능 대역폭을 가지고 있어 이에 대한 개선이 필요한 상황이다.
이번 연구에서 연구팀은 게이트 전압 인가가 소자의 수직자기이방성을 영구적으로 조절하고 이를 통해 자기공명주파수가 조절된다는 사실을 이용하여 기존 보고의 10배 이상인 2.1 GHz 이상의 광대역 조절 가능한 발진기를 실현하였다. 본 기술은 스핀-홀 나노 발진기 기반 뉴로모픽 소자 개발에 핵심 기술로 활용될 것이라 기대된다.
한편 이번 연구는 KAIST 글로벌 특이점 연구사업, 삼성미래기술육성사업, 한국연구재단 선도연구센터/중견연구자지원사업의 지원을 받아 수행됐다.
2022.07.29
조회수 7134
-
대규모 한국인 자폐증 가족 유전체 연구를 통한 새로운 자폐 유전변이 최초 발견
우리 대학 의과학대학원 이정호 교수와 바이오및뇌공학과 최정균 교수, 생명과학과 김은준 교수(IBS 시냅스뇌질환연구단장), 분당서울대병원 유희정 교수, KISTI 공동 연구팀이 아시아 최초로 대규모 한국인 자폐증 가족 코호트를 모집하고 전장 유전체 분석을 실시해 자폐증 유발 유전변이가 단백질을 암호화하지 않는 유전체 영역인 비-부호화 영역에서 발생할 수 있다는 사실을 규명했고, 이를 통해 자폐증 원인의 새로운 이해와 치료 전기를 마련했다고 19일 밝혔다.
이번 연구내용은 세계적 정신의학 학술지 ‘분자 정신의학(Molecular Psychiatry)’에 7월 15일 자에 게재됐다.
자폐증은 사회적 의사소통 결핍이나 이상, 반복적이거나 틀에 박힌 행동 문제가 유아 시절 시작돼 거의 평생 지속되는 뇌 신경 발달장애로, 질환 발생의 근본적인 원인에 대한 이해가 매우 부족하며, 공식적으로 인정된 치료 약제가 전무하다. 자폐증 원인에 대한 이해의 필요성은 대중들의 높은 관심을 통해서도 가늠해볼 수 있는데, 예를 들어 최근 세간의 이목이 집중된 드라마 ‘이상한 변호사 우영우’의 주인공이 자폐증을 앓고 있다.
연구진은 자폐증 유발 유전변이가 비-부호화 유전체 영역에서 발생한다는 사실을 발견했으며, 이를 세계 최초로 한국인 자폐증 샘플로 제작한 인간 줄기세포를 이용해 증명했다. 자폐증의 근본 원인을 규명한 획기적인 연구 결과로서, 기존 연구의 한계를 뛰어넘어 그간 유전체 분야의 난공불락으로 여겨졌던 비-부호화 영역에 초점을 맞춘 혁신적인 발상으로 자폐증 치료의 새로운 전기가 마련될 것으로 예상된다.
연구진은 IBS와 한국연구재단, 국가바이오빅데이터 사업단의 지원을 통해 2011년부터 현재 3,708명에 달하는 자폐 환자와 그 가족들로 구성된 대규모 한국인 코호트를 구축하고 유전체 분석을 진행하고 있으며, 이번 연구 결과는 813명의 전장 유전체 염기서열 분석을 바탕으로 이뤄졌다. (그림 1)
유전체 데이터의 98% 이상을 차지하고 있으나 그간 자폐증 유전체 연구에서 조명받지 못했던 비-부호화 영역을 집중적으로 규명하고자, 연구진은 3차원 공간상의 염색질 상호작용(three-dimensional chromatin interaction)이라는 새로운 분석 방식을 사용했으며 (그림 2), 비-부호화 영역에서 발생한 유전변이가 멀리 떨어져 있는 자폐 유전자의 기능에 심각한 이상을 초래할 수 있음을 증명했다. (그림 3)
특히, 본 코호트의 한국인 자폐증 가족으로부터 직접 인간 줄기세포를 제작해 태아기 신경세포를 재현했으며, 이러한 생애 초기 신경 발달단계에서 비-부호화 영역의 유전변이에 의해 최대 500,000 base-pair(유전체 거리 단위) 이상 떨어져 있는 유전자의 발현이 비정상적으로 낮아지거나 높아질 수 있음을 세계 최초로 증명했다 (그림 4)
이번 연구 성과는 자폐증 유발 유전변이가 단백질을 부호화하지 않는 비-부호화 영역에서 발생해, 멀리 떨어져 있는 유전자의 기능에 영향을 미침으로써 신경 발달단계 초기부터 질병 발병에 기여한다는 획기적인 자폐증 원인에 대한 발견이다. 연구팀은 그간 단백질을 부호화하는 영역에만 쏠려 있던 정신질환 연구 풍토 속에서, 비-부호화 영역을 규명하는 방향으로 전환해야 자폐증 치료의 비밀을 풀 수 있다는 새로운 접근법을 제시했다.
IBS 시냅스뇌질환연구단(김은준 교수팀 프로젝트 제안 및 개시), 서울의대 및 분당서울대병원(유희정교수팀 코호트 구축 및 임상 평가), KISTI(대용량 컴퓨팅 리소스 및 유전체 데이터 분석 파이프라인 제공), KAIST (이정호 교수팀, 최정균 교수팀 비-부호화 영역 유전변이 분석) 공동 연구팀이 통합된 유전체-임상 데이터에 대해 3차원 공간상의 염색질 상호작용 분석을 통해 비-부호화 영역에서 발생한 유전변이가 자폐증 발병에 기여함을 규명했다.
이는 순수 국내의 임상가와 기초과학자, 생물정보학 전문가의 융합연구로 이루어낸 성과이며, 아시아 최초의 대규모 전장-유전체 데이터 기반 코호트 구축과 유전체 분석 모델의 기틀을 마련함으로써 대한민국 유전체 연구의 선도적인 역할을 한 것이다. 자폐 유전체 연구는 지난 10년간 북미와 유럽을 위주로 대규모로 진행됐으나, 한국을 비롯한 아시아에서는 상대적으로 연구가 덜 진행됐다.
논문의 공동 제1 저자인 KAIST 의과학대학원 졸업생 김일빈 박사는 “신경발달장애 중 자폐증은 특히 치료가 어려운 것으로 알려져 있는데, 발병 원인 중 하나로 지목되는 유전체 영역의 이상을 한국인 고유의 데이터를 사용해 순수 국내 연구진들의 힘으로 발견해냈다는 데 큰 의미가 있으며, 이 연구 성과가 언젠가는 이루어질 자폐증 치료제 개발을 위한 작은 발판이 되길 바란다”라고 말했다. 분당서울대병원의 유희정 교수도 “우리나라 연구진의 힘을 모아 자폐증의 비밀을 풀기 위한 첫걸음을 내딛었다. 연구에 참여해 준 당사자와 가족들의 헌신으로 이룬 일이라고 생각한다. 하지만 우리가 자폐증의 발병 기전을 완전히 이해하고 나아가 치료제를 개발하기 위해서는 아직 연구해야 할 것이 많다. 유전체 연구에 대한 국가 차원의 지원이 절실하며, 자폐증을 가진 분들과 가족들의 관심도 꼭 필요하다”는 점을 강조했다.
한편 이번 연구는 서경배과학재단, 한국연구재단, 보건산업진흥원사업을 통해 수행됐다.
2022.07.19
조회수 8498
-
기억 저장 세포의 뇌 지도 제작기법 최초 개발
우리 대학 연구진이 기억을 저장하는 다양한 뇌 부위 세포들의 분포를 지도로 제작하는 기법의 개발에 최초로 성공했다.
바이오및뇌공학과 박영균 교수 연구팀이 메사추세츠 공과대학(MIT) 정광훈 교수 및 스스무 도네가와(Susumu Tonegawa) 교수 공동연구팀과 함께 단일 기억을 저장하는 세포들을 생쥐의 뇌 전체에서 매핑하는 기법을 개발하고, 이를 통해 공간 공포 기억을 저장하는 새로운 뇌 부위 세포들을 발견했다고 2일 밝혔다.
기억은 주로 몇몇 뇌 부위에 국한해 연구돼왔다. 예를 들어 공포 기억은 편도체, 공간 기억은 해마의 세포들에 저장된다고 생각돼왔으며, 해당 뇌 부위들이 주로 연구됐다. 하지만 단일 기억이 다양한 뇌 부위에 나누어 저장될 것이라는 가설도 제시돼왔는데, 이러한 가설은 기억을 저장하는 세포들의 분포를 뇌 전체에서 확인(매핑)함으로써 확실한 검증이 가능하나, 이는 기술적 한계로 이뤄지지 못했다.
공동연구팀은 기존 팀이 개발한 전뇌 투명화 기술(SHIELD) 및 초고속 전뇌 면역염색 기술(eFLASH)을 통해, 공간 공포 기억을 학습한 생쥐에서 기억의 학습과 회상 시 모두 활성화된 세포들을 뇌 전체에서 매핑했다. 이를 통해 공간 공포 기억을 저장하고 있을 확률이 높은 뇌 부위의 세포들을 생쥐 뇌 전체에서 찾아낼 수 있었다. 이후 해당 세포들을 광유전학적 방법으로 조절해 해당 세포들에 공간 공포 기억이 저장됐음을 확인함으로써, 공간 공포 기억을 저장하는 7개의 새로운 뇌 부위와 세포들을 연구팀은 찾아낼 수 있었다.
그렇다면 기억에 다양한 뇌 부위의 기억저장 세포들이 모두 필요한 것일까? 연구팀은 이를 확인하기 위해, 화학유전학 기법을 통해 다양한 뇌 부위의 기억저장 세포들을 한꺼번에 자극해 보았으며, 그 결과 뇌의 한 부위의 기억저장 세포를 자극했을 때와는 다르게, 자연적인 기억 회상에 가까운 기억의 완전한 회상이 유도됨을 확인했다. 이는 다양한 뇌 부위의 기억저장 세포들의 활성이 기억에 모두 필요함을 의미한다.
박영균 교수는 "이번 연구는 연구팀이 기존에 개발한 기술들에 힘입어 기억저장 세포의 매핑을 최초로 실현하고, 이를 통해 단일 기억이 다양한 뇌 부위 세포들에 흩어져 저장됨을 증명한 데 의의가 있다ˮ며, "이번 연구에서 밝혀진 기억저장 세포의 뇌 지도는, 각 뇌 부위의 세포 및 세포 간 상호작용이 기억에 있어 각각 어떠한 세부적인 기능을 하는지에 관한 연구를 촉진함으로써, 기억의 메커니즘에 대한 완전한 이해를 도울 수 있다ˮ고 말했다.
이번 연구 결과는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)'에 지난 4월 4일 자로 게재됐다(논문명: Brain-wide mapping reveals that engrams for a single memory are distributed across multiple brain regions)
2022.06.02
조회수 6029
-
생각만으로 정확하게 로봇팔 조종이 가능한 뇌-기계 인터페이스 개발
우리 대학 바이오및뇌공학과 정재승 교수 연구팀이 3차원 공간상에서 생각만으로 로봇팔을 높은 정확도 (90.9~92.6%)로 조종하는 `뇌-기계 인터페이스 시스템'을 개발했다고 23일 밝혔다.
정 교수 연구팀은 인공지능과 유전자 알고리즘을 사용해 인간의 대뇌 심부에서 측정한 뇌파만으로 팔 움직임의 의도를 파악해 로봇팔을 제어하는 새로운 형태의 뇌-기계 인터페이스 시스템을 개발했다. 뇌 활동만으로 사람의 의도를 파악해 로봇이나 기계가 대신 행동에 옮기는 `뇌-기계 인터페이스' 기술은 최근 급속도로 발전하고 있다. 하지만 손을 움직이는 정도의 의도 파악을 넘어, 팔 움직임의 방향에 대한 의도를 섬세하게 파악해 정교하게 로봇팔을 움직이는 기술은 아직 정확도가 높지 않았다.
하지만 연구팀은 이번 연구에서 조종 `방향'에 대한 의도를 뇌 활동만으로 인식하는 인공지능 모델을 개발했고, 그 결과 3차원 공간상에서 24개의 방향을 90% 이상의 정확도로 정교하게 해석하는 시스템을 개발했다.
게다가 딥러닝 등 기존 기계학습 기술은 높은 사양의 GPU 하드웨어가 필요했지만, 이번 연구에서는 축적 컴퓨팅(Reservoir Computing) 기법을 이용해 낮은 사양의 하드웨어에서도 인공지능 학습이 가능하여 스마트 모바일 기기에서도 폭넓게 응용될 수 있도록 개발해, 향후 메타버스와 스마트 기기에도 폭넓게 적용이 가능할 것으로 기대된다.
우리 대학 김훈희 박사(現 강남대 조교수)가 제1 저자로 참여한 이번 연구는 국제학술지 `어플라이드 소프트 컴퓨팅(Applied Soft Computing)' 2022년 117권 3월호에 출판됐다. (논문명 : An electrocorticographic decoder for arm movement for brain-machine interface using an echo state network and Gaussian readout).
뇌-기계 인터페이스는 사용자의 뇌 활동을 통해 의도를 읽고 로봇이나 기계에 전달하는 기술로서 로봇, 드론, 컴퓨터뿐만 아니라 스마트 모바일 기기, 메타버스 등에서의 이용될 차세대 인터페이스 기술로 각광받고 있다.
특히 기존의 인터페이스가 외부 신체 기관을 통해 명령을 간접 전달(버튼, 터치, 제스처 등)해야 하지만 뇌-기계 인터페이스는 명령을 뇌로부터 직접적 전달한다는 점에서 가장 진보된 인터페이스 기술로 여겨진다.
그러나 뇌파는 개개인의 차이가 매우 크고, 단일 신경 세포로부터 정확한 신호를 읽는 것이 아니라 넓은 영역에 있는 신경 세포 집단의 전기적 신호 특성을 해석해야 하므로 잡음이 크다는 한계점을 가지고 있다.
연구팀은 이러한 문제 해결을 위해 최첨단 인공지능 기법의 하나인 `축적 컴퓨팅 기법'을 이용해 뇌-기계 인터페이스에서 필요한 개개인의 뇌파 신호의 중요 특성을 인공신경망이 자동으로 학습해 찾을 수 있도록 구현했다.
또한 유전자 알고리즘(Genetic Algorithm)을 이용해 인공지능 신경망이 최적의 뇌파 특성을 효율적으로 찾을 수 있게 시스템을 설계했다. 연구팀은 심부 뇌파를 최종 해석하는 리드아웃(Readout)을 가우시안(Gaussian) 모델로 설계해 시각피질 신경 세포가 방향을 표현하는 방법을 모방하는 인공신경망을 개발했다. 이런 리드아웃 방식은 축적 컴퓨팅의 선형 학습 알고리즘을 이용해 일반적 사양의 간단한 하드웨어에서도 빠르게 학습할 수 있어 메타버스, 스마트기기 등 일상생활에서 응용이 가능해진다.
특히, 이번 연구에서 만들어진 뇌-기계 인터페이스 인공지능 모델은 3차원상에서 24가지 방향 즉, 각 차원에서 8가지 방향을 디코딩할 수 있으며 모든 방향에서 평균 90% 이상의 정확도 (90.9%~92.6% 범위)를 보였다. 또한 연구된 뇌-기계 인터페이스는 3차원 공간상에서 로봇팔을 움직이는 상상을 할 때의 뇌파를 해석해 성공적으로 로봇팔을 움직이는 시뮬레이션 결과를 보였다.
인공지능 시스템을 만든 제1 저자인 김훈희 박사는 "공학적인 신호처리 기법에 의존해 온 기존 뇌파 디코딩 방법과는 달리, 인간 뇌의 실제 작동 구조를 모방한 인공신경망을 개발해 좀더 발전된 형태의 뇌-기계 인터페이스 시스템을 개발해 기쁘다ˮ면서 "향후 뇌의 특성을 좀 더 구체적으로 이용한 `뇌 모방 인공지능(Brain-inspired A.I.)'을 이용한 다양한 뇌-기계 인터페이스를 개발할 계획이다ˮ라고 말했다.
이번 연구를 주도한 연구책임자 정재승 교수는 "뇌파를 통해 생각만으로 로봇팔을 구동하는 `뇌-기계 인터페이스 시스템'들이 대부분 고사양 하드웨어가 필요해 실시간 응용으로 나아가기 어렵고 스마트기기 등으로 적용이 어려웠다. 그러나 이번 시스템은 90%~92%의 높은 정확도를 가진 의도 인식 인공지능 시스템을 만들어 메타버스 안에서 아바타를 생각대로 움직이게 하거나 앱을 생각만으로 컨트롤하는 스마트기기 등에 광범위하게 사용될 수 있다ˮ고 말했다.
이번 연구 결과는 사지마비 환자나 사고로 팔을 잃은 환자들을 위한 로봇팔 장착 및 제어 기술부터, 메타버스, 스마트기기, 게임, 엔터테인먼트 애플리케이션 등 다양한 시스템에 뇌-기계 인터페이스를 적용할 가능성을 열어 줄 것으로 기대된다.
이번 연구는 한국연구재단 뇌 원천기술개발사업의 지원을 받아 수행됐다.
2022.02.24
조회수 12412
-
인공지능의 오랜 난제를 뇌 기반 인공지능으로 풀다
우리 대학 바이오및뇌공학과 이상완 교수(신경과학 인공지능 융합연구센터장) 연구팀이 뇌 기반 인공지능 기술을 이용해 인공지능의 난제 중 하나인 과적합-과소적합 상충 문제를 해결하는 원리를 풀어내는 데 성공했다고 5일 밝혔다.
이상완 교수와 김동재 박사(現 뉴욕대학교 박사후 연구원)가 주도하고 우리 대학 정재승 교수가 참여한 이번 연구는 `강화학습 중 편향-분산 상충 문제에 대한 전두엽의 해법'이라는 제목으로 국제 학술지 셀(Cell)의 오픈 액세스 저널인 `셀 리포트(Cell Reports)'에 지난해 12월 28일 字 온라인판에 게재됐다. (논문명: Prefrontal solution to the bias-variance tradeoff during reinforcement learning)
최근 인공지능 모델들은 다양한 실제 문제들에 대해 최적의 해법을 제시하지만, 상황 변화에 유동적으로 대응하는 부분에 있어서는 여전히 어려움을 겪고 있다. 기계학습에서는 이를 과소적합-과적합의 위험성 (underfitting-overfitting risk) 또는 편향-분산 상충 문제(bias-variance tradeoff)라 하며 오랫동안 연구됐지만, 실제 세계와 같이 상충 조건이 계속 변하는 상황에서의 명확한 해법은 아직 제안된 바가 없다.
반면 인간은 현재 주어진 문제에 집중하면서도(과소적합 문제 해결), 당면 문제에 과하게 집착하지 않고(과적합 문제 해결) 변하는 상황에 맞게 유동적으로 대처한다. 연구팀은 뇌 데이터, 확률과정 추론 모형, 강화학습 알고리즘을 이용해 인간의 뇌가 이 문제를 어떻게 해결하는지에 대한 이론적 틀을 마련하고 이로부터 유동적인 메타 강화학습 모델을 도출해냈다.
놀랍게도 인간의 뇌는 중뇌 도파민 회로와 전두엽에서 처리되는 `예측 오차'의 하한선(prediction error lower bound)이라는 단 한 가지 정보를 이용해 이 문제를 해결한다. 우리의 전두엽, 특히 복외측전전두피질은 현재 내가 사용하고 있는 문제 해결 방식으로 주어진 문제를 얼마나 잘 풀 수 있을지에 대한 기대치의 한계를 추정하고(예: `이렇게 풀면 90점까지는 받을 수 있어'), 변화하는 상황에 맞춰 최적인 문제 해결전략을 유동적으로 선택하는 과정 (예: `이렇게 풀면 기껏해야 70점이니 다르게 풀어보자')을 통해 과소적합-과적합의 위험을 최소화하게 된다.
이상완 교수 연구팀은 2014년 해당 전두엽 영역이 환경의 불확실성을 바탕으로 강화학습전략을 유동적으로 조절하는 데 관여한다는 사실을 처음 발견했고(`뉴런(Neuron)' 학술지에 발표), 2015년에는 인과관계 추론 과정에도 관여한다는 사실을 발견했다(`PLOS Biology' 학술지에 발표). 이어 2019년에는 해당 뇌 영역이 문제의 복잡도까지 고려할 수 있다는 사실을 발견했다(`네이처 커뮤니케이션즈(Nature Communications)' 학술지에 발표).
이러한 일련의 연구 결과들은 자신의 학습 및 추론 능력을 스스로 평가하는 인간의 메타 인지 능력을 보여주는 증거로, 이 능력을 바탕으로 인공지능이 풀기 어려워하는 현실 세계의 다양한 상충적 상황들을 풀어낼 수 있다는 `전두엽 메타 학습 이론'을 정립한 바 있다(`사이언스 로보틱스(Science Robotics)' 학술지에 발표). 이번 연구는 이 이론에 기반해 인공지능의 오랜 난제 중 하나인 과소적합-과적합 상충 문제를 실제로 풀어낸 최초의 사례로 평가된다.
연구를 통해 개발된 메타 강화학습 모델을 이용하면 간단한 게임을 통해 인간의 유동적 문제 해결 능력을 간접적으로 측정할 수 있다. 더 나아가 스마트 교육이나 중독과 관련된 인지 행동치료에 적용할 경우 상황 변화에 유동적으로 대처하는 인간의 문제 해결 능력 자체를 향상할 수 있을 것으로 기대된다. 차세대 인공지능, 스마트 교육, 인지 행동치료 등 다양한 분야에 파급력이 큰 원천 기술로 최근 국내 및 해외 특허 출원이 완료된 상태다.
연구를 주도한 제1 저자 김동재 박사는 "인간 지능의 특장점에 대한 이해가 얼마나 중요한지 보여주는 연구 중 하나ˮ라고 말했다. 연구 책임자인 이상완 교수는 "인공지능이 우리보다 잘 푸는 문제가 많지만, 반대로 인공지능으로 풀기 어려운 문제들이 우리에게는 정말 쉽게 느껴지는 경우들이 많다. 인간의 다양한 고위 수준 능력을 인공지능 이론 관점에서 형식화하는 연구를 통해 인간 지능의 비밀을 하나씩 풀어나갈 수 있을 것으로 기대된다ˮ라며 "이러한 뇌 기반 인공지능 연구는 인간의 지능을 공학적으로 탐구하는 과정으로 볼 수 있으며, 인간과 인공지능이 서로 도우며 함께 성장해 나갈 수 있는 명확한 기준점을 마련할 수 있을 것ˮ이라고 말했다. 이상완 교수는 뇌 기반 인공지능 연구의 독창성과 도전성을 인정받아 구글 교수 연구상과 IBM 학술상을 받은 바 있다.
연구팀은 과학기술정보통신부의 재원으로 정보통신기획평가원의 지원을 받아 설립한 KAIST 신경과학-인공지능 융합연구센터에서 기반 기술을 활용해 인간 지능을 모사한 차세대 인공지능 모델을 개발하고, 아울러 딥마인드, IBM 인공지능 연구소, MIT, 옥스퍼드 대학 등 국제 공동연구 협약 기관과 공동연구를 통해 기술의 파급력을 높여나갈 계획이라고 말했다.
한편 이번 연구는 삼성전자 미래기술육성센터, 과학기술정보통신부 정보통신기획평가원 및 한국연구재단의 지원을 받아 수행됐다.
2022.01.05
조회수 9405
-
학습 없이 자발적으로 발생하는 뇌 인지기능 원리 밝혀
우리 대학 바이오및뇌공학과 백세범 교수 연구팀이 학습을 전혀 거치지 않은 뇌 신경망에서 선천적인 인지 기능이 발생하는 원리를 규명했다고 30일 밝혔다.
이번 연구 결과는 동물들이 출생 직후 학습을 거치지 않은 상태에서도 기초적 인지 기능들을 수행할 수 있게 하는 `선천적 뇌 기능'에 대한 이해에 다가가는 기초를 마련했으며 `초기 뇌 신경망 인지 기능의 발생'에 대해 기존의 상식과 완전히 다른 시각을 제시한다.
또한 연구팀의 결과는 일반적인 인공지능 모델에서 기능을 발생시키기 위해서는 외부의 데이터 학습이 반드시 요구되는 것과 달리, 생물학적 뇌 신경망의 기능 발생과 진화는 확률적으로 생성되는 물리적 연결 구조에 의해 자발적으로 발생할 수 있다는 차별된 기저 원리를 제안한다.
연구팀은 인지과학 분야에서 활발히 연구돼 온 얼굴 인지 기능(face detection)에 초점을 두어 뇌의 시각 신경망을 모사한 인공신경망에서의 사물 인지 기능을 시뮬레이션했다. 이를 통해 모든 연결 가중치가 무작위로 정해지도록 초기화된 심층신경망이 전혀 학습을 거치지 않은 상태에서도 얼굴 이미지를 다른 사물 이미지와 구별할 수 있음을 발견했다.
연구팀은 이러한 무작위화 신경망에서 발생하는 얼굴 선택성 (face-selectivity)이 실제 동물 실험에서 관측되는 다양한 생물학적, 인지 행동적 특성들과 매우 유사한 양상을 보이는 것을 확인했다. 이는 이론적 모델 기반의 본 연구 결과가 충분한 생물학적 타당성을 가지며, 향후 뇌 신경망에서 나타나는 선천적 인지 기능의 핵심적 발생 원리를 설명하는 일반적인 이론으로 확장될 수 있음을 시사한다.
우리 대학 바이오및뇌공학과 백승대, 송민 박사과정이 공동 제 1저자로 참여한 이번 연구는 국제 학술지 `네이처 (Nature)'의 자매지 `네이처 커뮤니케이션스 (Nature Communications)' 12월 16일 字에 게재됐다. (논문명 : Face Detection in Untrained Deep Neural Networks)
인지 지능의 최초 발생에 관한 연구는 뇌신경과학, 인지과학과 인공지능 분야 모두에서 중요한 주제다. 특히, 별다른 학습 과정 없이 출생 직후부터 다양한 인지 기능을 수행할 수 있게 하는 뇌의 `선천적' 인지 기능은 데이터 입력을 통한 학습에 의존하는 인공신경망의 기능과 뚜렷이 구별되며, 이에 대한 이해는 생물학적 지능의 발생과 진화의 원리를 밝히는 데 결정적인 역할을 할 것으로 기대됐다.
또한 얼굴 인지 기능은 사회적 행동을 하는 다양한 동물 종의 어린 개체들에서 관측되며, 이 기능의 발생을 위해 외부 정보의 학습이 필수적인지는 학계에서 활발하게 논의돼왔다.
연구팀은 앞서 진행했던 연구를 토대로 구축한 신경망 기능 발생 이론에 기반해, 아무런 학습을 거치지 않은 계층적 신경망의 초기 피드 포워드 연결 구조를 통해 얼굴 인지 기능이 자발적으로 형성될 수 있을 것이라 가정했다. 이를 확인하기 위해 수행한 심층신경망 시뮬레이션에서 얼굴 이미지를 비롯한 단순 사물의 인식 기능은 학습을 전혀 거치지 않은 초기 무작위화 신경망에서 자발적으로 발생할 수 있음을 확인했다.
이러한 결과는 학습이 이루어지기 전, 신경망의 초기 구조가 갖춰진 시점에 이미 다양한 인지 기능이 발생할 수 있음을 보여주며, 뇌 과학의 오랜 화두인 지능 형성의 선천성 또는 후천성(nature vs. nurture) 논의와 관련해 자발적으로 발생하는 선천적 기능 발생에 대한 이해의 중요성을 강조한다.
백세범 교수는 "이번 연구는 뇌신경과학 연구의 가장 근본적인 질문 중 하나인 선천적인 인지 기능의 발생을 설명할 수 있는 최초의 이론을 제시해 생물학적 지능의 발생과 진화의 원리를 이해하는데 결정적인 단서를 제공할 것으로 기대된다ˮ며 "한편으로 데이터 학습 기반 인공지능 구현의 방법과 완전히 다른 관점의 생물학적 지능 구현 원리를 정립해 현재의 인공지능 개발의 상식과 완전히 다른 시각을 제공할 수 있을 것으로 기대된다ˮ고 언급했다.
한편 이번 연구는 한국연구재단의 이공분야기초연구사업 및 원천기술개발사업, KAIST 특이점교수 사업의 지원을 받아 수행됐다.
2021.12.31
조회수 8241
-
아동의 다언어 사용이 뇌 전체 연결망 향상에 미치는 영향 확인
우리 대학 바이오및뇌공학과 정용 교수 연구팀이 미국 예일대학교(Yale University) 심리학과 마빈 천(Marvin M. Chun) 교수 연구팀과 공동연구를 통해 아동기의 외국어 구사 여부가 인지능력을 향상하고 뇌 연결망에 변화를 가져온다고 10일 밝혔다.
연구팀은 미국 국립 보건원(National Institutes of Health, NIH)의 청소년 뇌 인지 발달 연구(the Adolescent Brain Cognitive Development, ABCD Study) 데이터를 사용해 발달단계에 있는 9-10세 아이들의 인지기능 점수와 기능적 자기공명영상(functional magnetic resonance imaging, fMRI)을 분석했다. 모국어 외 다른 언어를 추가로 사용하는 아이들은 모국어만 사용하는 아이들에 비해 기억을 측정하는 인지 과제에서 높은 점수를 보였다. 또한 다언어 사용은 아이들의 뇌 전체 연결망에도 영향을 주는 것으로 확인됐다.
바이오및뇌공학과 권영혜 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `미국국립과학원회보(Proceedings of the National Academy of Sciences of the United States of America, PNAS)' 11월 118권 49호에 출판됐다. (논문명 : Predicting multilingual effects on executive function and individual connectomes in children: an ABCD Study).
뇌는 과제를 수행할 뿐만 아니라 쉬고 있을 때도 특정 영역들이 활성화된다. 기능적 자기공명영상(fMRI)을 통해 활성화되는 각 영역을 관찰할 수 있고, 이 영역들이 서로 어떻게 연결이 돼 있는지 기능적 뇌 연결망(functional connectivity)을 계산할 수 있다.
뇌 모든 영역 간의 연결 패턴을 나타내는 뇌 전체 연결망(whole-brain functional connectivity, connectome)은 사람마다 다르고, 그 사람의 나이, 지능, 인지기능 등 그 사람만의 고유한 특성을 내포하고 있다고 알려져 최근 뇌 과학 분야에서 활발히 연구되고 있다.
연구팀은 뇌의 특정 영역에 국한하지 않고 뇌 전체의 연결망에 초점을 맞춰, 여러 언어를 하는 아이들과 하나의 언어만 사용하는 아이들이 서로 다른 뇌 전체 연결망을 가지는 것을 관찰했다. 기억 관련 과제를 수행할 때 다언어 사용 아이들은 단일언어 사용 아이들에 비해 뇌 후두엽(occipital lobe)과 피질하 영역(subcortical area)간 강한 연결망을 보였다. 아이들이 아무 과제를 수행하지 않는 휴지기(resting state)에도 두 그룹 간 차이가 관찰됐는데, 다언어 사용 아이들에게서 뇌 후두엽과 전전두엽(prefrontal cortex)간 강한 연결성을 보였다.
더 나아가 연구팀은 기계학습을 통해 아이들이 기억 관련 과제를 수행할 때와 휴지기일 때 나타나는 뇌 전체 연결망만으로 그 아이가 여러 언어를 사용하는지 한 언어를 사용하는지를 성공적으로 예측할 수 있었다. 또한 다언어 사용 아이들이 기억 관련 과제를 수행할 때 관찰되는 기억 관련 연결망만으로 그 아이들이 해당 과제에서 어떤 점수를 얻었는지 예측할 수 있었다. 단일 언어사용 아이들에게서는 이러한 현상이 발견되지 않았는데, 이는 다언어 사용 아이들의 뇌 전체 연결망이 그들의 행동과 더 밀접한 관계를 맺고 있다는 것을 시사한다.
연구팀은 이번 연구를 통해 발달단계에 있는 9-10세 아이들의 다언어 사용 여부가 뇌 전체 연결망에 변화를 주는 것을 확인했다. 이 연구를 바탕으로 다언어 사용의 영향이 발달단계를 거치며 성인이 될 때까지 어떻게 변화하는지 이해하는 데 도움이 될 것으로 기대한다. 더 나아가 다언어 사용은 알츠하이머와 같은 퇴행성 뇌질환에 동반되는 인지기능 저하를 방어하는 뇌인지 예비능(cognitive reserve)을 가져오는데, 이 현상을 연구하는 데 도움이 될 것으로 기대된다.
제1 저자인 권영혜 박사과정은 "성인보다 언어사용 기간이 짧은 9-10세 아이들에게서도 여러 언어의 사용이 인지기능과 뇌 연결 패턴에 영향을 주는 것을 확인하였다ˮ 라며 "어렸을 때부터 형성된 이러한 차이가 시간이 흐르면서 어떠한 형태로 자리 잡아 성인이 되었을 때 그리고 노인이 되어서까지 영향을 주는지를 이해하는 데 도움이 되길 바란다ˮ 라고 말했다.
이번 연구는 한국연구재단, 산업통상자원부, 미국 국립 보건원 지원을 받아 수행됐다.
2021.12.10
조회수 8560
-
사물인터넷 기반 다수의 뇌 신경회로 동시 원격제어 시스템 개발
우리 연구진이 인터넷을 이용해 뇌 신경회로를 원격 제어할 수 있는 무선 네트워크 기술을 개발했다. 이 기술을 활용하면 시간과 장소에 구애받지 않고 목표 동물의 뇌 신경회로를 정교하게 제어할 수 있다.
우리 대학 전기및전자공학부 정재웅 교수 연구팀이 미국 워싱턴 대학교(Washington University in St. Louis), 미국 콜로라도 대학교(University of Colorado Boulder) 연구팀과의 공동 연구를 통해 사물인터넷 기반의 뇌 신경회로 원격제어 시스템을 개발했다고 8일 밝혔다.
이번 개발 기술은 많은 시간과 인력이 있어야 하는 뇌 연구 및 다양한 신경과학 연구를 자동화시켜 다양한 퇴행성 뇌 질환과 정신질환의 발병 기전 규명과 치료법 개발의 가속화에 크게 기여할 것으로 기대된다. 또한, 먼 거리에 있는 환자의 질환을 원격으로 치료하는 원격 의료 구현에도 활용될 수 있을 것으로 예상된다.
우리 대학 전기및전자공학부 라자 콰지(Raza Qazi) 연구원과 김충연 박사과정, 그리고 워싱턴대 카일 파커(Kyle E. Parker) 연구원이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 바이오메디컬 엔지니어링(Nature Biomedical Engineering)' 11월 25일 字에 게재됐다. (논문명 : Scalable and modular wireless-network infrastructure for large-scale behavioural neuroscience)
전 세계적으로 고령화 시대에 접어드는 현 상황에서 알츠하이머병, 파킨슨병과 같은 뇌 질환들로 고통받는 환자 수가 급증하고 있다. 이에 따라 근본적인 뇌 질환 치료법을 개발하기 위해 뇌 기능 및 뇌 질환 발병기전을 규명하기 위한 뇌 연구가 매우 시급하지만, 뇌 연구의 진행 속도가 뇌 질환 환자의 증가 속도를 따라잡지 못하고 있어서 뇌 연구의 효율성을 극대화하기 위한 새로운 기술 개발이 절실히 요구된다.
기존 뇌 연구에 사용되던 대부분의 신경과학 장치들은 외부 장비와 선으로 연결된 유선 방식으로 구동됐지만, 이러한 방식은 피실험 동물들을 물리적으로 제약할 뿐 아니라 실험 진행자의 직접적인 개입이 불가피해 피실험 동물의 행동에 영향을 주는 `관찰자 효과'를 발생시켜서 정확한 뇌 연구 결과 도출을 어렵게 만든다. 아울러 모든 과정에서 실험자의 직접적인 조작이 요구돼 연구에 많은 시간과 인력, 비용이 발생하게 한다.
연구팀은 사물인터넷(Internet of Things; IoT) 기술을 접목해 다양한 다수의 뇌 이식용 기기들을 인터넷 원격으로 동시 제어하거나 예약된 스케줄에 따라 기기들이 자동으로 구동되도록 하는 무선 네트워크 시스템을 개발했다. 이를 통해 시간과 장소에 상관없이 목표 동물들의 특정 뇌 회로를 원격 제어하는 것을 가능하게 했다. 이 시스템은 사용자가 인터넷 웹사이트 기반의 무선 네트워크 플랫폼을 통해 뇌 이식용 장치의 원격제어, 자동화된 데이터 수집, 뇌 회로 제어 스케줄링 등의 다양한 기능을 손쉽게 구현할 수 있도록 설계됐다.
연구팀은 이 시스템의 뇌 신경회로 자동 원격제어 기능을 사용해 자체 제작한 무선 장치(뉴럴 임플란트)가 이식된 수십 마리의 쥐의 뇌 신경회로를 광유전학적 방법으로 사람의 개입 없이 정교하게 원격 자동 제어함으로써, 완전 자동화된 뇌 연구 실험에 적용 가능함을 입증했다. 이 실험을 통해 쥐의 먹이 섭취량, 활동량, 그리고 다른 쥐들과의 사회적 상호작용 빈도를 성공적으로 조절함으로써, 예약이 설정된 대로 다수 동물의 뇌 신경회로를 동시에 독립적으로 원격 제어할 수 있음을 보였다.
정 교수는 "개발된 원격제어 기술은 동물을 활용한 뇌 연구에 필요한 인간개입을 최소화함으로써 뇌 연구의 효율을 높이고 실험의 불확실성을 크게 줄일 수 있을 것ˮ이라며 "이 기술은 뇌 연구를 넘어, 많은 동물 실험을 필요로 하는 신약 개발, 병원 방문 없이 뇌 질환 및 다양한 질병을 치료하기 위한 원격 의료 구현에도 적용될 수 있을 것이다ˮ라고 말했다.
연구팀은 이 기술이 더욱 광범위하게 뇌 과학 연구 및 치료에 사용될 수 있게 하도록, 인공지능 기반의 실시간 뇌파 원격 모니터링 기술을 개발해 본 시스템과 접목하기 위한 연구를 계획하고 있다.
한편 이번 연구는 KAIST 글로벌 특이점 연구사업, 한국연구재단이 추진하는 중견연구자지원사업 및 바이오의료기술개발사업, 미국 국립보건원의 지원을 받아 수행됐다.
2021.12.08
조회수 9182