-
빛을 완전히 조절할 수 있는 메타렌즈 개발
우리 대학 신소재공학과 신종화 교수 연구팀이 빛의 세 가지 주요 특성인 세기, 위상, 편광을 동시에 모두 조절할 수 있는 유니버설 메타표면(universal metasurface)을 개발했다고 2일 밝혔다.
단일 소자로 빛의 세기, 위상, 편광을 모두 자유로이 조절할 수 있는 기술은 갈릴레이가 망원경으로 목성의 위성을 관측했던 광학 분야의 시초부터 제임스웹 망원경으로 130억 년 전 우주를 볼 수 있게 된 현재까지 풀리지 않는 난제로 남아있었다. 최근, 마이크로미터 이하 크기의 인공적인 구조체들을 유리 등 기존 소재 표면을 따라 배열해 빛의 특성을 높은 자유도로 조절할 수 있는 메타표면이 이러한 난제를 해결할 수 있는 기술이 될 수 있다는 기대감으로 관련 연구가 세계 여러 대학과 연구소, 기업에서 경쟁적으로 이뤄지고 있다.
이러한 메타표면은 현재 안경 두께의 천 분의 일인 수 마이크로미터 수준의 얇은 두께만으로도 렌즈의 역할을 할 수 있을 뿐만 아니라, 편광판, 컬러필터 등 기존 다른 광학 부품들의 기능도 동시에 수행할 가능성을 갖고 있어서 여러 종류의 광학필름이 필수적으로 들어가는 OLED 등 현재 상용 디스플레이의 두께를 현저히 줄이고 공정을 단순화시키거나 동영상 홀로그램, 증강현실(AR) 글래스, 라이다(LiDAR) 등의 새로운 응용의 광학 부품들에도 널리 적용될 수 있는 다재다능한 기술로 관심을 받고 있다.
하지만, 현재까지 보고된 메타표면들은 여전히 특정 색의 빛이 가지는 세 가지 특성 중 일부분만을 동시에 조절(예: 위상과 편광 또는 위상과 세기 등)할 수 있어, 하나의 소자로 세 특성을 완전히 조절하는 문제는 해결되지 못한 숙제로 남아있었다.
연구팀은 행렬과 관련된 수학적 원리에 착안해, 밀접한 두 층으로 이뤄진 유전체 메타표면이 빛의 세 가지 주요한 특성을 완벽히 조절할 수 있음을 이론적으로 밝히고, 이를 실험적으로 규명했다. 특히, 기존에 단일 소자로 불가능했던 벡터 홀로그램들을 제안하고 최초로 구현하는 데 성공했다. 학문적으로는 메타표면의 편광 선택적인 특성을 통해 맥스웰 방정식을 만족하는 두 가지 독립적인 임의의 3차원 전자기장 분포를 구현하는 방법을 최초로 보였다는 점에서 이번 연구는 큰 의의를 갖는다.
또한, 연구진은 유니버설 메타표면과 일반 렌즈의 조합만으로 임의의 편광 선택적인 선형 광학계의 구현이 가능함을 이론적으로 입증했는데, 이는 푸리에 변환 등을 포함한 복잡한 수학적 연산이나 데이터 처리를 광학적으로 간단하게 구현할 수 있음을 의미한다. 한 가지 예시로 연구팀은 확률론적 양자 CNOT 게이트 배열을 유니버설 메타표면과 렌즈만을 사용해 만들 수 있음을 보였으며, 이러한 원리는 양자 광학 뿐만 아니라, 광 통신, 광 신경망을 이용한 기계학습 기반 안면인식 등 여러 분야에서 활용될 수 있을 것으로 기대된다.
연구진은 "이번 연구를 통해 광학 분야의 오랜 난제였던 빛의 세기, 위상, 편광의 완전한 조절을 해결했을 뿐만 아니라, 이를 바탕으로 모든 편광 선택적인 선형 광학계 구현이 이론적으로 가능함을 밝혔다ˮ며, 이어 "이번 연구에서 제안한 메타표면의 가능성을 활용하여 기존 한계를 극복한 응용 광소자를 적극적으로 개발할 계획ˮ이라고 언급했다.
신소재공학과 장태용 박사와 정준교 박사과정생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 머티리얼스(Advanced Materials)' 지난 11월 3일 字 출판됐다. (논문명 : Universal Metasurfaces for Complete Linear Control of Coherent Light Transmission).
한편 이번 연구는 한국연구재단 과학기술분야 기초연구사업 및 원천기술개발사업의 지원을 받아 수행됐다.
2022.12.02
조회수 6973
-
고성능 스트레처블 고분자 반도체를 위한 신개념 계면공학법 개발
우리 대학 신소재공학과 강지형 교수, 미국 버클리 대학교 문재완 박사와 미국 스탠퍼드 대학교 제난 바오(Zhenan Bao) 교수 공동연구팀이 고분자 반도체와 회로기판의 경계면을 개선하는 새로운 계면 개질법을 개발하고, 이를 이용해 고성능 스트레처블(늘어나고 유연한) 고분자 반도체를 구현했다고 24일 밝혔다.
고분자 반도체는 기존의 실리콘 기반의 반도체와는 다르게 탄소를 기반으로 구성돼 있으며, 상대적으로 낮은 가격과 대면적 공정이 가능하다는 장점으로 인해 추후 유연 소자, 태양전지, OLED 등의 산업에 응용될 수 있는 차세대 반도체 재료다.
하지만 전기적 성능이 좋은 고분자 반도체는 작은 응력에도 쉽게 깨지는 문제점이 있었다. 일반적으로 고분자 반도체는 결정구조를 많이 가질수록 전기적 성능이 좋아지지만, 이러한 결정구조는 고분자 반도체가 응력에 취약해지게 만들기 때문이다.
이러한 문제점을 해결하기 위해, 기존에는 분자구조의 변화, 첨가제 등을 이용해 고분자 반도체 자체의 기계적 물성을 변화시키는 데 주로 초점을 맞춰왔다.
그러나 기존의 방법들은 기계적 물성이 향상되는 대신 전기적 성질이 악화되고, 각각의 고분자 반도체에 맞는 분자구조를 찾는데 많은 시간이 소요돼 고성능 스트레처블 고분자 반도체 구현에 적합하지 않았다.
우리 대학 강지형 교수와 스탠퍼드 대학교 제난 바오 교수 공동연구팀은 이번 연구에서 고분자 자체의 성질을 변화시키는 것이 아닌 기판과 고분자 반도체 사이의 계면을 개질하는 새로운 방법을 제시했다. 이러한 계면 공학법을 통해 고분자 반도체는 전기적 성질을 잃지 않으면서 기계적 물성이 크게 개선됐다.
공동연구팀은 이번 연구에서 응력에 의해 고분자 반도체가 손상을 받는 것은 고분자 박막과 기판 사이 계면에서의 박리 현상과 그로 인한 응력의 편재화(localization)에 의해 상당 부분 기인함을 발견했다.
공동연구팀은 이러한 문제점을 극복하기 위해 고분자 반도체 박막과 기판 사이의 계면에 새로운 고분자 층을 도입했다. 이 고분자 층은 반도체 박막과 기판 모두와 강하게 결합해 두 층의 박리현상과 응력의 편재화를 효과적으로 막아줬으며, 동역학적 결합(dynamic bond)을 할 수 있는 구조를 가져 추가적인 응력 분산 효과를 보였다.
이러한 계면 개질이 이뤄진 고성능 고분자 반도체는 최대 110%의 변형률까지 눈에 띄는 균열이 발견되지 않았으며, 이는 기존의 같은 반도체가 30% 변형률에서 상당한 균열을 보인 것에 비하면 획기적인 발전이다. 또한 이러한 접근법은 특정 고분자 반도체에 국한되지 않고, 다양한 고분자 반도체, 고분자 전도체, 금속 전도체에 모두 적용 가능하다는 장점이 있다.
신소재공학과 강지형 교수와 스탠퍼드 대학교 문재완 박사가 공동 제1 저자로 참여한 이번 연구 결과는 나노 재료 분야 저명 국제 학술지 `네이처 나노테크놀로지 (Nature Nanotechnology)' 11월 10일 字 온라인판에 게재됐다. (논문명 : Tough interface-enabled stretchable electronics using non-stretchable polymer semiconductors and conductors).
강지형 교수는 "이번 연구는 스트레처블 고분자 반도체 구현을 위한 설계 방향을 새롭게 제시했다는 점에서 의미가 있다ˮ고 하면서, "이번에 개발된 계면 공학법은 급속도로 성장하고 있는 유연소자 시장에 게임 체인저가 될 것으로 기대된다ˮ고 말했다.
한편 이번 연구는 한국연구재단의 우수신진연구사업, 나노소재기술개발사업 미래기술연구실, 삼성종기원 과제의 지원을 받아 수행됐다.
2022.11.25
조회수 6204
-
차세대 대용량 데이터 처리용 컴퓨팅 구현을 위한 고신뢰성 인공 시냅스 트랜지스터 개발
우리 대학 전기및전자공학부 최신현 교수 연구팀이 부가적인 회로 없이 소자의 특성을 이용해 인공지능(AI)의 학습 정확도를 높이면서, 높은 내구성을 바탕으로 신뢰성 높은 반복 동작이 가능하도록 설계된, 인간 뇌의 신경전달물질을 모사한 고신뢰성 인공 *시냅스 트랜지스터를 개발했다고 16일 밝혔다.
☞ 시냅스 트랜지스터(Synapse Transistor): 신경 세포간 연결부인 시냅스를 모사하는 트랜지스터 소자로, 연결 강도를 의미하는 가중치(Weight)를 채널의 저항(또는 컨덕턴스)값으로 나타내 이전 단에서 다음 단으로 흐르는 전류의 양을 조절한다.
최 교수 연구팀은 기존 낸드 플래시 메모리에 사용되는 구조를 이용하면서도, 기존 낸드 플래시의 단점인 낮은 내구성을 개선하는 방법을 차용해, 안정적인 시냅스 역할을 할 수 있는 트랜지스터를 개발했다.
낸드 플래시 메모리는 높은 전압을 이용해, 소자의 구성 물질을 손상시키는 방법(FN 터널링)으로 데이터를 저장하는 반면, 연구팀이 개발한 소자는 낮은 전압으로도 동작해, 기존 플래시 메모리에 비해 높은 내구성과 신뢰성을 확보했다.
최 교수 연구팀이 개발한 소자는 많은 데이터를 하나의 소자에 넣을 뿐 아니라 안정적으로 저장이 가능해, 부가적인 회로 없이도, AI의 학습 정확도를 획기적으로 높일 수 있다. 이를 통하여, 뉴로모픽 반도체 칩의 소형화 및 전력 소모 감소의 기반이 될 것으로 기대된다. 또한, 높은 학습 정확도와 더불어, 높은 내구성을 바탕으로 뉴로모픽 시스템에서, 실시간 온라인 데이터 학습에 적합한 시냅스 소자로 활발히 응용될 수 있을 것으로 기대된다.
전기및전자공학부 서석호, 김범진, 김동훈, 박승우 석사과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션스(Nature Communications)' 10월호에 출판됐다. (논문명 : The gate injection-based field-effect synapse transistor with linear conductance update for online training)
인공지능의 발전과 빅데이터 처리의 중요성이 대두되면서, 데이터 병목현상과 많은 에너지를 소모하는 현대의 폰 노이만 컴퓨팅 구조를 탈피하려는 연구가 활발히 진행되고 있다. 이 중 '뉴로모픽 컴퓨팅'을 위한 하드웨어 기술은 우리 뇌의 계산 알고리즘을 모사해 대용량의 데이터를 낮은 전력으로 효율적으로 처리할 수 있어 차세대 지능형 하드웨어 시스템으로서 각광받고 있다. 기존 상용화된 구조의 메모리 소자뿐만 아니라, 멤리스터(Memristor)를 비롯해 다양한 차세대 메모리 소자들이 뉴로모픽 컴퓨팅 구현을 위해 끊임없이 연구되고 있다. 이 중 3단자(게이트, 소스, 드레인 전극) 형태의 시냅스 트랜지스터는 기존 상용화된 반도체 공정을 적용하기 쉽고, 데이터를 정밀하게 제어할 수 있는 장점이 있다.
그러나 지금까지 주로 연구된 플래시 메모리 소자를 이용한 CTF(Charge Trap Flash) 구조의 시냅스 트랜지스터는 가중치를 변경하기 위해 높은 전압이 필요하며, 이로 인한 낮은 내구성, 비선형적인 가중치 변화라는 단점을 지닌다. 이는 전자가 이동할 때, 소자 구조상 존재하는 높은 에너지 장벽을 뚫고 지나가야 하는 것에서 기인한다. 이러한 낮은 내구성 및 비선형적 가중치 변화에 의한 낮은 학습 정확도 때문에 기존의 소자는 수천만 번 이상의 데이터를 쓰고 지우는 동작을 수행하기에 부적합해 실시간 온라인 학습에 적용하기에 어려움이 존재해왔다.
최신현 교수 연구팀은 이러한 한계점을 해결하기 위해 FN 터널링이 아닌, 열전자 방출 현상을 이용해, 전자를 게이트 전극에서 전하 저장층으로 이동시키는 방법으로 동작하는 소자를 고안했다. 이 방법은 전자가 높은 에너지 장벽을 뚫고 지나가는 것이 아닌, 낮은 에너지 장벽 위로 넘어서 이동하는 방법이므로, 낮은 전압을 이용하면서 이상적인 선형적 형태로 가중치를 업데이트할 수 있다. 또한, 장벽층을 손상시키지 않기 때문에 높은 내구성을 지니며, 2억 번 이상의 시냅스 업데이트 동작을 증명했다.
추가적으로, 연구팀은 제작한 열전자 방출 기반 시냅스 트랜지스터를 이용해 손글씨 숫자 이미지 데이터(MNIST, Modified National Institute of Standards and Technology database)를 학습한 후, 이를 바탕으로 무작위의 손글씨 이미지를 분류한 결과 약 93.17%의 높은 정확도를 달성했다.
제1 저자인 전기및전자공학부 서석호 석사과정은 "이번에 개발한 고신뢰성 인공 시냅스 트랜지스터는 선형적인 가중치 업데이트와 높은 내구성을 바탕으로 기존 시냅스 트랜지스터가 지닌 온라인 학습 한계에 대한 솔루션이 될 수 있음을 기대한다. 특히, 기존 CMOS 공정과 호환을 할 수 있고 가장 일반적인 트랜지스터인 금속 산화막 반도체 전계효과 트랜지스터(MOSFET, Metal-Oxide-Semiconductor Field Effect Transistor)과 구조 및 동작이 유사하므로 뉴로모픽 하드웨어 시스템에 적용하는데 다른 차세대 메모리 소자에 비해 실현 가능성이 보다 높을 것으로 생각된다ˮ며 "이 연구를 바탕으로 계속해서 뉴로모픽 컴퓨팅을 위한 신소자 기술 개발에 힘쓰고 싶다ˮ라고 말했다.
공동 제1 저자인 전기및전자공학부 박승우 석사과정은 “뉴로모픽의 관점뿐만 아니라, 기존 낸드 플래시의 낮은 내구성이라는 한계점을 개선하는 연구의 발판이 될 수 있을 것으로 기대된다”며 이 연구의 또 다른 의의를 제시했다.
한편 이번 연구는 한국연구재단, 한국산업기술평가관리원, 나노종합기술원, 삼성미래육성사업의 지원을 받아 수행됐다.
2022.11.16
조회수 6826
-
전기및전자공학부 최신현 교수 연구팀, Nature Communications Editor's highlight 선정
전기및전자공학부 박시온 연구원, 정학천 연구원, 박종용 연구원 및 최신현 교수는 점진적 산소 농도를 갖는 금속산화물 층을 활용하여 우리 뇌의 뉴런 세포의 동작을 모사하는 고 신뢰성 차세대 저항 변화 소자(멤리스터) 어레이를 개발 하였으며, 올해 Nature Communications에 출판됐다.
위 연구는 최근 Nature Communications의 Editor's highlight 논문에 선정됨에 이어, Featured Image로 선정되어 홈페이지 메인을 장식했다.
관련 링크 : https://www.nature.com/ncomms/
또한 본 연구는 2022 가을 KAIST 공과대학 breakthrough 연구성과로 소개된 바 있다.
(논문명 : Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing)
이번 연구는 삼성미래육성사업의 지원을 받아 수행됐다.
2022.10.31
조회수 5741
-
빛 소용돌이의 역학적 제어 구현
우리 대학 물리학과 서민교 교수, 김동하 박사, 신소재공학과 신종화 교수 공동연구팀이 자기장에 의해 자발적으로 생성되고 동역학적 움직임을 보이는 빛 소용돌이(optical vortex)를 구현했다고 13일 밝혔다.
빛 소용돌이는 전기장의 위상 분포의 공간적인 꼬임으로서, 기초 물리량중 하나인 궤도 각운동량을 전자기파에 싣는 역할을 수행한다.
전자기파의 궤도 각운동량은 고전적 또는 양자화된 회전 특성을 광학 기술에 도입할 수 있기에, 광 집게, 초고해상도 현미경, 고차원 광통신, 양자 얽힘 등 다양한 분야로의 응용으로 주목받아 왔다.
그러나 기존의 빛 소용돌이/궤도 각운동량 생성은 나선형의 구조적 특이점을 갖는 소자를 통해서만 구현되어 왔기에, 역학적 변화를 가할 수 없는 수동적 형태로서만 활용되어 왔다.
연구팀은 구조적 특이점 없이도 빛 소용돌이가 자발적으로 생성될 수 있는 플랫폼을 다층 박막 구조를 통해 구현하였다. 이 플랫폼은 반사율이 이상적으로 0이 되는 수학적 특이점을 가지는 위상학적 상(相)을 실 공간에 만들어 내며, 특이점을 중심으로 빛 소용돌이가 나타난다.
다층 박막 구조내의 자기 광학 효과를 이용하여, 위상학적 상의 생성과 소멸이 외부 자기장에 의해 제어된다. 나아가, 빛 소용돌이들이 외부 자기장 하에서 위상전하에 따라 다른 양상의 움직임들을 보이거나 빛 소용돌이-반(反)소용돌이 쌍이 생성되는 등의 준입자적 (quasiparticle) 양상을 관측했다.
연구팀이 개발한 플랫폼은 구성 물질에 따라 전기장이나 열에 의한 구동도 가능하며, 제작 방식의 단순화로 인해 여러 다양한 능동적 위상 광학 소자 개발 및 빛 소용돌이 생성 소자의 개발이 기대된다.
서민교 교수는 "자발적 생성 및 역학적 움직임을 보이는 등의 준입자적 양상을 가지는 빛 소용돌이가 구현될 수 있음을 보였다. 광학 시스템내의 다양한 위상학적 전자기장 텍스처와 그들의 준입자적 상호작용에 대한 연구의 시작점이 될 것이 기대된다.ˮ라고 말했다.
김동하 박사가 제1 저자이자 공동 교신저자로 참여한 이번 연구는 국제 학술지 `네이처 (Nature)' 10월 13일 온라인 판본에 출판됐다. (논문명 : Spontaneous generation and active manipulation of real-space optical vortices).
이번 연구는 한국연구재단 중견연구, 기초연구실, 대학중점연구소지원사업의 지원을 받아 수행됐다.
2022.10.13
조회수 5164
-
전자장비의 높은 전력 소모 한계를 뛰어넘는 저전력 고성능 다이오드 소자 최초 개발
우리 대학 물리학과 조성재 교수 연구팀이 기존 흔히 쓰이는 쇼트키 다이오드(Schottky diode)가 갖는 열적 거동의 한계를 뛰어넘는 저전력 정류 소자를 세계 최초로 개발하는 데 성공했다고 25일 밝혔다.
조 교수 연구팀은 단층 흑연, 즉, 그래핀(graphene)이 가지는 선형적 분산 관계의 전자 띠 구조 (linear dispersion band structure)를 이용해 열적 거동 한계(thermionic limit)를 극복한 다이오드를 최초로 구현하는 데 성공했다.
다이오드 전극으로 기존 다이오드에서 활용되었던 금속을 사용하는 대신, 그래핀을 활용함으로써 기존 다이오드의 이상지수 (ideality factor)의 한계를 뛰어넘는 초 이상적(super-ideal) 저전력 정류 소자를 개발하는 데 성공할 수 있었다.
물리학과 조성재 교수 연구실의 명규호 박사, 신원길 박사, 성경환 박사과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이쳐 커뮤니케이션스 (Nature Communications)' 7월 온라인판에 출판됐다. (논문명 : Dirac-source diode with sub-unity ideality factor).
현대 정보화 기술 발전에 따라 트랜지스터 소형화 및 집적도 증가가 꾸준히 이뤄졌고, 열 전하 방출(thermionic emission)의 물리적 특성에 의해 제한되는 문턱전압이하 스윙(subthreshold swing, SS, 트랜지스터에서 전류를 10배 증가시키는 데 필요한 전압의 값)이 60mV/dec 라는 한계를 뛰어넘는 트랜지스터에 대한 연구가 이뤄져왔다. 다이오드는 믹서, 셀렉터, 스위치, 광센서, 태양광 소자 등 많은 전자 장비에 쓰임에도 불구하고 열 전하 방출에 의한 열적 거동 한계를 뛰어넘는 연구는 이뤄지지 않고 있다.
반도체 물질과 금속이 접합됐을 때 두 물질의 계면에서 형성되는 쇼트키 장벽에 의해 정류 현상이 일어나는 쇼트키 다이오드의 성능은 크게 정류비(rectifying ratio, 온(on) 상태와 오프(off) 상태 전압의 비)와 이상 지수 (ideality factor)로 나눌 수 있다. 쇼트키 다이오드의 이상 지수는 다이오드의 전류를 10배 증가시키는 데 필요한 전압의 값과 연관된 수치이며, 열적 거동 한계로 인해 상온에서의 일반적인 쇼트키 다이오드는 이상 지수 1 이상의 값을 반드시 가지는 것으로 알려져 있다.
연구팀은 이번 연구에서 단층의 이황화 몰리브덴에 일함수가 다른 단층 그래핀과 다층 그래핀의 비대칭적 접촉을 통해 계면 문제를 해결한 쇼트키 다이오드를 구현했다. 단층의 흑연, 즉, 그래핀은 선형적 분산 관계의 전자 띠 구조를 가지고 있는 물질로, 일반적인 금속과는 달리 에너지에 따라 전하 밀도가 급격히 증감하는 성질을 갖고 있다.
이번 연구에서 새롭게 개발한 그래핀 소스를 이용한 디랙 소스(Dirac-source) 다이오드는 넓은 전류 작동범위 (1-10,000배 전류 범위)에서 이상 지수의 값이 1 미만을 갖는 열적 거동의 한계를 극복한 성능을 달성했으며, 다이오드의 온(on) 상태와 오프(off) 상태의 비율인 정류비가 1억(108) 이상으로, 기존에 보고되어왔던 다이오드보다 2-10배 낮은 전압으로도 기존의 다이오드보다 높은 전류의 정류 작동이 가능함을 보였다.
연구팀이 1 미만의 이상 지수를 갖는 고성능 저전력 쇼트키 다이오드를 개발한 것은 세계 최초로서 2차원 물질 기반의 저전력 다이오드 소자가 미래의 저전력 트랜지스터의 개발과 발맞춰 다양한 저전력 집적회로의 구성이 가능해질 수 있음을 의미한다.
물리학과 조성재 교수는 "이번 연구는 세계 최초로 물리적인 열적 거동 한계를 뛰어넘는 저전력, 고성능의 다이오드 소자를 발명한 것으로, 최소한의 전압과 전력으로 태양광 소자나 광검출기와 같은 미래 산업에서의 활용성이 높을 것으로 기대한다ˮ라고 말했다.
한편 이번 연구는 한국연구재단의 지능형 반도체 선도기술 개발사업과 중견연구자지원사업의 지원을 받아 수행됐다.
2022.08.25
조회수 7422
-
뇌 모방 스핀 소자 핵심기술 개발
우리 대학 물리학과 김갑진 교수와 신소재공학과 박병국 교수 공동연구팀이 뇌 모방 소자로 개발 중인 스핀토크발진기 주파수 대역을 증대시킬 핵심 기술을 개발했다고 18일 밝혔다.
두 연구팀은 비자성체/강자성체/산화물 3중층 구조의 자기발진소자에 게이트 전압을 인가하여 GHz 수준의 발진주파수 조절에 성공하였다. 이는 기존 기술보다 약 10배 이상 향상된 결과로 스핀토크 기반 뉴로모픽 소자가 가진 학습 효과의 휘발성, 좁은 주파수 대역 등의 문제를 해결할 핵심 기술로 제안되었다.
본 소자는 게이트 전압이 영구적으로 수직자기이방성을 변화시켜 소자에 전류가 흐르지 않아도 학습 내용이 저장되어 있는 비휘발성 특성을 가지고 있으며 그 폭이 GHz 수준으로 넓어 뉴로모픽 소자 활용성을 증대시켜줄 것으로 기대된다.
신소재공학과 최종국 박사과정과 물리학과 박재현 박사가 공동 제1저자로 참여하고, KAIST 신소재공학과 강민구 연구원, 고려대학교 이재성 교수와 김도윤 연구원, KAIST 물리학과 이경진 교수가 공동저자로 참여한 본 논문은 국제학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’에 6월 30일 온라인 게재됐다. (논문명 : Voltage-driven gigahertz frequency tuning of spin Hall nano-oscillators)
기존의 스핀토크발진기 기반 뉴로모픽 소자는 학습 대상을 주파수 대역에 대응시켜 학습하는 소자로, 전류가 흐르지 않으면 학습 내용이 사라지는 휘발성과 200MHz 이내의 제한적인 학습 가능 대역폭을 가지고 있어 이에 대한 개선이 필요한 상황이다.
이번 연구에서 연구팀은 게이트 전압 인가가 소자의 수직자기이방성을 영구적으로 조절하고 이를 통해 자기공명주파수가 조절된다는 사실을 이용하여 기존 보고의 10배 이상인 2.1 GHz 이상의 광대역 조절 가능한 발진기를 실현하였다. 본 기술은 스핀-홀 나노 발진기 기반 뉴로모픽 소자 개발에 핵심 기술로 활용될 것이라 기대된다.
한편 이번 연구는 KAIST 글로벌 특이점 연구사업, 삼성미래기술육성사업, 한국연구재단 선도연구센터/중견연구자지원사업의 지원을 받아 수행됐다.
2022.07.29
조회수 7103
-
양자컴퓨팅 한계를 극복하는 3차원 반도체 제어/해독 소자 집적 기술 개발
우리 대학 전기및전자공학부 김상현 교수 연구팀이 *모놀리식 3차원 집적의 장점을 활용해 기존 양자 컴퓨팅 시스템의 대규모 큐비트 구현의 한계를 극복하는 3차원 집적된 화합물 반도체 해독 소자 집적 기술을 개발했다고 24일 밝혔다. ‘모놀리식 3차원 집적 초고속 소자’ 연구 (2021년 VLSI 발표, 2021년 IEDM 발표, 2022년 ACS Nano 게재)를 활발하게 진행해 온 연구팀은 양자컴퓨터 판독/해독 소자를 3차원으로 집적할 수 있음을 처음으로 보였다.
☞ 모놀리식 3차원 집적: 반도체 하부 소자 공정 후, 상부의 박막층을 형성하고 상부 소자 공정을 순차적으로 진행함으로써 상하부 소자 간의 정렬도를 극대화할 수 있는 기술로 궁극적 3차원 반도체 집적 기술로 불린다.
우리 대학 전기및전자공학부 김상현 교수 연구팀의 정재용 박사과정이 제1 저자로 주도하고 한국나노기술원 김종민 박사, 한국기초과학지원연구원 박승영 박사 연구팀과의 협업으로 진행한 이번 연구는 반도체 올림픽이라 불리는 ‘VLSI 기술 심포지엄(Symposium on VLSI Technology)’에서 발표됐다. (논문명 : 3D stackable cryogenic InGaAs HEMTs for heterogeneous and monolithic 3D integrated highly scalable quantum computing system).
VLSI 기술 심포지엄은 국제전자소자학회(International Electron Device Meetings, IEDM)와 더불어 대학 논문의 채택 비율이 25%가 되지 않는 저명한 반도체 소자 분야 최고 권위 학회다.
양자컴퓨터는 큐비트 하나에 0과 1을 동시에 담아 여러 연산을 한 번에 처리할 수 있는 차세대 컴퓨터로, 최근에 IBM과 구글 등의 글로벌 기업이 양자 컴퓨터 제작에 성공하면서 양자 컴퓨터가 차세대 컴퓨터로 주목받고 있다.
기존 컴퓨터의 정보 단위인 `비트'의 경우 1 비트당 1개의 값만 가지는 것에 반해, 양자 컴퓨터의 정보 단위인 `큐비트'는 1 큐비트가 0과 1의 상태를 동시에 가진다. 따라서 비트에 비해 큐비트는 2배 빠른 계산이 가능하고, 2큐비트, 4큐비트, 8큐비트로 큐비트 수가 선형적으로 커질수록 처리 계산 속도는 4배, 8배, 16배로 지수적으로 증가한다. 따라서 많은 수의 큐비트를 활용한 대규모 양자컴퓨터 개발이 매우 중요하다. IBM에서는 큐비트 수를 127개로 늘린 `이글'을 작년에 발표했고, IBM 로드맵에 따르면 오는 2025년까지 4,000큐비트, 10년 이내에 10,000큐비트 이상을 탑재한 대규모 양자컴퓨터 개발을 목표로 하고 있다.
특히 큐비트의 수가 많은 대규모 양자컴퓨터 개발을 위해서는 큐비트를 제어/해독하는 소자에 대한 개발이 필수적이다. 기존 컴퓨터와 다르게 양자컴퓨터는 통상 –273 oC 내외의 극저온에서 동작하는 큐비트 하나당 최소 하나의 제어와 해독 연결이 필요하다. 현재는 큐비트 수가 많지 않아 극저온에서 동작하는 큐비트와 상온의 측정 장비를 긴 동축케이블로 연결해 제어/해독하는 방식을 사용하고 있다.
하지만 수천 혹은 수만 개 이상의 큐비트를 활용하는 대규모 양자 컴퓨팅에서 이러한 방식을 활용하면 양자 컴퓨터 크기가 매우 커지고 긴 연결 거리로 인해 신호 손실도 커 대규모 양자컴퓨터 구현이 매우 어려워진다. 따라서 큐비트를 제어/해독에 활용할 수 있는 저전력, 저잡음, 초고속 특성의 극저온 소자를 큐비트와 일대일로 연결할 수 있는 시스템 구성이 매우 중요하다.
연구팀은 이러한 문제 해결을 위해 큐비트 회로 위에 저전력, 저잡음 초고속 특성이 매우 뛰어난 *III-V 화합물 반도체 *고전자 이동 트랜지스터(HEMT)를 3차원으로 집적해 수천 혹은 수만 개의 큐비트에 아주 짧은 거리에서 일대일로 연결 가능한 구조를 제시했다.
☞ III-V 화합물 반도체: 주기율표 III족 원소와 V족 원소가 화합물을 이루고 있는 반도체로 전하 수송 특성 및 광 특성이 매우 우수한 소재.
☞ HEMT: High-Electron Mobility Transistor
연구팀은 250oC 이하에서 상부 제어/해독 소자를 집적하는 웨이퍼 본딩 등의 초저온 공정을 활용해 이후 하부 큐비트 회로의 성능 저하 없이 3차원 집적을 할 수 있도록 했다.
연구진은 이러한 3차원 집적 형태의 제어/해독 소자를 최초로 제시 및 구현했을 뿐만 아니라 소자의 성능 면에서도 극저온에서 세계 최고 수준의 차단주파수 특성을 달성했다.
김상현 교수는 "이번 기술은 향후 대규모 양자컴퓨터의 제어/판독 회로에 응용이 가능할 것으로 생각한다ˮ라며 "모놀리식 3차원 초고속 소자의 경우 양자컴퓨터뿐만이 아니라 6G 무선통신 등 다양한 분야에서 응용할 수 있어 그 확장성이 매우 큰 기술이며 앞으로도 다양한 분야에서 활용할 수 있도록 후속 연구에 힘쓰겠다ˮ라고 말했다.
한편 이번 연구는 한국연구재단 지능형반도체기술개발사업, 경기도 시스템반도체 국산화 연구지원 사업, 한국기초과학지원연구원 분석과학연구장비개발사업(BIG사업) 등의 지원을 받아 수행됐다.
2022.06.24
조회수 7532
-
차세대 뉴로모픽 구현을 앞당길 멤리스터 기반 고신뢰성 인공 뉴런(신경세포) 어레이 개발
우리 대학 전기및전자공학부 최신현 교수 연구팀이 뛰어난 안정성과 집적도가 높은 우리 뇌의 뉴런 세포의 동작을 모사하는 *고신뢰성 차세대 저항 변화 소자(멤리스터) 어레이를 개발했다고 7일 밝혔다.
☞ 멤리스터(Memristor): 입력에 따라 소자의 저항 상태가 바뀌는 소자. 입력 전압의 크기와 길이 등에 따라 소자 내부의 저항 값이 바뀌며 정보를 저장하거나 처리한다.
최 교수 연구팀은 기존 멤리스터의 불안정한 특성을 보이는 필라멘트 기반 방식에서 벗어나, 점진적인 산소 농도를 갖는 금속산화물을 이용해 안정적이고 신뢰성 높은 인공 뉴런 어레이를 발표하였다. 기존의 멤리스터 소자는 안정성이 낮고 응용에 사용하기 위한 어레이 형태로 제작하기 힘든 문제점이 있지만, 최 교수 연구팀이 개발한 소자는 뛰어난 안정성을 갖출 뿐만 아니라, 자가 정류 특성과 높은 수율을 갖춰 대용량 어레이 형태로 집적될 수 있다. 따라서 집적도가 높고 안정적인 뉴로모픽 시스템을 구현할 때 활발히 사용될 수 있을 것으로 기대된다.
전기및전자공학부 박시온, 정학천 석박사통합과정, 박종용 석사과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션스(Nature Communications)' 6월호에 출판됐다. (논문명 : Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing)
인간의 뉴런은 들어오는 신호의 크기와 주파수에 따라 스파이크를 내보내거나 내보내지 않는 방식으로 정보를 처리한다. 현대의 컴퓨터가 빅데이터를 처리하는데 많은 에너지를 소모하는 것과 다르게, 사람의 뇌는 매우 적은 에너지만으로도 많은 양의 데이터를 빠르게 처리할 수 있다. 이러한 이유로, 신경의 효율적인 신호전달 시스템을 모사하여 컴퓨팅에 사용하는 `뉴로모픽' 하드웨어 기술이 활발히 연구되고 있다. 멤리스터 소자는 고집적, 고효율로 뉴로모픽 컴퓨팅 시스템을 구현할 수 있는 차세대 소자로 주목받고 있다.
그러나 현존하는 멤리스터로 실용적인 대용량 인공신경망 컴퓨팅(Large-scale Neural Computing) 시스템을 구현하기에는 단위 소자의 신뢰성 및 수율의 문제가 있다. 기존의 멤리스터는 절연체 내부에서 필라멘트가 마치 번개와 같이 무작위적으로 생성되고 사라지며 동작하기 때문에 제어하기가 힘들어 낮은 신뢰성을 보이게 되며, 이로 인해 안정적인 뉴로모픽 시스템을 구현하는 데 한계점으로 지적되어 왔다.
최신현 교수 연구팀은 이러한 무작위적인 필라멘트 문제를 해결하기 위해 필라멘트 기반 저항 변화가 아닌, 산소 이온의 점진적인 이동을 이용해 저항 변화 소자를 구현함으로써 소자의 신뢰성 확보하였다. 또한 단위 소자를 통한 어레이 제작 기술을 확보하여, 400개의 고신뢰성 인공 뉴런 소자를 100% 수율의 크로스바 어레이 형태로 집적하는 데 성공했다.
연구팀은 제작한 고신뢰성 인공 뉴런 어레이 기반 뉴로모픽 시스템을 이용해 항균성 단백질(anti-microbial peptide) 아미노산 서열을 학습하고, 이를 바탕으로 새로운 항균성 단백질을 만들어내는 뉴로모픽 시스템을 구현하였다.
제1 저자인 박시온 석박통합과정 연구원은 "이번에 개발한 고신뢰성 인공 뉴런 소자는 안정적인 특성과 높은 수율을 바탕으로 차세대 멤리스터 기반 뉴로모픽 컴퓨팅 시스템 구현에 기여할 수 있을 것으로 기대되며, 개발된 인공 뉴런 소자를 이용해 촉각 등을 감지하는 로봇의 인공 신경계, 시계열 데이터를 처리하는 축적 컴퓨팅(reservoir computing) 등 다양한 응용을 가능케 하여 미래 전자공학의 기반이 될 것으로 기대한다ˮ라고 말했다.
한편 이번 연구는 삼성미래육성사업의 지원을 받아 수행됐다.
2022.06.07
조회수 8174
-
안정적인 형태의 액체금속 프린팅 기술 개발
우리 대학 신소재공학과 스티브 박, 전기및전자공학부 정재웅 교수 공동 연구팀이 안정적인 형태의 액체금속을 고해상도로 프린팅할 수 있는 기술을 개발했다고 25일 밝혔다.
액체금속은 높은 전기전도성과 액체와 같은 변형성으로 인해 유연 및 신축성 전자소자에 다양하게 적용돼왔다. 하지만 액체 상태가 갖는 불안정성과 높은 표면장력으로 인해 직접적인 접촉을 요구하는 전극이나 고해상도를 요구하는 전자소자의 배선으로 사용하는 것에는 한계가 있었다.
이를 극복하기 위해 액체금속을 6~10㎛ (마이크로미터) 크기의 입자 형태로 분쇄해 안정적인 형태로 만들어 전자소자에 적용하는 연구가 진행돼왔지만, 이 경우에는 표면에 일어난 산화로 인해 기존의 높은 전기전도성을 상실한다는 단점이 존재했다. 이러한 액체금속 입자를 전기소자에 사용되기 위해서는 기계적, 화학적 변성을 통해 표면에 존재하는 산화막을 제거해 전기전도성을 다시 확보하는 과정이 필요했다.
이 문제를 해결하기 위해 연구팀은 프린팅 과정에서 노즐과 기판 사이에서 유도된 반월판(meniscus)에서 촉진된 증발로 현탁액(suspension)의 조성을 바꾸면서 화학적 변성을 유도할 수 있는 시스템을 개발했다. 먼저 프린팅에 사용되는 현탁액을 물과 물보다 끓는점이 높은 약산(아세트산)을 이용해 증발함에 따라 점점 강한 산성을 보이게 만들었다. 추가로 연구팀은 기판에 약 60℃의 열을 가해, 잉크의 증발과 산의 활성 및 화학적 변성을 촉진했다. 이를 통해 프린팅된 액체금속 입자 배선의 경우에는 별도의 전기적 활성 과정 없이 금속과 비슷한 수준의 높은 전기전도도(1.5x10^6 S/m)를 보이는 것을 확인했다.
연구팀은 액체금속 입자의 표면에 전해질을 붙여 기계적, 화학적 안정성을 향상해 프린팅 과정에서 발생할 수 있는 막힘(clogging) 현상을 방지하고, 액체금속 입자 간에 연결(bridging)을 통한 신축성을 부여했다. 프린팅된 액체금속 입자 기반 배선은 약 500%까지 늘려도 저항이 크게 변하지 않아 다양한 신축성 소자에 사용될 수 있는 것으로 기대된다.
프린팅을 통해 다양한 기판에 여러 형태로 빠르게 증착할 수 있어 여러 맞춤형 소자에 적용될 수 있다. 특히 프린팅된 액체금속 입자의 기계적, 화학적 안정성으로 인해 기존 액체금속으로는 불가능했던 전극으로서의 사용이 가능함을 보였다.
또 전해질이 부착된 액체금속은 생체 친화성이 우수해, 피부와 직접 닿을 수 있는 생체전극으로도 사용될 수 있다. 연구팀은 액체금속을 상용화된 의료용 테이프 위에 증착해, 사용자의 신체에 맞춰 최적화된 EMG 센서(근육 움직임으로 인한 미세한 전기신호를 감지하는 센서)를 제작했다. 나아가서 생분해성 기판 위에 액체금속 전극을 증착해 사용 이후에 의료용 폐기물이 나오지 않는 ECG 센서(심전도 센서)로의 응용 가능성도 제시했다.
신소재공학과 이건희(스티브 박, 정재웅 교수 공동 지도), 이예림 박사과정 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션스(Nature Communications)' 온라인 버전에 5월 12일 字 출판됐다. (논문명 : Rapid meniscus-guided printing of stable semi-solid-state liquid metal microgranular-particle for soft electronics)
스티브 박 교수는 "최근 주목받고 있는 액체금속 입자 기반 현탁액의 새로운 적용 가능성을 보여준 의미 있는 결과ˮ라고 말했다. 정재웅 교수는 "헬스케어를 위한 웨어러블, 임플란터블 모니터링 전자소자를 포함한 다양한 유연 및 신축성 전자소자에 핵심 기술로 활용될 수 있을 것으로 기대된다ˮ 라고 말했다.
2022.05.26
조회수 6795
-
기존 기술의 한계를 뛰어넘는 새로운 메타표면 설계 방법 제시
우리 대학 전기및전자공학부 장민석 교수 연구팀이 미국 위스콘신 대학 빅터 브라 교수 연구팀과의 공동연구를 통해 기존 한계를 뛰어넘는 360°동적 위상변조가 가능한 메타표면 설계 기술을 개발했다고 2일 밝혔다.
메타표면은 자연상에 존재하지 않는 물성을 띄도록 새롭게 만든 매우 얇은 2차원 평면구조를 뜻한다. 라이다(LIDAR), 분광기, 투명 망토, 홀로그램 등 미래 기술을 구현할 수 있는 파면 제어 기술의 강력한 후보임과 동시에 나노미터 수준의 소자 크기로 인해 기존의 전자회로 칩에 집적할 수 있어 주목받고 있는 기술이다.
메타표면을 이용해 파면 제어 기술을 구현하기 위해서는 빛의 진폭과 위상을 제어할 수 있는 능력이 필수적이다. 그러나 동적으로 빛의 위상을 360°제어하는 기술은 구현 난이도가 매우 높아, 기존 연구에서는 위상을 제어하는 데 성공하더라도 얻을 수 있는 빛의 진폭이 매우 낮다는 한계가 있었다.
전기및전자공학부 장민석 교수와 빅터 브라 미국 위스콘신 대학 교수 연구팀은 이러한 한계를 극복할 수 있는 360°동적 위상변조가 가능하면서도 크고 일정한 빛의 진폭을 얻을 수 있는 메타표면 설계 기술을 개발했다.
동적 360°위상 제어 문제가 매우 어려운 이유는 메타표면의 동작원리와 관련이 있다. 메타표면은 보통 입사하는 빛이 메타표면 구조와 상호작용하여 일으키는 진동에 기반해 동작하는데, 동적 360°위상 제어를 하기 위해서는 광학 진동 주파수는 크게 변해야 하는 반면 진동 폭은 최소화된 채로 유지돼야 한다. 그러나 전기적으로 메타표면의 광학 진동 주파수를 조정하기 위해서는 메타표면에 들어오고 나가는 전자의 흐름을 원하는 대로 조절할 수 있어야 하는데, 이것은 필연적으로 진동 폭을 크게 만들어 두 가지 조건을 동시에 만족하기 어렵게 한다.
또한, 광학에서의 위상과 진폭은 비선형적으로 복잡하게 얽혀 있어 일반적으로 위상을 조절할 때 진폭을 일정하게 유지하는 것이 매우 어렵다.
연구팀은 특수한 성질을 가진 두 가지 광학 공진을 이용해 이러한 문제를 해결했다. 하나는 위상과 진폭 특성이 분리되어 있어 위상이 변할 때 큰 진폭을 유지할 수 있는 광학 공진이고, 다른 하나는 위상 변조 범위가 커 360°제어를 가능케 하는 광학 공진이다. 연구팀은 이 두 가지 광학 공진을 결합함으로써, 동적 360°제어가 가능하면서도 일정한 진폭을 유지할 수 있는 메타표면을 구현했다.
연구팀이 개발한 기술은 소자의 구조와 공진의 특성을 조절함에 따라 어떤 주파수 영역에도 적용 가능한 장점이 있다. 연구팀은 개발한 기술을 사용해 중적외선 대역에서 동작하는 그래핀 나노 리본 기반 메타표면 소자를 설계했으며, 65%의 일정한 반사계수를 유지하면서도 540°의 위상변조가 가능함을 전자기 시뮬레이션을 통해 확인했다.
장민석 교수는 "이번 연구를 통해 기존의 동적 위상변조 기술의 한계를 뛰어넘는 새로운 메타표면 설계 방법을 제시했다ˮ라며 "파면 제어 기술을 활용한 라이다와 홀로그램 등 차세대 광학 소자 개발에 도움을 줄 것으로 기대된다ˮ라고 말했다.
우리 대학 김주영, 박주호 연구원이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션즈 (Nature Communications)'에 4월 19일 字로 출판됐다. (논문명 : Full 2π Tunable Phase Modulation Using Avoided Crossing of Resonances).
2022.05.02
조회수 7592
-
다공성 나노소재를 활용한 고신뢰성 시냅스 소자 개발
우리 대학 전기및전자공학부 최신현 교수 연구팀이 다공성 구조를 갖는 *차세대 저항 변화 소자(멤리스터)를 활용해 우리 뇌의 신경전달물질 시냅스를 모방한 고신뢰성 소자(시냅스 소자)를 개발했다고 25일 밝혔다.
☞ 멤리스터(Memristor): 메모리와 레지스터의 합성으로 이전의 상태를 모두 기억하는 메모리 소자. 전원공급이 끊어졌을 때도 직전에 통과한 전류의 방향과 양을 기억한다.
최 교수 연구팀은 기존 양이온 저항 변화 방식과 음이온 저항 변화 방식을 혼합한 하이브리드 형태로 매개체를 구성해, 비정질로 이루어진 다공성 구조 및 버퍼 층을 이용해 고신뢰성 시냅스 소자를 설계했다. 해당 구조는 저온 공정을 통해 형성함으로써 기존 실리콘 상보형 산화금속 반도체(CMOS)에 집적 및 적층 가능해 집적도 높은 대용량 로직/인공신경망 컴퓨팅 시스템 제작에 활발히 응용될 수 있을 것으로 기대된다.
우리 대학 최상현 연구원과 박시온 연구원이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `사이언스 어드밴시스(Science Advances)' 1월호에 출판됐다. (논문명 : Reliable multilevel memristive neuromorphic devices based on amorphous matrix via quasi-1D filament confinement and buffer layer)
멤리스터는 저전력으로 인메모리(In-memory) 컴퓨팅, 가중치 저장, 행렬 계산 능력(vector-matrix multiplication) 등으로 차세대 논 폰노이만 구조에 쓰일 수 있는 차세대 소자로 주목받고 있다.
그러나 현존하는 멤리스터로 실용적인 대용량 인공신경망 컴퓨팅 (Large-scale neural computing) 시스템을 만들기 위해서는 멤리스터 단위 소자의 신뢰성을 확보할 수 있는 연구가 필요하다.
소자의 신뢰성 저하는 전통적으로 비정질 물질 내에 무작위적으로 움직이는 결함 및 이온의 배치에서 기인한다. 최신현 교수는 이러한 문제를 단결정 물질을 사용해 결함 및 이온의 무작위적인 움직임을 제어함으로써 소자 신뢰성 확보에 성공한 바 있다. 하지만 단결정을 이용하는 문제 및 제작에 고온 공정이 필요하므로 기존 실리콘 CMOS에 집적 및 적층이 어려워 집적도를 높이는 데 한계가 있었다.
연구팀은 이번 연구를 통해 기존의 비정질 물질을 사용해 신뢰성을 확보할 수 있는 다공성 구조의 양이온 제어층 및 버퍼층으로 이용되는 음이온 제어층을 설계했고, 이를 통해 적층 및 집적 가능한 소자를 제작했다. 연구팀은 기존 소자 대비 6배 이상 신뢰성을 개선할 수 있었으며, 이와 동시에 인공 시냅스 소자로서 필요한 다른 특성들도 확보할 수 있었다.
연구를 주도한 최신현 교수는 "이번에 개발한 고신뢰성 시냅스 소자는 안정적인 대용량 어레이 제작의 방향성을 제시할 수 있을 것으로 기대되며, 차세대 신소자를 기반으로 한 뉴로모픽 컴퓨팅 등 빅데이터 처리가 필요한 응용 분야에 적합한 플랫폼을 구축하는 데에 기여할 수 있기를 바란다. 또한, 미국, 대만 기업에서 활발히 진행 중인 차세대 신소자 기반 기술 개발이 국내에서도 활성화되기를 희망한다ˮ며 "다른 물질계에서도 구조적으로 적용할 수 있는 방법론을 제시함으로써 활발히 연구가 진행될 것으로 생각된다ˮ고 연구의 의의를 설명했다.
한편 이번 연구는 한국연구재단, 나노종합기술원, 삼성미래기술육성재단의 지원을 받아 수행됐다.
2022.01.25
조회수 9559