-
김대수 교수, 파킨슨병 신경회로 원리 규명
김 대 수 교수 〉
우리 대학 생명과학과 김대수 교수 연구팀이 기저핵 신호물질이 타겟신경을 억제하는 것이 아니라 흥분시킴으로써 파킨슨병의 운동 이상을 유발한다는 사실을 규명했다.
현재 학계는 드롱(Delong) 박사 연구팀이 1980년대에 제시했던 운동신호 억제이론을 파킨슨병 치료연구에 활용하고 있다. 이 이론은 파킨슨병 환자의 뇌에서 분비되는 기저핵 억제성 신호물질이 뇌의 운동신경을 억제함으로써 운동기능을 방해한다고 설명한다. 그러나 이 학설은 파킨슨 환자의 복잡한 증상을 설명하는 데에 한계가 있었다.
연구팀은 기존 학설의 핵심 내용을 뒤흔들었다. 연구팀은 광유전학 기법으로 생쥐 뇌의 기저핵 신경을 빛으로 자극해서 파킨슨병 환자와 유사한 증상을 유발했다. 기저핵의 억제성 신호를 받은 시상핵 신경들이 일시적으로 억제신호에 순응하여 억제되는 듯 했으나 이후 반발성 흥분을 보이는 것을 확인했다.
연구팀은 또한 반발성 흥분을 억제했을 때 다양한 파킨슨 증상을 보이던 파킨슨병 생쥐가 완전히 회복되는 것을 확인했다. 기저핵의 작용에 의해 시상핵 신경이 억제되는 것이 아닌 흥분함으로써 운동질환을 유도한 것이다. 반발성 흥분을 약물이나 빛으로 억제함으로써 파킨슨병 증상을 제거할 수 있는 가능성이 열렸다.
김대수 교수는 “이번 연구를 통해 반발성 흥분을 조절함으로써 파킨슨병 증상을 억제할 수 있는 기작이 규명됐다”며 “향후 도파민 세포가 이미 사라져 회복이 어려운 파킨슨병 환자를 치료할 수 있는 차세대 치료법이 가능할 것”이라고 연구의 의의를 설명했다. 이 연구는 과학기술정보통신부․한국연구재단 기초연구사업(개인연구) 지원으로 수행됐으며, 신경과학 분야 국제학술지인 뉴런(Neuron) 8월 30자 논문으로 게재됐다.
□ 그림 설명
그림1. 기저핵 억제성 입력이 파킨슨 증상을 나타내는 모식도
그림2. 광유전학적 기법으로 파킨슨 증상회복 성공
2017.09.26
조회수 13596
-
김호민 교수, 뇌의 시냅스 구조 및 기능 조절 단백질 구조 규명
< 김 호 민 교수 〉
우리 대학 의과학대학원 김호민 교수와 DGIST 고재원 교수 공동 연구팀이 신경세포 연결을 조절하는 핵심단백질인 MDGA1의 3차원 구조를 최초로 규명해 시냅스 발달을 조절하는 원리를 제시했다.
이번 연구 내용은 신경생물학 분야 국제학술지 ‘뉴런(Neuron)’ 6월 21일자 Issue Highlight에 게재됐다.
뇌는 많은 신경세포로 이뤄져 있고 두 신경세포가 연접하면서 형성되는 시냅스라는 구조를 통해 신호를 전달하면서 그 기능을 수행한다.
대표적인 시냅스 접착 단백질로 알려진 뉴롤리진(Neuroligin)과 뉴렉신(Neurexin)은 상호작용을 통해 흥분성 시냅스(excitatory synapse)와 억제성 시냅스(inhibitory synapse)의 발달 및 기능을 유지한다.
연구팀은 뉴롤리진(Neuroligin)과 뉴렉신(Neurexin)의 결합을 조절하는 MDGA1의 3차원 구조와 억제성시냅스(inhibitory synapse)의 형성을 저해하는 원리를 최초로 규명했다.
김 교수는 “단백질 구조생물학과 신경생물학의 유기적인 협력 연구를 통해 시냅스 발달 조절에 핵심적인 MDGA1의 구조와 작용 메커니즘을 규명했다는데 의미가 있다”며 “시냅스 단백질들의 기능 이상으로 나타나는 다양한 뇌정신질환의 발병 메커니즘을 폭넓게 이해하는 밑거름이 될 것이다. 향후 뇌신경·뇌정신질환 치료제 개발에 활용될 수 있을 것으로 기대된다.”고 말했다.
이번 연구는 미래창조과학부 기초연구지원사업(개인연구)의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 시냅스 조절하는 핵심단백질 구조 최초 규명
그림2. 시냅스 단백질 MDGA1에 의해 조절되는 억제성 시냅스 형성 분자 메커니즘
2017.07.11
조회수 19060
-
증강현실로 스마트시대의 미래를 열다!
영화 ‘마이너리티 리포트’에서 허공에 화면이 뜨고 손짓으로 컴퓨터를 조작하는 모습은 단지 상상 속 미래였다. 하지만 이런 일들이 곧 실현될 것으로 보인다. 우리 학교 전기및전자공학과 유회준 교수 연구팀은 세계 최초로 증강현실 전용 프로세서가 내장된 고성능·초저전력 머리 장착형 디스플레이(HMD, Head Mount Display) ‘케이 글래스(K-Glass)’를 개발했다. 연구팀의 전용 프로세서 개발로 기존 상용칩을 활용한 구글 글래스 보다 속도는 30배 이상 빨라지면서 동시에 사용시간은 3배 이상 길어지는 등 실제 사용자에게 불편함이 많이 줄어 증강현실시대를 앞당길 것으로 기대된다. 증강현실이란, 현실 세계와 이를 적절히 변형한 가상 미디어 콘텐츠가 결합한 것이다. 예를 들면, 동화책에 그려진 공룡 그림을 쳐다보면 3차원 공룡이 책 위로 솟아올라 보이며 방향을 바꾸면 공룡의 다른 쪽이 보이게 하는 기술이다. 삼성, 마이크로소프트 등에서는 관련 특허를 출원하고 있고, 특히 구글에서는 2012년 5월 증강현실을 위한 프로젝트 글래스(Project Glass)를 개발했다. 하지만 자연스러운 증강현실을 구현하기에는 성능이 만족할만한 수준은 아니었다. 구글의 기술은 바코드와 같은 표식을 인식해 해당 물체에 가상 컨텐츠를 첨가하는 방식의 증강현실을 구현하는 방식이기 때문에 표식을 설치하기 힘든 야외에는 증강현실을 구현할 수 없는 큰 단점이 있다. 게다가 2시간 정도만 사용할 수 있을 정도로 전력 소비량이 많아 휴대폰과 같은 모바일 기기처럼 일상생활에서 항상 착용하지는 못하는 실정이었다.연구팀이 개발한 K-Glass의 ‘증강현실 전용 프로세서’는 인간 뇌의 시각 집중 모델(Visual Attention Model)에 영감을 받아 제작돼 저전력·고성능을 동시에 달성했다. 시각 집중 모델은 보고 있는 화면에서 의미 있고 중요한 부분을 배경과 같이 인식에 무의미한 영역들로부터 분리한다. 이에 따라 불필요한 연산을 제거할 수 있어 복잡한 증강현실 알고리즘의 연산 속도를 획기적으로 증가시킬 수 있다는 장점이 있다. 또 전력소모를 줄이기 위해 ‘뉴런의 신경망’을 모방한 네트워크 구조를 적용했다. 프로세서 내부에서는 데이터가 활발하게 돌아다니는데 데이터 쏠림현상에 의해 전송에 병목이 발생할 수가 있는데 연구팀은 뉴런의 신경망 구조를 활용해 프로세서 내 데이터를 전송 및 네트워크 병목현상을 효과적으로 극복했다. 개발된 증강현실 전용 프로세서는 65nm(나노미터) 공정에서 제작돼 32㎟ 면적에 1.22TOPS(Tera-Operation per Second, 1초당 1012회 연산속도) 성능을 보인다. 또한 30fps(초당프레임)/720p(픽셀) 비디오 환경의 실시간 동작에서 1.57TOPS/W(와트)의 높은 에너지 효율을 나타내 장시간 동작할 수 있다. 유회준 교수는 “스마트 폰의 뒤를 잇는 차세대 모바일 디바이스로써 HMD에 대한 관심이 급증하고 있다”며 “투과형 HMD는 증강현실을 구현함에 따라 교육 엔터테인먼트 등의 분야에 큰 변화를 가져올 것”이라고 말했다. 또 “K-Glass는 구글의 프로젝트 글래스 등 기존 HMD의 낮은 컴퓨팅 성능을 획기적으로 향상시키는 것은 물론 초저전력 소비를 달성하는데 성공, 미래 모바일 IT분야에서 혁신적인 변화를 주도할 것”이라고 연구 의의에 대해 말했다. 유회준 교수 지도하에 김경훈 박사과정 학생이 주도해 개발한 K-Glass는 이달 미국 샌프란시스코에서 개최된 세계적 반도체 학술대회 ISSCC(국제고체회로설계학회)에서 발표돼 커다란 주목을 받았다. K-Glass 데모 동영상 유튜브 링크 :http://www.youtube.com/watch?v=fzQpSORKYr8&feature=c4-overview&list=UUirZA3OFhxP4YFreIJkTtXw
2014.02.20
조회수 17186