-
인공지능으로 배터리 원소, 충방전 상태 인식
국제공동연구진이 인공지능 학습을 통해 배터리의 표면 형상만 보고 각 원소의 함량 그리고 충·방전 횟수에 대한 정보를 높은 정확도로 알아내는 영상인식 기술을 개발하여 화제다.
우리 대학 신소재공학과 홍승범 교수가 한국전자통신연구원(ETRI), 미국 드렉셀대학과 공동연구를 통해 다양한 조성과 각기 다른 충·방전 사이클의 NCM 양극재 주사전자현미경 사진을 합성곱 신경망* 기반 인공지능에 학습시켜 주요 원소 함량과 충·방전 상태를 99.6%의 높은 정확도로 맞추는 방법론을 세계 최초로 개발했다고 2일 밝혔다.
*합성곱 신경망(콘볼루션 신경망, Convolutional Neural Network, CNN): 시각적 영상을 분석하는 데 사용되는 다층의 피드-포워드적인 인공신경망의 한 종류이다.
연구팀은 반도체 공정에서는 웨이퍼의 불량 검수를 위해 주사전자현미경(SEM)을 사용하는 반면 배터리 공정에서는 그런 경우가 드물고 연구 현장에서만 입자의 크기 분석을 위해 SEM을 활용하고, 열화된 배터리 소재의 경우 입자가 깨지고 부서지는 형상으로부터 신뢰성을 예측하는 것에 착안했다. 연구팀은 반도체 공정에서와 같이 배터리 공정도 자동화된 SEM으로 양극재 표면을 검수해서 원하는 조성대로 합성이 되었는지 수명은 신뢰성 있게 나올 것인지를 확인해 불량률을 줄일 수 있다면 획기적일 것으로 판단했다.
연구진은 자율주행차에 적용가능한 합성곱 신경망 기반 인공지능에 배터리 소재의 표면 영상을 학습시켜서 양극재의 주 원소 함량과 충·방전 사이클 상태를 예측할 수 있게 했다. 이런 방법론이 첨가제가 들어간 양극재에도 적용가능한 지 확인한 결과 함량은 상당히 정확하게 예측하는 반면 충·방전 상태는 정확도가 낮다는 단점을 알게 됐다. 이에 연구팀은 향후 다양한 공정을 통해서 만든 배터리 소재의 형상을 학습시켜 차세대 배터리의 조성 균일성 검수 및 수명 예측에 활용할 계획이다.
연구를 이끈 홍승범 교수는 “이번 연구는 세계 최초로 마이크론 스케일의 주사전자현미경 사진의 소재 구조 데이터를 통해 주 원소 함량과 충·방전 상태를 빠르고 정확하게 예측할 수 있는 인공지능 기반 방법론을 개발한 데 의의가 있고 이번 연구에서 개발된 현미경 영상 기반 배터리 소재의 함량 및 상태 감별 방법론은 향후 배터리 소재의 성능과 품질을 향상하는 데 중요한 역할을 하게 될 것으로 기대된다”고 전망했다.
한편, 이번 연구는 공동 제1 저자인 신소재공학과 졸업생 오지민 박사와 염지원 박사와 공동저자인 ETRI 김광만 박사와 미국 드렉셀 대학교 아가르(Agar) 교수가 참여하였고, 한국연구재단(2020M3H4A3081880, RS-2023-00247245), KAIST 글로벌특이점 사업의 지원 및 미국 연구진과의 국제공동연구를 통해 수행됐으며, 국제 학술지 ‘엔피제이 컴퓨테이셔날 머티리얼즈(npj computational materials)’에 지난 5월 4일 자 출판됐다. (논문 제목: Composition and state prediction of lithium-ion cathode via convolutional neural network trained on scanning electron microscopy images)
2024.07.02
조회수 2369
-
잡아당겨도 고화질 유지하는 디스플레이 개발
평면에 국한됐던 디스플레이 기술이 곡면형 모니터나 폴더블 휴대폰 화면처럼 다양한 형태로 진화되고 있는데, 이보다 더 나아가 잡아당겨도 동작 가능한 신축형 디스플레이의 핵심 기술이 개발되어 화제다.
우리 대학 전기및전자공학부 유승협 교수 연구팀이 동아대 문한얼 교수, 한국전자통신연구원(ETRI) 실감소자 연구본부와의 협력을 통해 세계 최고 수준의 높은 발광면적비를 가지며 신축 시에도 해상도가 거의 줄지 않는 신축 유기발광다이오드(organic light-emitting diode, OLED) 디스플레이를 구현하는 데 성공했다고 11일 밝혔다.
공동연구팀은 유연성이 매우 뛰어난 초박막 OLED를 개발하여 이의 일부 발광 면적을 인접한 두 고립 영역 사이로 숨겨 넣는 방법으로, 신축성과 높은 발광 밀도를 동시에 확보하는 데 성공했다. 이렇게 숨겨진 발광 영역은 신축 시 그 모습을 점차 드러내며 발광 면적비의 감소를 보상하는 메커니즘을 가능케 했다.
기존의 신축형 디스플레이는 고정된 단단한 발광 부분을 이용하여 성능을 확보하면서, 굽혀진 모양의 연결부를 통해 신축성을 확보하는 경우가 일반적이다. 그런데 이 경우 빛을 내지 않는 굽힘 모양 연결부로 인해, 전체 면적에서 발광면적이 차지하는 비율이 낮은 한계점이 있다. 특히, 신축시에는 늘어난 굽힘 모양 연결부가 차지하는 면적이 더욱 커지면서 발광면적 비율이 한층 더 감소하는 문제가 있다.
공동연구팀은 제안된 구조체를 통해 신축 전 발광면적비가 100%에 근접하는 최고 수준을 달성했으며, 30%의 시스템 신축 후 발광면적비 또한 단지 10% 감소하는 플랫폼을 구현했다. 이는 같은 변형하에서 기존 플랫폼이 60% 수준의 높은 발광면적비 감소를 보이는 것과 대조적인 결과다. 또한 본 플랫폼은 반복 동작 및 다양한 외력 하에서도, 강건하게 동작하는 기계적 안정성을 보였다.
공동연구팀은 구형 물체, 실린더, 인체 부위와 같은 곡면에서 안정적으로 동작해, 풍선의 팽창이나 관절의 움직임 등을 수용할 수 있는 웨어러블 및 자유곡면에 부착할 수 있는 광원에 대한 응용성을 확인했으며, 숨겨진 발광영역의 독립적 구동을 통해 신축 시 저감되는 해상도 보상이 가능한 미래 디스플레이의 가능성을 확인하였다.
유승협 교수는 “이미 우리는 폴더블 휴대폰이나 곡면형 모니터 같이 더 이상 평면이 아닌 디스플레이를 쉽게 볼 수 있는 시대에 살고 있는데, 미래에는 디스플레이의 형태가 더욱 다양해지면서 궁극적으로 늘려도 동작하는 신축형 디스플레이 기술로 확장될 것으로 기대된다”면서 “이번에 개발된 기술은, 우수한 성능과 안정성이 확보된 OLED 기술을 그대로 활용하면서도 기존 신축형 디스플레이의 난제를 극복하는 방법을 제시한 것으로서, 신축형 디스플레이의 제품화를 더욱 가속화하는 계기가 되기를 희망한다”고 말했다.
유승협 교수 연구실의 이동균 박사(現 서울대학교 연수연구원)가 제1 저자로 수행한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈 (Nature Communications)’ 2024년 6월 5일자 게재됐으며 (논문명: Stretchable OLEDs based on a hidden active area for high fill factor and resolution compensation, DOI:: 10.1038/s41467-024-48396-w), 미국의 전기전자기술자협회 (Institute of Electrical and Electronics Engineers, IEEE)의 매거진인 ‘IEEE Spectrum’에 의해 온라인 뉴스로 소개되기도 하였다.
이번 연구는 한국연구재단 선도연구센터 사업(인체부착형 빛 치료 공학연구센터) 및 한국전자통신연구원 연구운영비지원사업(ICT 소재·부품·장비 자립 및 도전 기술 개발)의 지원을 받아 수행됐다.
2024.06.11
조회수 3442
-
지질 뗏목의 원리 밝혀 질병 치료에 희소식
지질 뗏목은 세포막 간 융합, 신호 전달, 바이러스 침투 등 세포 기능과 질병 발병의 핵심 과정에 중요한 역할을 한다. 한국 연구진이 지금까지 알려지지 않았던 지질 뗏목의 정렬 원인과 그 조절 메커니즘을 밝혀내어 세포막 간 상호작용을 조절하여 질병 치료에 새로운 접근법을 제공할 수 있을 것으로 기대된다.
우리 대학 바이오및뇌공학과 최명철 교수팀이 고등과학원(원장 최재경) 현창봉 교수팀, 포항가속기연구소(소장 강흥식) 이현휘 박사와 공동으로 세포막 간의 상호작용을 매개하는 지질 뗏목(Lipid Raft)의 정렬 현상의 원리를 최초로 규명했다고 5일 밝혔다. 세포 융합, 바이러스 침투, 세포 간 신호 전달 등 다양한 세포막 간의 상호작용을 조절할 수 있는 핵심 기전을 밝힌 것이다.
세포막(Cell membrane)은 세포의 내부와 외부를 구분하는 얇고 유연한 막으로, 지질 이중층(lipid bilayer)으로 구성돼 있다. 세포막에는 수많은 막단백질(membrane proteins)이 존재하는데, 이들은 세포가 외부 환경과 소통할 수 있는 창구 기능을 한다.
지질 뗏목은 세포막의 특정 영역으로서, 높은 유동성을 가지는 세포막의 다른 부분들과는 달리 매우 낮은 유동성을 가지며, 기능적으로 연관된 막단백질들을 안정된 뗏목 안으로 모아 효율적인 상호작용을 가능하게 한다. 세포막을 바다로, 막단백질을 사람으로 비유하자면, 망망대해에서 멀리 떨어져 헤엄치는 사람들끼리는 서로 의사소통하기 어렵지만, 이들을 한 뗏목 위에 모두 태워 놓으면 서로 쉽게 대화할 수 있는 것과 비슷하다.
연구팀은 지질 뗏목 위에 존재하는 막단백질 중 많은 수가 세포막 간의 상호작용, 즉 두 세포막이 서로 생체신호를 주고받거나, 단백질을 통해 결합하거나, 두 막이 하나로 합쳐지는 등의 작용에 관여한다는 점에 주목했다.
연구팀은 두 세포막 간의 거리가 지질 뗏목의 정렬을 조절하는 핵심 요인일 것이라는 가설을 세우고, 세포막을 여러 겹 쌓아 놓은 구조의 지질 다중막(lipid multilayer)을 재구성해 이 가설을 검증했다. 이때 지질 뗏목들은 단순히 정렬만 되는 것이 아니라, 각각의 지질 뗏목의 크기가 커지면서 보다 안정된 구조를 형성했다. 두 세포막 사이의 거리가 지질 뗏목의 정렬과 크기를 조절하는 핵심 스위치인 것을 밝혀낸 것이다.
연구팀은 분자동역학(molecular dynamics) 시뮬레이션*을 통해 물 분자층을 분석한 결과, 지질 뗏목들이 정렬된 상태가 정렬되지 않은 상태보다 불안정한 수소결합 층의 부피가 작기 때문에 전체 시스템의 에너지를 최소화하기 위해 지질 뗏목이 자연적으로 정렬되는 것을 밝혀냈다.
*분자동역학 시뮬레이션: 분자 간 상호작용이 주어졌을 때 운동 방정식을 수치적으로 풀어 구조와 동적 과정을 해석하는 방법
최명철 교수는 “지질 뗏목이 세포막 간의 상호작용에 관여한다는 사실은 잘 알려져 있지만, 어떤 원리로 상호작용을 매개하는지는 아직 베일에 싸여 있었다”며, “이번 논문은 세포막 간의 거리가 지질 뗏목의 정렬, 나아가 세포막 사이의 상호작용을 조절하는 핵심 스위치임을 밝혀내어 생명 현상의 바탕이 되는 물리적 환경의 중요성을 재조명하는 이정표적 연구”라고 연구의 의의를 설명했다.
최 교수는 또한 “특히 물 분자의 수소결합이 지질 뗏목의 정렬을 매개하는 중요한 요소임을 보여주었는데, 이는 우리 몸의 약 70%를 차지하는 물이 생명 현상이 일어나는 무대에서 단순한 조연이 아닌 주연으로 활약할 수 있음을 보여준다”고 강조했다. 이어 최 교수는 “지질 뗏목을 모사하는 구조는 현재 생체 센서 등에 활발하게 활용되고 있으며, 이번에 발견한 세포막 사이의 거리라는 스위치를 통해 보다 다양한 기능을 가진 생체 센서들이 개발될 수 있는 공학적 토대도 제공할 것이다”라고 기대감을 내비쳤다.
우리 대학 이수호 박사와 고등과학원 박지현 박사가 공동 제1 저자로, 고등과학원 현창봉 교수와 KAIST 최명철 교수가 공동 교신저자로 참여한 이번 연구 결과는 국제학술지 ‘미국화학회지(Journal of American Chemical Society)’에 5월 22일 字 표지논문(supplementary journal cover)으로 게재됐다. (논문명: Water Hydrogen-Bond Mediated Layer by Layer Alignment of Lipid Rafts as a Precursor of Intermembrane Processes)
한편 이번 연구는 한국연구재단, 보건복지부, KAIST의 지원을 받아 수행됐다.
2024.06.05
조회수 3313
-
식이장애 환자의 건강한 다이어트를 유도하다
최근 SNS와 다양한 컴퓨터 플랫폼에 각종 음식 관련 콘텐츠가 제공되며 인기를 얻고 있다. 하지만 누군가에게는 '먹는 행위'가 자연스러움에 반해, 식이장애를 앓는 사람들은 건강하지 않은 식습관의 매혹에 매일 지속해서 고군분투한다. KAIST 연구팀이 식이장애를 앓는 사람들을 위해 모바일과 개인 컴퓨터에서 유해한 디지털 음식 콘텐츠 및 먹방 ASMR 등을 차단하는 시스템(FoodCensor)을 개발해서 화제다.
우리 대학 전기및전자공학부 이성주 교수 연구팀이 지난 5월 11일부터 5월 16일에 미국 하와이에서 열린 세계컴퓨터연합회(ACM) 주최로 진행된 컴퓨터 인간 상호작용 학술대회(International Conference on Human-Computer Interaction, 이하 CHI)에서 식이장애 환자들의 무분별한 디지털 음식 콘텐츠 소비로 인한 악영향을 방지하기 위한 실시간 개입 시스템 논문으로 최우수 논문(Honorable Mention)상을 받았다고 20일 밝혔다.
이 시스템은 인간 심리학의 두 체계 이론(Dual Systems Theory)에서 영감을 받아, 소셜 미디어 사용자가 디지털 음식 콘텐츠를 소비할 때 더 의식적으로 평가한 후에 시청에 관한 결정을 내릴 수 있도록 한다.
디지털 음식 콘텐츠의 시각적 및 청각적 자극은 체계 1*을 자극해 사용자의 자동적인 반응(반사적인 콘텐츠 시청 등)을 유발할 수 있다. 하지만 본 시스템은 실시간으로 음식 콘텐츠를 가리고 음소거 함으로써 이러한 자동적인 반응을 차단하고, 대신 사용자에게 의식적인 콘텐츠 선택 및 소비를 위한 질문을 제공함으로써 체계 2**를 활성화해 사용자가 더 의식적이고 건강한 콘텐츠 소비를 할 수 있도록 돕는다.
*체계 1: 빠르고 자동으로 작용하는 체계로, 우리가 의식적으로 고려하지 않고도 일상적인 상황에 대응하게 한다. 예를 들어, 길을 걷다가 갑자기 차가 다가오면 빠르게 물러나는 것은 체계 1의 반응임
**체계 2: 천천히 심사숙고 후 판단하는 체계다. 예를 들어, 수학 문제를 풀거나 긴급 상황에서 명확한 결정을 내릴 때 체계 2가 사용됨
연구팀은 22명의 식이장애 환자를 대상으로 3주간의 사용자 스터디를 진행해 시스템 평가를 진행했다. 실험 집단에서 유튜브에서 음식 콘텐츠에 대한 노출 및 소비의 유의미한 감소와, 이러한 감소가 유튜브의 콘텐츠 추천 알고리즘에 영향을 미침을 관찰했다. 실험 집단 참가자들은 본 시스템이 음식 관련 콘텐츠를 시청하는 자동 반응을 억제하는 데 중요한 역할을 했다고 평가했으며, 이는 본 시스템이 두 체계 이론의 체계 1을 억제하고 체계 2를 촉진함을 입증한다. 사용자 평가는 제안된 시스템이 일상생활에서 식이장애 환자들의 음식에 대한 강박을 완화하고 더 나은 삶의 질을 제공한다는 점을 시사한다.
연구를 주도한 이성주 교수는 “이 시스템을 활용하여 사용자가 디지털 콘텐츠를 건강하게 소비하는 방법을 지원하는 적응형 개입의 설계 방향과 더불어, 단순히 콘텐츠를 검열하는 것 이상의 사용자의 의도적인 행동 변화를 촉진하는 사용자 중심의 콘텐츠 관리 방법이 될 것이다”라고 설명했다. 또한 “개발된 기술은 음식 콘텐츠뿐 아니라, 폭력물이나 선정적인 콘텐츠, 또는 다양한 주제별로 적용할 수 있어 파급효과를 기대할 수 있다.라고 말했다.
이번 연구에는 전기및전자공학부 최류해랑 박사과정이 제1 저자, 박수빈 석사과정이 제2 저자, 한수진 석박통합과정이 제3 저자, 그리고 이성주 교수가 교신 저자로 참여했다. 이번 연구는 5월 미국 하와이에서 열린 인간-컴퓨터 상호작용 최고 권위 국제학술 대회인 CHI(ACM Conference on Human Factors in Computing Systems)에서 발표됐으며 (논문명: FoodCensor: Promoting Mindful Digital Food Content Consumption for People with Eating Disorders), 최우수논문상(The Best Paper Honorable Mention Award)을 수상했다.
한편 이 연구는 과학기술정보통신부의 재원으로 정보통신기획평가원의 지원을 받아 수행됐다. (No. 2022-0-00064, 감정노동자의 정신건강 위험 예측 및 관리를 위한 휴먼 디지털 트윈 기술 개발)
2024.05.20
조회수 3154
-
생성형 AI로 혁신적 신약 개발 가능성 열어
최근 자연어나 이미지, 동영상, 음악 등 다양한 분야에서 주목받는 생성형 AI가 신약 설계 분야에서도 기존 신규성 문제를 극복하고 새로운 혁신을 일으키고 있다고 하는데 어떤 기술일까?
우리 대학 화학과 김우연 교수 연구팀이 단백질-분자 사이의 상호작용을 고려해 활성 데이터 없이도 타겟 단백질에 적합한 약물 설계 생성형 AI를 개발했다고 18일 밝혔다.
신규 약물을 발굴하기 위해서는 질병의 원인이 되는 타겟 단백질에 특이적으로 결합하는 분자를 찾는 것이 중요하다. 기존의 약물 설계 생성형 AI는 특정 단백질의 이미 알려진 활성 데이터를 학습에 활용하기 때문에 기존 약물과 유사한 약물을 설계하려는 경향이 있다. 이는 신규성이 중요한 신약 개발 분야에서 치명적인 약점으로 지적되어 왔다. 또한 사업성이 높은 계열 내 최초(First-in-class) 타겟 단백질에 대해서는 실험 데이터가 매우 적거나 전무한데, 이 경우 기존 방식의 생성형 AI를 활용하는 것이 불가능하다.
연구팀은 이런 데이터 의존성 문제를 극복하기 위해 단백질 구조 정보만으로 분자를 설계하는 기술 개발에 주목했다. 타겟 단백질의 약물 결합 부위에 대한 3차원 구조 정보를 주형처럼 활용해 해당 결합 부위에 꼭 맞는 분자를 주조하듯 설계하는 것이다. 마치 자물쇠에 딱 맞는 열쇠를 설계하는 것과 같은 이치다.
또한 기존 단백질 구조 기반 3차원 생성형 AI 모델들은 신규 단백질에 대해 설계한 분자들의 안정성과 결합력이 떨어지는 등 낮은 일반화 성능을 개선하기 위해서 연구팀은 신규 단백질에 대해서도 안정적으로 결합할 수 있는 분자를 설계할 수 있는 기술을 개발하는 데 초점을 뒀다.
연구팀은 설계한 분자가 단백질과 안정적으로 결합하기 위해서는 단백질-분자 간 상호작용 패턴이 핵심 역할을 하는 것에 착안했다. 연구팀은 생성형 AI가 이러한 상호작용 패턴을 학습하고, 분자 설계에 직접 활용할 수 있도록 모델을 설계하고 재현할 수 있도록 학습시켰다.
기존 단백질 구조 기반 생성형 AI 모델들은 부족한 학습 데이터를 보완하기 위해 10만~1,000만 개의 가상 데이터를 활용하는 반면, 이번 연구에서 개발한 모델의 장점은 수천 개의 실제 실험 구조만을 학습해도 월등히 높은 성능을 발휘한다는 것이다. 이는 자연에서 관찰되는 단백질-분자 상호작용 패턴을 사전 지식의 형태로 학습에 활용함으로써 적은 데이터만으로도 일반화 성능을 획기적으로 높인 것에 기인한다.
일례로 아시아인에 주로 발견되는 돌연변이 상피 성장인자 수용체(EGFR-mutant)*는 비소세포폐암의 주요 원인으로 알려져 있는데, 이를 타겟으로 하는 약물을 설계하기 위해서는 야생형(wild-type) 수용체**에 대한 높은 선택성을 고려하는 것이 필수적이다.
*상피 성장인자 수용체: 상피 성장인자 수용체:상피 성장인자 수용체는 상피 세포의 성장을 촉진하는 인자에 결합함으로써 활성화되는 막 단백질로, 이 수용체의 돌연변이로 인한 지나친 활성은 다양한 종양의 발생과 관련이 있다고 알려져 있음
**야생형 수형체: 야생형은 자연 상태에서 가장 흔하게 발견되는 유전자형 또는 표현형으로, 유전자나 생체 분자 등의 변이가 없는 정상적인 상태를 말함
연구진은 생성형 AI를 통해 돌연변이가 일어난 아미노산에 특이적인 상호작용을 유도해 분자를 설계했고, 그 결과 생성된 분자의 23%가 이론상으로 100배 이상의 선택성을 가지는 것으로 예측됐다. 이와 같은 상호작용 패턴에 기반한 생성형 AI는 인산화효소 저해제(kinase inhibitor)* 등과 같이 약물 설계에 있어 선택성이 중요한 상황에서 더욱 효과적으로 활용될 수 있다.
*인산화효소 저해제: 단백질의 인산화를 촉진하는 효소로, 일반적으로 아데노신 삼인산(ATP)으로부터 인산기를 단백질의 특정 잔기에 전달함. 인산화효소는 세포 내 신호전달 네트워크의 핵심 조절자로서, 다양한 질병의 기전에 관여하여 약물 개발의 표적으로 여겨지고 있음. 이를 위해 인산화효소에 결합하여 활성을 억제하는 목적을 가지는 분자를 인산화효소 저해제라 함
제1 저자로 참여한 화학과 정원호 박사과정 학생은 “사전 지식을 인공지능 모델에 사용하는 전략은 상대적으로 데이터가 적은 과학 분야에서 적극적으로 사용되어 왔다”며 “이번 연구에서 사용한 분자 간 상호작용 정보는 약물 분자뿐 아니라 다양한 생체 분자를 다루는 바이오 분야의 문제에도 유용하게 적용될 수 있을 것”이라고 말했다.
한국연구재단의 지원을 받아 수행된 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications) (IF=16.6)’ 2024년 3월 15호에 게재됐다. (논문명: 3D molecular generative framework for interaction-guided drug design, 논문 링크: https://www.nature.com/articles/s41467-024-47011-2)
2024.04.18
조회수 4259
-
뉴로모픽 반도체 신개념 메모리 소자 개발
우리 연구진이 공정 비용이 낮고 초저전력 동작이 가능하여 기존의 메모리를 대체하거나 차세대 인공지능 하드웨어를 위한 뉴로모픽 컴퓨팅(Neuromorphic Computing) 구현에 사용될 메모리 소자를 개발하여 화제다.
전기및전자공학부 최신현 교수 연구팀이 디램 (DRAM) 및 낸드(NAND) 플래시 메모리를 대체할 수 있는 *초저전력 차세대 상변화 메모리 소자를 개발했다고 4일 밝혔다.
☞ 상변화 메모리(Phase Change Memory): 열을 사용하여 물질의 상태를 비정질과 결정질을 변경하여, 이를 통해 저항 상태를 변경함으로써 정보를 저장하거나 처리하는 메모리 소자.
기존 상변화 메모리는 값비싼 초미세 반도체 노광공정을 통해 제작하며 소모 전력이 높은 문제점이 있었다. 최 교수 연구팀은 상변화 물질을 전기적으로 극소 형성하는 방식을 통해 제작한 초저전력 상변화 메모리 소자로 값비싼 노광공정 없이도 매우 작은 나노미터(nm) 스케일의 상변화 필라멘트를 자체적으로 형성하였다. 이는 공정 비용이 매우 낮을 뿐 아니라 초저전력 동작이 가능하다는 획기적인 장점이 있다.
현재 널리 사용되고 있는 메모리인 디램(DRAM)은 속도가 매우 빠르지만, 전원이 꺼지면 정보가 사라지는 휘발성 특징을 갖고 있으며, 저장장치로 사용되는 낸드 플래시 메모리는 읽기/쓰기 속도는 상대적으로 느린 대신 전원이 꺼져도 정보를 보존하는 비휘발성 특징을 갖고 있다.
이에 반해, 상변화 메모리는 디램과 낸드 플래시 메모리의 장점을 모두 가진 차세대 메모리로, 빠른 속도와 비휘발성 특성을 동시에 지닌다. 이러한 이유로, 상변화 메모리는 기존의 메모리를 대체할 수 있는 차세대 메모리로 각광받으며, 메모리 기술 또는 인간의 두뇌를 모방하는 뉴로모픽 컴퓨팅 기술로 활발히 연구되고 있다.
그러나 기존 상변화 메모리는 소비 전력이 매우 높아서 실용적인 대용량 메모리 제품 및 뉴로모픽 컴퓨팅 시스템을 구현하기에는 어려움이 있다. 기존 연구는 메모리 동작을 위한 발열 효과를 높이기 위해 초미세 반도체 노광공정을 이용해 소자의 물리적 크기를 줄여 소비 전력을 낮추는 연구가 진행됐으나, 소비 전력 개선 정도가 작고 공정비용과 공정 난이도가 증가해 실용성 측면의 한계점이 존재했다.
최신현 교수 연구팀은 이러한 상변화 메모리의 소비 전력 문제를 해결하기 위해, 상변화 물질을 전기적으로 극소 형성하는 방식으로 기존의 값비싼 초미세 노광공정을 이용한 상변화 메모리 소자보다 소비 전력이 15배 이상 작은 초저전력 상변화 메모리 소자 구현에 성공했다.
최신현 교수는 "이번에 개발한 초저전력 상변화 메모리 소자는 기존의 연구 방향과는 완전히 다른 방식으로 기존에 풀지 못하였던 큰 숙제인 제조비용과 에너지 효율을 대폭 개선한 소자를 개발했다는 의의가 있다. 또한 물질 선택이 자유로워 고집적 3차원 수직 메모리 및 뉴로모픽 컴퓨팅 시스템 등 다양한 응용을 가능케 하는 등 미래 전자공학의 기반이 될 것으로 기대한다ˮ며 이번 연구가 앞으로 뻗어나갈 새로운 분야에 대한 강한 자신감을 피력했다. 또한 "이 연구를 지원한 한국연구재단 및 나노종합기술원에 감사드린다ˮ라고 말했다.
전기및전자공학부 박시온 석박사통합과정, 홍석만 박사과정이 제1 저자로 참여한 이번 연구는 저명한 국제 학술지 `네이처(Nature)' 4월호에 4월 4일 자 출판됐다. (논문명 : Phase-Change Memory via a Phase-Changeable Self-Confined Nano-Filament)
한편 이번 연구는 한국연구재단 차세대 지능형반도체기술개발사업, PIM인공지능반도체핵심기술개발(소자)사업, 우수신진연구, 그리고 나노종합기술원 반도체공정기반 나노메디컬 디바이스개발 사업의 지원을 받아 수행됐다.
2024.04.04
조회수 4980
-
화학물질 없이 식각하는 반도체 기술 최초 개발
차세대 반도체 메모리의 소재로 주목을 받고 있는 강유전체는 차세대 메모리 소자 혹은 작은 물리적 변화를 감지하는 센서로 활용되는 등 그 중요성이 커지고 있다. 이에 반도체의 핵심 소자가 되는 강유전체를 화학물질없이 식각할 수 있는 연구를 성공해 화제다.
우리 대학 신소재공학과 홍승범 교수가 제네바 대학교와 국제공동연구를 통해 강유전체 표면의 비대칭 마멸* 현상을 세계 최초로 관찰 및 규명했고, 이를 활용해 혁신적인 나노 패터닝 기술**을 개발했다고 26일 밝혔다.
*마멸: 물체 표면의 재료가 점진적으로 손실 또는 제거되는 현상
**나노 패터닝 기술: 나노스케일로 소재의 표면에 정밀한 패턴을 생성하여 다양한 첨단 기술 분야에서 제품 성능을 향상시키는데 사용되는 기술
연구팀은 강유전체 소재의 표면 특성에 관한 연구에 집중했다. 이들은 원자간력 현미경(Atomic Force Microscopy)을 활용해 다양한 강유전체의 트라이볼로지(Tribology, 마찰 및 마모) 현상을 관찰했고, 강유전체의 전기적인 분극* 방향에 따라 마찰되거나 마모되는 특성이 다르다는 것을 세계 최초로 발견했다. (그림 1) 아울러, 이러한 분극 방향에 따라 달라지는 트라이볼로지의 원인으로 변전 효과(Flexoelectric effect)*에 주목했다.
*전기적 분극(electric dipole): 자석의 북극과 남극처럼 전기적으로 양극과 음극이 있는 것을 의미함
*변전 효과: 물질이 휘어졌을 때 분극이 발생하는 현상이지만, 거시 규모에서 물질을 구부렸을 때 유도되는 분극의 크기가 매우 작아 그동안 큰 주목을 받지 못했다. 그러나 2010년대 들어서 물질이 나노스케일로 미세화될 경우, 매우 큰 변전 효과가 발생할 수 있다는 연구 결과가 나오면서 많은 연구자의 주목을 받기 시작했다.
연구진은 강유전체의 트라이볼로지 특성이 나노 단위에서 강한 응력이 가해질 때 발생하는 변전 효과로 인해 강유전체 내부의 분극 방향에 따른 상호작용으로 트라이볼로지 특성이 바뀌게 된다는 것을 발견했다. 또한 이러한 새로운 강유전체 트라이볼로지 현상을 소재의 나노 패터닝에 응용했다.
이러한 패터닝 방식은 기존의 반도체 패터닝 방식과는 다르게 화학 물질 및 고비용의 리소그래피 장비가 필요하지 않고, 기존 공정 대비 매우 빠르게 나노 구조를 제작할 수 있는 장점이 있다.
이번 연구의 제1 저자인 신소재공학과 졸업생 조성우 박사는 “이번 연구는 세계 최초로 강유전체 비대칭 트라이볼로지를 관찰하고 규명한 데 의의가 있고, 이러한 분극에 민감한 트라이볼로지 비대칭성이 다양한 화학적 구성 및 결정 구조를 가진 강유전체에서 널리 적용될 수 있어 많은 후속 연구를 기대할 수 있다”고 밝혔다.
공동교신저자로 본 연구를 공동 지도한 제네바 대학교 파루치(Paruch) 교수는 “변전 효과를 통해 강유전체의 도메인이 분극 방향에 따라 서로 다른 표면 특성을 나타내는 것을 활용함으로써, 다양하고 유용한 기술들을 개발할 수 있을 것이다”며 이번 연구가 앞으로 뻗어나갈 분야에 대한 강한 자신감을 피력했다.
연구를 이끈 홍승범 교수는 “이번 연구에서 개발된 패터닝 기술은 기존 반도체 공정에서 쓰이는 패터닝 공정과 달리 화학 물질을 사용하지 않고, 매우 낮은 비용으로 대면적 나노 구조를 만들 수 있어 산업적으로 활용될 수 있는 잠재력을 가지고 있다”고 전망했다.
한편, 이번 연구는 한국연구재단(2020R1A2C2012078, NRF-2022K1A4A7A04095892, RS-2023-00247245), KAIST 글로벌특이점 사업의 지원 및 스위스, 스페인 연구진과의 국제공동연구를 통해 수행됐으며, 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’에 1월 9일 자 출판됐다. (논문 제목: Switchable tribology of ferroelectrics)
2024.03.26
조회수 4282
-
당뇨병 만성상처 추적 스마트 헬스케어 기기 개발
우리 대학 연구팀이 당뇨병 등 상처 부위의 시공간 온도 변화 및 열전달 특성 추적을 통해 상처 치유 과정을 효과적으로 모니터링할 수 있는 무선 시스템을 개발했다.
전기및전자공학부 권경하 교수팀이 중앙대학교 류한준 교수와 상처 치유 과정을 실시간으로 추적해 적절한 치료를 제공할 수 있게 해주는 디지털 헬스케어 기술을 개발했다고 5일 밝혔다.
피부는 유해 물질로부터 인체를 보호하는 장벽 기능을 한다. 피부 손상은 집중 치료가 필요한 환자들에게 감염과 관련된 심각한 건강 위험을 초래할 수 있다. 특히 당뇨병 환자의 경우, 정상적인 혈액 순환과 상처 치유 과정에 문제가 생겨 만성 상처가 쉽게 발생한다. 이러한 만성 상처의 재생을 위해 미국에서만 매년 수백억 달러의 의료 비용이 지출되고 있다. 상처 치유를 촉진하는 다양한 방법이 있지만, 환자별 상처 상태에 따라 맞춤 관리가 필요하다.
이에 연구팀은 상처 부위와 주변 건강한 피부 사이의 온도 차이를 활용해 상처 내 발열 반응을 추적했으며, 열 전송 특성을 측정해 피부 표면 근처의 수분 변화를 관찰함으로써 흉터 조직의 형성 과정을 파악할 수 있는 기반으로 활용했다. 연구팀은 당뇨병이 있는 쥐를 통해 병적 상태에서 상처 치유가 지연되는 과정에서 실험을 진행했고, 수집된 데이터가 상처 치유 과정과 흉터 조직 형성을 정확히 추적할 수 있음을 입증했다.
해당 시스템은 상처가 치유된 후에 기기를 제거하는 과정에서 발생할 수 있는 조직 손상을 최소화하기 위해, 체내에서 자연 분해가 가능한 생분해성 센서 모듈과 통합됐다. 이 생분해성 모듈은 사용 후 별도로 제거할 필요 없이 몸속에서 저절로 분해되어 사라지므로, 추가적인 불편함이나 조직 손상의 위험을 최소화한다. 생분해성 재료를 사용한 이 장치는 사용 후 제거할 필요가 없으므로 상처 부위 내부에서도 모니터링할 수 있는 가능성을 제시한다.
연구를 주도한 권경하 교수는 "상처 부위의 온도와 열전달 특성을 지속적으로 모니터링함으로써, 의료 전문가들이 당뇨병 환자의 상처 상태를 더 정확하게 파악하고 적절한 치료를 제공할 수 있게 될 것으로 기대된다ˮ면서 "생분해성 센서를 사용해 상처 치유가 완료된 후 장치를 제거할 필요 없이 안전하게 분해될 수 있어, 병원뿐만 아니라 가정에서도 실시간 모니터링이 가능해질 것ˮ이라고 말했다.
연구팀은 향후 이 기기를 항균 특성을 가진 재료와 통합해, 염증 반응, 박테리아 감염 및 기타 병변을 관측 및 예방하는 기술로 확장할 계획이다. 온도 및 열전달 특성 변화를 통해 감염 수준을 감지 함으로써 병원이나 가정에서 실시간으로 사용할 수 있는 항균, 범용 상처 모니터링 플랫폼을 제공하는 것을 목표로 한다.
이번 연구 결과는 국제 학술지 `어드밴스드 헬스케어 머티리얼스(Advanced Healthcare Materials)'에 지난 2월 19일 발표됐으며, 표지 논문(Inside Back Cover Journal)으로 선정됐다. (논문명 : Materials and Device Designs for Wireless Monitoring of Temperature and Thermal Transport Properties of Wound Beds during Healing)
한편, 이번 연구는 한국연구재단의 기초연구사업, 지역혁신선도연구센터사업 및 BK21의 지원을 받아 수행됐다.
2024.03.05
조회수 4173
-
지방간 치료제 신약 물질 개발
국내 연구진이 말초조직에 작용하는 비알코올성 지방간질환(NAFLD, Nonalcoholic fatty liver disease) 치료를 위한 신약 후보 물질을 개발하는 데 성공했다. 현재까지 최적의 비알코올성 지방간염(NASH) 치료제가 없는 상황에서 지방간 축적과 간 섬유화를 동시에 억제하면서 안전성이 증명된 치료제 개발이 기대된다.
광주과학기술원(GIST)은 화학과 안진희 교수 연구팀과 우리 대학 의과학대학원 김하일 교수 연구팀이 다년간 기초연구를 통해 질환 특이 단백질(HTR2A)을 억제할 수 있는 신규 화합물을 개발했으며, 안진희 교수의 창업기업인 ㈜제이디바이오사이언스에서 전임상 시험(동물 시험)을 통해 효능과 안전성을 입증하는 데 성공했다고 밝혔다.
비알코올성 지방간 질환의 유병율은 20~30%에 이르고, 지방간염 질환은 전 세계 성인 인구의 5% 이상이 보유하고 있을 정도로 높은 유병률을 보임에도 불구하고 현재까지 제품화된 치료제가 전혀 없다.
비알코올성 지방간질환은 지방간에서 시작해 지방간염, 섬유화, 간경화, 간암으로 진행되는 만성질환이며, 심혈관질환 및 간 관련 합병증 등에 의해 사망률이 증가하므로 발병 초기에 적절한 치료가 필요하다.
GIST와 KAIST 공동 연구팀이 개발한 이 신규 화합물은 지방간염에 치료 효과를 보이는 혁신신약 후보 물질로서, 세로토닌 수용체 단백질(5HT2A)을 억제함으로써 간 내 지방 축적과 간 섬유화를 동시에 억제하는 이중 작용 기전을 갖고 있다.
연구팀은 이 물질이 지방간 동물 및 지방간염 동물 모델에서 간 내 지방 축적으로 발생하는 간 지방증과 간 섬유화*를 동시에 50~70% 가량 억제함으로써 치료 효과가 있는 것을 확인하였다.
* 섬유화(fibrosis): 간의 일부가 굳는 현상으로, 지방간염 개선의 주요 지표로 쓰임
이 물질은 혈액-뇌 장벽(Blood-Brain Barrier) 투과도가 최소화되도록 최적의 극성과 지질친화도를 갖춘 화합물로 설계되어 뇌에 영향을 주지 않아 우울증, 자살 충동 등 중추신경계(CNS) 부작용이 적으며, 뇌 이외의 조직에서는 질환 타겟에 대한 억제력이 우수(IC50*=14 nM)하다고 연구팀은 설명했다. 또한 임상 3상 단계의 경쟁 약물과 효능을 비교해 본 결과, 간섬유화 개선 효능이 월등히 우수한 것으로 나타났다.
* IC50(half maximal inhibitory concentration): 특정 생물학적 또는 생화학적 기능을 50% 억제하는 물질의 농도
전임상 시험에 의해 얻은 약리작용 데이터를 토대로 건강한 사람에게서 부작용 및 안전한 약물 용량을 확인하는 단계인 임상 1상 시험에서 건강한 성인 총 88명을 대상으로 평가한 결과, 심각한 부작용은 발생하지 않았으며 안전성 또한 양호한 것으로 확인했다.
또한 지방간염 소견을 보이는 성인 8명을 대상으로 한 예비 효능 평가는 현재 진행 중이다.
안진희 교수는 “이번 연구는 비알콜성 지방간염의 치료를 위한 새로운 타겟 발굴을 통해 부작용이 적고 안전성이 보장된 치료제 개발을 목적으로, 현재 혁신신약 개발 바이오 벤처인 ㈜제이디바이오사이언스를 통해 호주에서 글로벌 임상 1상을 진행 중”이라고 밝혔다.
안 교수는 또한 “연구팀이 개발하고 있는 신약 후보물질은 안전성이 높으면서 간 지방축적을 억제시키는 예방효과뿐만 아니라 간 섬유화에 직접적인 치료 효과를 보인다는 강점이 있어 다른 경쟁 약물과는 차별화된다”고 설명했다.
우리 대학 김하일 교수는 “현재까지 체중을 조절하는 방법 외에는 치료방법이 없는 이 질환에서 비만하지 않은 환자에게 사용할 수 있는 약은 개발이 시도된 적도 없다”면서 “이번 연구를 계기로 체중에 영향을 주지 않으면서 비알코올성 지방간염을 포함한 다양한 대사질환 치료기술의 개발이 가능해질 것으로 기대한다”고 말했다.
GIST 안진희 교수 연구팀과 KAIST 김하일 교수 연구팀, ㈜제이디바이오사이언스(JD BIOSCIENCE) 연구팀이 함께 수행한 이번 연구는 과학기술정보통신부, 국가신약개발사업에서 지원을 받아 수행됐으며, 국제 학술지인 ‘네이처 커뮤니케이션즈(Nature Communications)’에 2024년 1월 20일 게재됐다.
또한 지난 4일부터 3일간 미국 유타에서 개최된 ‘NASH 치료제 전문 콘퍼런스(NASH-TAG Conference 2024)’에서 대사이상 관련 지방간염(MASH)* 치료제 후보물질인 ‘GM-60106(개발코드명)’의 임상 연구 결과를 발표해 우수 초록으로 선정되기도 했다.
* 대사이상 관련 지방간염(MASH): 비알코올성 지방간염(NASH)의 새로운 명칭
2024.01.30
조회수 4616
-
양자 시뮬레이터로 양자얽힘 관측 도전
고온 초전도물질은 수십 년이 지난 지금도 어떠한 물리적인 기작으로 초전도가 형성되는지 명확하게 규명되지 않았다. 광격자 양자 시뮬레이터는 이러한 문제를 풀기 위한 새로운 접근 방식으로 이미 고전 컴퓨터가 연산할 수 없는 영역에 우위를 보여주었으며, 최근 고온 초전도체에서 관측된 반강자성을 관측하는 등 미래에 고온 초전도 문제를 풀 수 있는 강력한 후보다.
우리 대학 물리학과 최재윤 교수 연구팀이 포항공대 조길영 교수 연구팀과 공동연구를 통해 중성원자 양자 시뮬레이터의 오류 정정 기술을 개발해 최초로 2차원에서의 비국소 질서 변수를 측정함으로써 향후위상 물질과 고온 초전도체 물질 특성을 알아낼 수 있도록 하는 데 성공했다고 29일 밝혔다.
이러한 양자 시뮬레이터의 큰 단점은 관측 과정 및 양자 상태 준비 과정에서 발생하는 결함으로(예: 원자 손실), 이를 체계적으로 파악하고, 정정하는 것이 매우 어렵다. 이러한 결함은 특히 위상물질의 특성을 규정짓는 비국소 질서변수를 측정하는데 큰 걸림돌이 되며, 2차원에서는 그 효과가 더욱 커져 큰 시스템에서 비국소 질서 변수의 실험적 관측을 어렵게 만드는 주요 요소다.
일반적으로 우리가 관측하는 물리량은 국소성을 띄기 때문에, 이러한 양자역학적 특이성인 양자 얽힘(entanglement)이 물성을 지배하는 물질인 위상물질의 비국소 질서 변수를 측정하는 것은 간단하지 않다. 더욱이 2차원, 3차원 물질의 경우 실험적 노이즈에 의해 그 신호가 급격하게 약해지기 때문에 이를 실험적으로 관측하기는 매우 어렵다.
최 교수 연구팀은 양자 시뮬레이터에 비국소 질서 변수가 측정 가능하고 실험적인 결함도 함께 찾아내는 방법을 개발했다. 또한 연구팀은 2차원에서도 양자얽힘의 위상 물질의 물성을 규정짓는 것도 가능함을 보여주었다. 시뮬레이터 실시과정에서 발생한 결점까지 제거하는데 성공한 이후, 위상물질의 2차원 비국소 질서변수는 급격하게(100배 이상) 증가하는 양상을 보였으며, 원자 수에 무관하게 측정값이 일정하게 유지되는 것을 확인하는 등 이론적으로 예측된 경향을 모두 확인할 수 있었다.
해당 기술은 여러 가지 중성원자 양자 시뮬레이터에 활용이 가능하다. 원거리 상호작용이 주요한 양자 시뮬레이터의 경우, 양자 스핀 액상과 같은 2차원 위상 물질의 물성을 규정하는데 적용 가능하며, 고온 초전도체 물질을 흉내 내는 양자 시뮬레이터에도 해당 기법을 응용할 수 있을 것으로 기대된다.
최재윤 교수는 “이번 연구는 중성원자 양자 시뮬레이터에 존재하는 실험적 결함을 보정하는 것이 가능함을 보여준 최초의 연구이며, 향후 위상 양자 연산에 이용되는 양자 스핀 액상과 같은 고차원 위상 물질 발견 및 물성 규정에 주요하게 활용될 것”이라고 하였다.
우리 대학 허준혁 연구원과 포스텍 이원준 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `피지컬 리뷰 X (Physical Review X)' 14권 1호에 지난 1월 8일 출판됐다. (논문명 : Measuring nonlocal brane order with error-corrected quantum gas microscopes).
한편 이번 연구는 삼성미래기술재단과 한국연구재단의 지원으로 수행됐다.
2024.01.29
조회수 3788
-
정명수 교수 연구팀, 美 CES 2024에서 혁신상 수상작 CXL 탑재 AI 가속기 선보여
시스템에 무한대에 가까운 용량의 메모리 자원을 제공하여 대규모 AI 기반 서비스를 고속 처리하는 기술, ‘CXL 탑재 AI 가속기’가 개발되었다.
우리 대학 전기및전자공학부 정명수 교수 연구팀이 세계 최대 규모의 IT 박람회‘CES 2024’에서‘CXL 탑재 AI 가속기(CXL-Enabled AI Accelerator)’를 선보였다. 해당 제품으로 연구팀은 CES 2024 혁신상을 수상하였으며, ARM, 휴렛페커드(HPE), 어드밴스드 머터리얼스(Advanced Materials), 메타등 글로벌 대기업들로부터 단독 미팅을 제안받아 지속적으로 협업을 논의할 예정이다.
‘CXL 탑재 AI 가속기’는 컴퓨트익스프레스링크(Computer Express Link, CXL) 기술을 통해 시스템에 무한대에 가까운 용량의 빠른 메모리 자원을 제공하여, 대규모 AI 기반 서비스를 고속으로 처리할 수 있다. 대표적인 AI 기반 서비스인 이미지 검색을 이용한 평가에서, 연구팀은 CXL 기술이 적용된 가속 시스템이 기존의 SSD 기반 가속시스템 대비 101배 빠른 성능을 보였다고 밝혔다.
수상작의 핵심인 CXL은 데이터처리 가속기, 메모리 확장장치, 프로세서, 스위치 등 다양한 시스템 장치를 고속으로 연결하는 기술이다. 이 기술은 여러 가속기 및 메모리 확장장치의 내부 메모리를 시스템에 연결하여 AI 서비스에 확장가능한 메모리 자원을 제공할 수 있다. 덕분에 AI 서비스는 처리할 수 있는 데이터의 양을 대폭 증가시킬 수 있으며, 이릍 통해 정확도와 품질을 향상시킬 수 있다. 이는 기존 AI 가속기가 제한된 메모리 용량으로 인해, 대용량의 데이터 관리에 느린 저장장치를 사용해야하던 것과 대비된다. 추가적으로, 연구팀은 AI 가속기 내부를 이미지 검색에 특화된 하드웨어 모듈로 구성하여 시스템의 성능을 더욱 높였다. AI 기반 서비스의 정확도 및 품질은 경쟁적인 AI 업계에서 기업의 생존과 직결되는 만큼, 연구팀의 기술은 산업계 파급효과가 클 것으로 예상된다.
정명수 교수 연구팀은 이번 연구개발의 결과물을 지난주 미국 라스베가스에서 열린 CES 2024에서 전시하였다. 가속기는 기술의 우수성을 인정받아 CES 주관기관으로부터 CES 혁신상을 수상하였으며, IEEE Spectrum, Storage Newsletter, Blocks and Files, Design and Reuse, TechRadar, 등의 해외 언론, 조선일보, 조선비즈, 한국경제, 서울경제, 파이낸셜뉴스, ZDnet 등의 국내 유수 언론을 포함한 20개 이상의 언론사가 부스에 방문하고, 출품 소식을 전하였다.
특히 한국경제에서는 연구팀의 기술을 ‘AI 도입 비용 문제의 해결책’으로써 대중들에게 소개하였다.
연구팀의 권미령 박사는 EETimes Gary Hilson 기자와의 단독 인터뷰에서 “최신 CXL 표준을 지원하는 연구팀의 하드웨어/소프트웨어를 활용하면 데이터센터 수준의 고효율 메모리 확장을 실현할 수 있다”며 연구팀의 기술을 소개하기도 했다.
뿐만 아니라, 연구팀의 기술은 이번 CES에서 다양한 글로벌 대기업들로부터 집중적으로 관심을 받았다. 세계 최대 IP 기업 ARM으로부터 초청받아 프라이빗 미팅을 진행하였으며, 글로벌 클라우드/데이터센터 기업 HPE 본사로부터 단독 대규모 미팅 제의를 받아 이달 말 협업을 논의할 예정이다. 현지 부스를 통해서 연구팀은 마이크로소프트, 애플, 인텔, 케이던스 등 다양한 글로벌 대기업의 고위 임원들과 국내 귀빈등에게 CXL 선도기술을 소개한 것으로 알려졌다. 정명수 교수 연구팀은 이전에도 세계 최초로 CXL CPU, CXL 스위치, CXL 메모리 확장장치를 모두 포함한 CXL 기반의 전체 시스템을 발표하여 AMD, 메타 등 산업계로부터 러브콜을 받은 바 있다.
본 성과는 우리 대학 전기및전자공학부 정명수 교수 연구실 학생들과 파네시아가 공동연구를 진행한 결과이다. 파네시아는 카이스트 교원창업기업이자 세계 최초로 CXL 3.0 IP(반도체 설계기술)를 개발하는 등 CXL 기술을 선도하고 있는 반도체 팹리스 스타트업이다.
카이스트 스타트업인 파네시아는 오는 19일 대전에서 개최되는 CXL 테크데이 행사를 통해서 CES에 소개된 CXL이외에도 다양한 최신 CXL 기술들을 여러 학부생들과 공유할 예정이다 (관련소개 뉴스 링크: https://news.nate.com/view/20231229n21475?mid=n0105).
2024.01.17
조회수 3679
-
스파이더맨 슈트처럼 내 몸에 착 맞춰지는 옷감형 웨어러블 햅틱 개발
우리 대학 기계공학과 오일권 교수 연구팀이 형상기억합금 와이어를 오그제틱(auxetic) 메타구조로 매듭지어 형상 적응이 가능한 옷감 형태의 착용형 '햅틱(haptic) 인터페이스'를 개발했다고 28일 밝혔다.
착용형 햅틱 인터페이스 기술은 시·청각 기반의 플랫폼의 한계를 벗어나, 피부 표면으로 전해지는 직관적인 촉감으로 메타버스 속 상호작용 몰입도를 높이는 역할을 한다.
하지만 일반적인 햅틱 인터페이스는 피부에 부착하거나 별도의 고정 장치를 착용하는 착용(부착)형으로, 이러한 햅틱 인터페이스는 장시간 사용 시 피부 발진의 위험과 고정 방식은 일상 움직임에서 불편함을 초래할 수 있다. 또 수십 개의 촉각 전달 소자를 장착해 촉감을 모방하는 기존의 제작 방식 역시 장치의 무게·부피 증가로 이어지는 한계를 보이고 있다.
우선 연구팀은 가볍고 편하게 착용할 수 있는 햅틱 인터페이스 개발을 위해 형상기억합금 와이어를 핵심 소재로 선택했다. 형상기억합금 와이어란 상온에서 모양이 쉽게 변형되고, 특정 온도에 도달하면 미리 기억된 형태로 되돌아가는 특징을 갖는 형상기억합금을 철사처럼 가늘고 길게 제작한 것이다. 이러한 형상기억합금 와이어를 기존의 천 제작 방식을 활용해 매듭지어 옷감처럼 제작하는 방식을 활용하였다. 특히, 연구팀은 형상기억합금 와이어를 오그제틱(auxetic) 구조로 매듭지어, 일반 구조에서는 볼 수 없는 3D 방향으로 구조 전체가 동시에 수축 및 이완하는 특성을 구현해 내었고, 이를 통해 착용자의 신체 형상에 순응하며 사이즈가 자동으로 조절되는 옷감형 액추에이터를 개발했다.
또한 연구팀은 8개의 영역을 개별 수축 제어할 수 있도록 설계해 총 아홉 가지 방향과 타이밍에 대한 정보를 사용자에게 촉감 피드백으로 전달할 수 있게 제작했다.
예로 팔목에 착용 시, 사용자는 방향 및 타이밍에 관한 정보를 촉각적으로 인지할 수 있고, 반면 팔꿈치에 착용할 때는 옷감형 액추에이터의 가변강성 기능을 활용해 팔꿈치의 굽힘각도에 따른 피드백을 제공하는 멀티모달(두 가지 이상의 피드백 형태로 정보를 전달) 햅틱 인터페이스로서 개발했다.
이처럼 옷감형 액추에이터를 팔목에 착용한 사용자가 가상현실 속 모빌리티 로봇 주변의 위치정보를 파악하고, 시각과 청각 정보가 제한될 때 장애물을 피해 로봇을 안정적으로 주행하는 실증에도 성공했다.
오일권 교수는 이번 연구성과를 통한 실용화 시 활용에 대해 "착용형 햅틱 인터페이스는 촉각 정보를 활용한 로봇, 무인기 제어와 메타버스가 접목된 의료·교육 등에도 활용할 수 있다"고 말했다.
한편, 이번 연구는 과학기술정보통신부(장관 이종호)와 한국연구재단이 추진하는 리더연구자(창의연구) 지원 사업으로 수행됐다. 연구 성과는 첨단 소재 분야 국제학술지 <어드밴스드 머티리얼스(Advanced Materials)>에 9월 19일 게재됐고, 연구의 우수성을 인정받아 학술지 표지 논문으로 선정됐다. (논문명: Easy-To-Wear Auxetic SMA Knot-Architecture for Spatiotemporal and Multimodal Haptic Feedbacks)
2023.11.30
조회수 4185