본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%95%94%EC%B9%98%EB%A3%8C
최신순
조회순
조성오 교수, 초소형 X-선 튜브 및 근접 암치료장비 개발
〈 조성오 교수 연구팀 〉 우리 대학 원자력 및 양자공학과 조성오 교수 연구팀이 탄소나노튜브를 이용해 손가락보다 작은 진공 밀봉형 초소형 X-선 튜브를 개발하고, 이를 기반으로 X-선 근접 암치료장비(brachytherapy device)를 개발했다. 이번 개발은 ㈜비츠로네스텍, 강남세브란스 병원의 이익재 교수 연구팀과 공동으로 진행된 연구로, 암 치료, 의료용 영상장치, 첨단 산업용 X-선 장비 등에 활용 가능할 것으로 기대된다. 피부암은 전체 암 중에서 발병률이 가장 높아 세계적으로 매년 약 3백만 명의 환자가 발생한다. 환경오염으로 인해 지구의 오존층이 파괴돼 지표면에 도달하는 자외선의 양이 점점 증가하기 때문이다. 피부암 치료에는 수술 및 약물요법 등이 있으나 수술은 흉터 및 미용적 손실, 약물은 부작용을 유발하는 단점이 있다. 상처가 비정상적으로 자란 조직을 뜻하는 켈로이드는 수술, 약물요법, 레이저 등으로 치료하고 있으나 완치가 어렵고 재발률이 높다. 반면 방사선을 이용하면 미용적 손실없이 수 분 내 암 치료가 가능하고 고령이나 타 질환으로 인해 수술이 어려운 경우에도 쉽게 적용할 수 있다는 장점이 있다. 조 교수 연구팀은 강남세브란스 이익재 교수 연구팀과 공동으로 개발한 X-선 근접 암치료장비를 이용해 피부암 및 켈로이드에 대한 세포 및 동물실험을 수행했다. 이를 통해 개발한 장비가 기존의 방사선 원격 치료장비인 선형가속기(LINAC)와 동등한 치료 효과를 가짐을 확인했다. 선형가속기는 현재 병원에서 널리 사용하는 방사선 치료 장비로 가격이 비싸고 크기가 커 넓은 설치공간과 대형 차폐시설이 필요하며 발생하는 방사선 에너지가 높아 치료 부위 외 정상 세포도 훼손할 수 있다. 공동 연구팀이 개발한 X-선 근접 암치료장비는 선형가속기에 비해 10분의 1 이하의 가격이고 국부적 치료가 가능해 정상 세포의 손상을 최소화할 수 있다. 소형이기 때문에 이동할 수 있으며 방사선 차폐가 용이하다. 개발한 X-선 근접치료 장비는 인체에 삽입이 가능해 피부암과 켈로이드 등 인체 표면의 질환 치료 외에도 유방암, 자궁암, 직장암 등과 같은 다양한 암을 치료에 이용할 수 있다. 더불어 X-선 튜브를 더 소형화하면 내시경에 장착해 위암, 식도암, 대장암, 췌장암 등을 치료할 수도 있다. 개발한 초소형 X-선 튜브는 암 치료 외에도 의료용 영상장치, 3D 반도체 비파괴검사, X-선 물질 분석장치, X-선 리소그래피, 나노 측정 장비 등 첨단 의료 및 산업용 장비 개발에도 활용할 수 있다. 연구팀은 향후 종합병원뿐 아니라 방사선사를 보유한 개인병원에까지 개발한 X-선 근접치료 장비를 판매 및 대여하는 것을 목표로 하고 있으며 반려동물용 치료 장비로도 활용할 계획이다. ㈜비츠로넥스텍은 개발한 장비에 대한 디자인과 VICX라는 상표명에 대한 지적재산권을 취득했고 현재 의료기기 인증을 준비 중이다. □ 그림 설명 그림1. 탄소나노튜브를 이용하여 만든 초소형 X-선 튜브 그림2. ㈜비츠로네스텍과 공동 개발한 근접 암치료장비
2018.11.23
조회수 7557
종양 전역에 약물 전달하는 항암치료나노기술 개발
<박 지 호 교수> 우리 대학 바이오 및 뇌공학과 박지호 교수 연구팀이 종양의 전역에 약물이 골고루 전달되게 해 항암효과를 현저히 높일 수 있는 새 항암치료 나노기술을 개발했다. 이번 연구는 나노분야 학술지 ‘나노 레터스(Nano Letters)’3월 31일자 온라인 판에 게재됐다. 일반적으로 수술이 어려운 종양의 치료를 위해 항암약물치료법이 사용된다. 하지만 종양이 외부로 들어오는 약물의 접근을 여러 방법으로 막기 때문에 종양 전체에 항암효과를 보기 어려웠다. 혈류로 투여된 약물들의 대부분이 혈관주위의 종양세포들에만 전달되고, 중심부의 종양세포에는 전달되지 않아 재발 문제가 자주 발생한 것이다. 연구팀은 문제 해결을 위해 리포좀과 엑소좀이라는 소포체를 이용했다. 리포좀은 인공나노소포체로서 혈류를 통해 혈관 주위의 종양 세포 부위까지 약물을 전달한다. 종양 세포에서 자연적으로 분비되는 생체나노소포체인 엑소좀에 약물을 무사히 탑재하는 것이 리포좀의 역할이다. 엑소좀은 종양에서 세포 내부의 생물학적 물질들을 전달하기 때문에 종양의 진행 및 전이에 중요한 요소로 알려져 있다. 리포좀이 항암 약물을 엑소좀에 탑재하면, 엑소좀이 이동하는 종양 내의 모든 위치로 약물이 전달됨으로써 질병이 치료되는 것이 연구의 핵심이다. 연구팀은 이 기술을 이용해 빛에 반응해 항암효과를 내는 광과민제를 종양이 이식된 실험용 쥐에 주입했다. 이후 종양 부위에 빛을 노출시켜 항암효과를 유도한 후 분석한 결과 종양조직 전역에서 항암효과를 관찰할 수 있었다. 연구팀의 핵심 성과는 종양 및 다른 질병들의 미세 환경을 파악해 질병에 대항하는 맞춤형 약물전달 기술 개발의 발판을 마련한 것이다. 연구팀은 이 기술을 제약회사에서 개발 중인 항암제에 적용해 약물전달이 어려운 악성 종양의 치료효과를 실험 진행 중이다. 박 교수는 “엑소좀이 세포에서 끊임없이 분비되는 특성과 주변 세포로 생물학적 물질을 전달하는 특성을 응용해 종양 중심부까지 약물을 전달 가능하게 만든 최초의 연구”라고 말했다. 박지호 교수 지도아래 이준성 박사, 김지영 석사가 주 저자로 참여한 이번 연구는 한국연구재단이 추진하는 신진연구자지원사업, 글로벌프론티어사업, 미래유망융합기술파이오니어사업의 지원을 받아 수행됐다. □ 그림설명 그림 1. 종양 전역에 약물이 골고루 전달되게 해 항암효과를 높이는 새 종양투과 약물전달 나노기술 세포막과 결합하는 리포좀에 의해서 세포로 전달된 물질이 그 세포가 분비하는 엑소좀에 효율적으로 탑재돼 주변세포로 전달되는 과정을 보여주는 모식도(좌). 이러한 엑소좀기반 세포간 약물전달이 실제로 종양 스페로이드 및 생체 내 종양모델에서 관찰된 결과들 (우).
2015.04.06
조회수 14355
유방암 세포의 자살을 유도하는 최적의 약물조합 발견
조광현 교수 - Science 자매지 표지논문 발표,“IT와 BT의 융합연구로 세포내 분자조절네트워크 제어를 통해 가능”- 국내 연구진이 대다수 암 발생에 직접 관여하는 것으로 알려진 암억제 유전자(p53)의 분자조절네트워크를 제어하여 유방암 세포의 사멸을 유도하는 최적의 약물조합을 찾아내, 향후 신개념 암치료제 개발에 새로운 단초를 열었다. 특히 이번 연구는 IT와 BT의 융합연구인 시스템 생물학 연구로 가능했다는 점에서 의미가 크다. 우리 학교 바이오및뇌공학과 조광현 석좌교수가 주도하고 최민수 박사과정생, 주시 박사, 정성훈 교수 및 시첸 박사과정생이 참여한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 이승종)이 추진하는 중견연구자지원사업(도약/도전연구)과 기초연구실사업의 지원으로 수행되었다. 연구결과는 세계 최고 과학전문지인 ‘사이언스’의 첫 번째 자매지로서 세포신호전달분야의 권위지인 ‘Science Signaling’지 최신호(11월 20일자) 표지논문으로 선정되었고, 사이언스지의 ‘편집자의 선택(Editor"s Choice)’에 하이라이트 특집기사로 소개되는 영예를 얻었다. (논문명: Attractor Landscape Analysis Reveals Feedback Loops in the p53 Network That Control the Cellular Response to DNA Damage) 유방암은 미국이나 유럽 등 선진국에서 발병하는 여성암 중 가장 흔한 암으로, 40~55세 미국 여성의 사망원인 1위를 차지한다. 지난 10월 15일에는 영국 일간지 ‘데일리메일’이 2040년까지 유방암 환자 수가 현재의 3배가 넘는 168만 명으로 늘어나 일명 “유방암 대란”이 일어날 수도 있다는 충격적인 연구결과를 보도하기도 하였다. 우리나라 보건복지부 자료에 따르면, 국내에서도 미국 등과 같이 유방암 발병빈도가 매년 증가하는 추세인데, 이것은 서구식 식습관과 저출산, 모유수유 기피 등 생활패턴의 변화에 기인한 것으로 알려져 있다. p53은 ‘유전자의 수호자’로도 잘 알려진 암 억제 단백질로서 33년 전 처음 발견된 후 지금까지 암 치료를 위해 집중적으로 연구되는 분자이다. p53은 세포의 증식 조절과 사멸 촉진 등 세포의 운명을 결정하는데 중요한 역할을 한다. 우리 몸의 세포가 손상되거나 오작동하면, p53은 세포주기의 진행을 중단시켜 손상된 DNA의 복제를 억제하고, 손상된 세포의 복구를 시도한다. 이 때 만일 세포가 복구될 수 없다고 판단되면, p53은 세포가 스스로 자살하도록 유도한다. 그러나 암세포는 이러한 p53의 기능이 정상적으로 작동되지 않아 이를 인위적으로 조절하여 암 치료에 응용하려는 시도가 꾸준히 이어져왔다. 그러나 지금까지 임상실험에서는 기대와는 달리 효과가 미미하거나 부작용이 발생하는 등 여러 문제점들이 나타났다. 이는 p53이 단독으로 작동하는 것이 아니라 복잡한 신호전달 네트워크 속에서 다수의 양성과 음성 피드백(positive and negative feedbacks)에 의해 조절되고 있었으나, 지금까지 p53만을 단독으로 집중 연구했기 때문이다. 즉, 다양한 피드백 조절에 의해 p53의 동역학적(dynamics) 변화와 기능이 결정되므로, 네트워크 전체를 이해하고 제어하는 시스템 생물학적 접근이 반드시 필요하다. 조광현 교수가 이끈 융합 연구팀은 p53을 중심으로 관련된 모든 실험 데이터를 집대성하여 p53의 조절 네트워크에 대한 수학모형을 구축하였다. 또한 대규모 컴퓨터 시뮬레이션 분석을 통해 p53의 동역학적 변화 특성에 따른 세포의 운명(증식 또는 사멸) 조절과정을 밝혀내고 이를 효과적으로 제어할 수 있는 방법을 찾아냈다. 그리고 이 방법을 적용한 시뮬레이션 결과를 단일세포실험으로 검증하였다. 조광현 교수팀은 수많은 피드백으로 복잡하게 얽혀 있는 p53 조절 네트워크의 다양한 변이조건에 따른 컴퓨터 시뮬레이션 분석과 세포생물학실험으로, p53의 동역학적 특성과 기능을 결정하는 핵심 조절회로를 발견하고, 이와 같은 p53의 동역학적 특성 변화에 따라 세포의 운명이 달라질 수 있음을 규명하였다. 또한 유방암 세포의 네트워크 모형에서, 위의 분석결과로부터 찾아낸 핵심회로를 억제하는 표적약물(Wip1 억제제)과 기존의 표적항암약물(뉴트린, nutlin-3)을 조합하면 유방암 세포의 사멸을 매우 효율적으로 유도할 수 있음을 발견하였다. 그리고 실제 유방암 세포(MCF7)를 이용한 세포실험을 통해 직접 확인하였다. 조광현 교수는 “세포내 중요한 역할을 담당하는 분자들은 대부분 복잡한 조절관계 속에 놓여있기 때문에 기존의 직관적인 생물학 연구로 그 원리를 밝히는 것은 근본적인 한계가 있다. 이번 연구는 시스템 생물학으로 그 한계를 극복할 수 있음을 보여주는 대표적인 사례로, 특히 암세포의 조절과정을 네트워크 차원에서 분석하여 새로운 치료법을 개발할 수 있는 가능성을 제시하였다”고 연구의의를 밝혔다. 한편, 조 교수의 이번 연구 논문은 23일자 사이언스 편집자의 선택(Editors" Choice)으로 선정되는 영예를 얻기도 했다. 여러 양성 및 음성 피드백으로 복잡하게 구성된 p53 조절네트워크
2012.11.23
조회수 15480
시스템생물학 연구로 표적항암제 내성 원리 규명
- 분자세포생물학지 발표, “표적항암제 내성 극복 및 암 생존률 향상 위한 단초 마련”- 최근 항암치료법으로 주목 받고 있는 표적항암제(멕 억제제, MEK inhibitor)의 근본적인 내성 원리가 국내 연구진에 의해 밝혀져, 향후 항암제 내성을 극복하고 암 생존률을 높일 수 있는 토대를 마련하였다. 특히 이번 연구는 IT와 BT의 융합연구인 시스템생물학 연구로 이루어졌다는 점에서 큰 의미가 있다. 우리 학교 조광현 교수가 주도하고 원재경 박사과정생, 신성영 박사, 이종훈 박사과정생, 허원도 교수 및 양희원 박사가 참여한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 이승종)이 추진하는 중견연구자지원사업(도약/도전연구)과 기초연구실사업 및 WCU(세계수준의 연구중심대학) 육성사업의 지원으로 수행되었다. 연구결과는 분자세포생물학 분야의 권위 있는 학술지인 ‘분자세포생물학지(Journal of Molecular Cell Biology, IF=13.4)’의 표지논문으로 선정되어 6월 1일자에 게재되었다. (논문명: The cross regulation between ERK and PI3K signaling pathways determines the tumoricidal efficacy of MEK inhibitor) 표적항암제는 종양세포 속에 있는 특정 신호전달경로의 분자를 목표(target)로 하는데, 최근 폐암, 유방암 등 일부 종양에서 기존 항암제와 달리 부작용이 적고 임상효능이 높아 전 세계 과학자들로부터 큰 주목을 받고 있다. 특히 표적항암제는 개인 맞춤형 항암치료제로 개발될 수 있어 기대를 모으고 있다. 그러나 실제 임상 또는 전(前)임상 단계에서 많은 표적항암제의 내성이 관찰되어, 결국 신약개발로 이어지지 못하는 경우가 많다. 또한 효능은 있더라도 생존율이 낮거나 재발하는 경우가 빈번한 것으로 알려졌다. 대표적인 종양세포 신호전달경로인 어크(ERK) 신호전달경로는 대부분의 종양에서 활성화되는 경로인데, 특히 피부암이나 갑상선암은 이 경로에 있는 물질(비라프, BRAF)의 변이로 활성화되어서 암으로 발전하는 사례가 많다. 이 경우 어크 신호전달경로를 표적으로 하는 멕 억제제가 효과적인 치료법으로 알려져 있지만, 결국 내성이 발생하여 암이 다시 진행된다. 조광현 교수가 이끈 융합 연구팀은 어크 신호전달경로를 표적으로 하는 멕 억제제에 대한 내성과 그 근본원리를 수학모형과 대규모 컴퓨터 시뮬레이션을 이용해 분석하고, 그 결과를 분자생물학실험과 바이오이미징*기술을 통해 검증하였다. *) 바이오이미징 : 세포 또는 분자 수준에서 일어나는 현상을 영상으로 확인하는 기술 조 교수팀은 종양의 다양한 변이조건을 컴퓨터 시뮬레이션과 실험을 수행한 결과, 멕 억제제를 사용하면 어크 신호전달은 줄어들지만, 또 다른 신호전달경로(PI3K로의 우회 신호전달경로)가 활성화되어 멕 억제제의 효과가 반감됨을 입증하였다. 또한 이러한 반응이 신호전달 물질간의 복잡한 상호작용과 피드백으로 이루어진 네트워크 구조에서 비롯되었음을 밝히고, 그 원인이 되는 핵심 회로를 규명하여 이를 억제하는 다른 표적약물을 멕 억제제와 조합함으로써 표적항암제의 효과를 증진시킬 수 있음을 제시하였다. 조광현 교수는 “이번 연구는 멕 억제제에 대한 약물저항성의 원인을 시스템 차원에서 규명한 첫 사례로, 약물이 세포의 신호전달경로에 미치는 영향을 컴퓨터 시뮬레이션으로 예측함으로써 표적항암제의 내성을 극복할 수 있음을 보여주었다. 또한 신호전달 네트워크에 대한 기초연구가 실제 임상의 약물 사용에 어떻게 적용될 수 있는지와 표적항암물질의 저항성에 대한 근본원리를 이해하고, 그 극복방안을 찾아내는 새로운 융합연구 플랫폼을 제시한 것으로 평가받고 있다”고 연구의의를 밝혔다.
2012.06.12
조회수 21223
맞춤형 인산화 단백질 생합성 성공
- 사이언스誌 발표,“각종 질병원인 규명, 신약개발의 새로운 장을 열다”- 세포내 신호전달체계를 재설계하여 세균으로부터 맞춤형 인산화 단백질을 생산하는 기술이 세계 최초로 국내연구진에 의해 개발되었다. 이번 연구는 교육과학기술부의 “글로벌프론티어사업(탄소순환형 차세대 바이오매스 생산/전환 기술연구단)”의 지원을 받아 우리 학교 화학과 박희성 교수 주도로 수행되었다. 단백질 인산화는 생체 내에서 일어나는 단백질 변형의 일종으로, 세포내 신호전달과 그 결과 발생하는 세포의 생장․분열․사멸을 결정하는 중요한 역할을 한다. 예를들어, 성장세포가 성장호르몬 등 외부의 자극을 받으면 세포내 단백질에 인산이 첨가되고(단백질 인산화) 인산화된 단백질이 다른 단백질을 인산화 시키는 일련의 신호전달 과정을 거쳐 세포분열을 일으키게 된다. 인산화 과정에서 인산화 단백질에 돌연변이가 발생하면 세포의 정상적인 신호전달이 손상되고 세포의 무한 분열을 초래하여, 암을 포함한 각종 질병의 직접적인 원인이 된다. 이러한 인산화 과정은 매우 복잡하고 다이내믹하게 진행되므로, 세포내 신호전달의 극히 일부만 알려져 있고, 지금까지 단백질의 인산화를 조절할 수 없었다. 이 때문에 질병 원인 규명 연구와 신약개발에 많은 어려움을 겪고 있다. 박 교수는 예일대 Soll 교수팀과 공동연구를 통해 세균의 단백질 합성관련 인자들을 재설계하고, 진화방법으로 리모델링하여 인산화 아미노산(단백질 구성인자)을 단백질에 직접 첨가하는 기술을 개발하여 맞춤형 인산화 단백질을 생산하는데 성공했다. 연구팀은 이 기술을 이용하여 다양한 암을 유발시키는 단백질로 알려진 MEK1 인산화 단백질 합성에도 성공할 수 있었다. 박 교수는 “이번 연구를 통해서 단백질의 인산화 조절과 인산화 단백질의 대량 생산이 가능해 졌다.”며, “인산화 단백질을 통해 암을 포함한 각종 질병의 원인규명 연구와 차세대 암치료제 개발연구가 체계적이고 실질적으로 이루어질 것으로 기대된다.” 고 연구의 의의를 밝혔다. 연구결과는 생명과학분야 최고권위지인 사이언스誌 2011년 8월호 (8월26일자)에 게재됐다. 1. 세포의 단백질 생합성 기구 재설계 및 리모델링 ○ 세균의 단백질 생합성 기구들(중합효소, 아미노산, tRNA)을 재설계하고, 자연계 모방 진화기술로 새로운 확장인자를 개발한 결과 얻어진 인공기능 세포의 그림이다. DNA로부터 단백질이 생합성 되는 과정이 보여주고 있으며, 특히 새롭게 설계된 단백질 합성기구와 자연계 모방 진화기술로 개발된 확장인자의 모식도가 나타나 있다. 2. 재설계된 세포를 이용한 맞춤형 인산화 단백질 생산 ○ 그림1에서 제조된 재설계 인공기능 세포를 활용하여 복잡한 세포내 인산화과정 없이 인산화 아미노산을 단백질의 특정한 위치에 직접 첨가하는 방법으로 맞춤형 인산화 단백질을 생합성하는 그림이다. 세포내 신호전달에서 가장 중요한 역할을 하면서 돌연변이시 다양한 암을 유발시키는 인산화 단백질로 알려진 MEK1의 생합성을 보여주고 있다.
2011.08.26
조회수 12765
난소암환자의 보다 정확한 생존기간 예측 가능해져
- “개인 맞춤형 의약품 개발에 핵심 기술이 될 것” - 난소암환자의 생존기간 예측이 한층 더 정확해진다! 우리 학교 바이오 및 뇌공학과 이도헌 교수 연구팀이 난소암환자의 선천적 유전특징과 후천적 유전자 발현특성이 복합적으로 영향을 미친다는 결과를 이용해 암환자의 생존기간을 보다 정확하게 예측하는 기술을 개발했다. 이번 연구 결과는 개인맞춤형 의약품개발에 핵심기술이 될 전망이다. 기존의 난소암환자 생존기간 예측을 위해 특이 유전자형과 유전자 발현 특성을 각각 찾는 데 초점을 맞추고 있었다. 그러나 암과 같이 개인의 유전적 특성과 후천적 요인에 따른 유전자 발현 패턴이 복합적으로 작용하는 복합질환의 치료효과와 생존기간을 예측하기에는 역부족이었다. 연구팀은 생물정보학(Bioinformatics) 기술 중 하나인 상호연관 네트워크 모델링을 이용해 개인별 유전자의 특징과 발현특성을 분석했다. 이를 생존기간의 인자로 사용해 난소암환자 생존기간 예측의 정확도를 13% 이상 높일 수 있었다. 또한, 항암치료 후 결과의 개인차를 유발하는 유전적 특성과 유전자 발현패턴의 상호작용모델을 제시함으로써 개인차에 의한 항암 치료 생존기간의 예측이 가능해졌다. 이도헌 교수는 “최근 전 세계적으로 차세대 유전자 연구와 개인 맞춤형 치료제 개발이 본격화되고 있는 시기”라며 “이번 연구 결과는 난소암 환자의 생존기간 예측 및 개인별 특성에 따른 맞춤형 치료의 기반이 될 것이다”라고 말했다. KAIST 바이오 및 뇌공학과 이도헌 교수, 백효정 박사과정 학생, 김준호 박사과정 학생, 하버드대 이은정 박사, 삼성SDS 박인호 박사가 공동으로 실시한 이번 연구는 세계적 학술지인 ‘지노믹스(Genomics)’지 6월호 표지 논문으로 선정됐다.
2011.06.28
조회수 16239
암 성장과 전이를 억제하는 혈관신생차단제 개발
-캔서 셀誌 표지논문 선정, “부작용 적고 효과 탁월한 신개념 항암치료제 개발 가능성 열어”- 국내 연구진이 암 성장과 전이에 필수적인 혈관신생*에 관여하는 새로운 인자를 발견하고 이를 효과적으로 차단하는 제재를 개발하여, 신개념 암 치료제 개발에 전기를 마련하였다. * 혈관신생(angiogenesis) : 몸속에 새로운 혈관이 만들어지는 현상으로, 악성 종양(암)의 성장과 전이에 매우 중요한 과정 우리학교 의과학대학원 고규영 교수와 삼성의료원 남도현 교수가 주도한 이번 연구는 교육과학기술부(장관 안병만)와 한국연구재단(이사장 박찬모)이 추진하는 중견연구자지원사업(도약연구)과 삼성의료원의 난치암정복연구사업의 지원을 받아 수행되었다. 이번 연구결과는 암 분야 최고 권위의 학술지인 ‘캔서 셀(Cancer Cell, IF=25.3)’ 표지 논문(8월 17일자)에 선정되었으며, 국내 연구진이 주도한 연구업적이 “캔서 셀”에 표지 논문으로 게재된 것은 이번이 처음이다. 고규영 교수팀은 기존의 혈관성장인자*(VEGF) 이외에 또 다른 성장인자(안지오포이에틴-2, Ang2)가 혈관신생을 촉진한다는 사실을 새롭게 발견하고, 두 인자를 효과적으로 차단하는 “이중혈관성장차단제”를 개발하는데 성공하였다. * 혈관성장인자 : 혈관신생을 촉진하는 인자로, 지금까지 VEGF가 대표적인 인자로 인식되었으나, 고 교수팀이 Ang2도 암의 혈관신생을 촉진한다는 사실을 새롭게 발견함. 지금까지 의학계에서는 VEGF가 혈관신생에 중추적인 역할을 수행하는 것으로 인식하여, 이를 억제하는 항암제인 아바스틴(Avastin)을 개발하여 암 환자들에게 투여해왔다. 그러나 항암 효과가 크지 않고 오히려 암을 촉진시키는(전체 환자 50%) 등 부작용이 적지 않아 치료에 어려움이 있었다. 고 교수팀은 VEGF 억제제를 투여하자 Ang2가 급격히 증가한다는 사실을 발견하고, VEGF과 Ang2을 동시에 차단하는 “이중혈관성장 차단제”를 제작하여 환자에게 투여한 결과, 기존의 VEGF만을 차단했던 제재보다 암 성장(2.1배)과 전이(6.5배)를 효과적으로 차단한다는 사실을 검증하였다. 고 교수는 “Ang2가 VEGF 못지않게 중요한 혈관신생인자라는 사실을 새롭게 확인하여, 두 인자를 동시에 효과적으로 차단하는 ‘이중 혈관성장차단제’ 개발에 성공함으로써, 효과는 탁월하지만 부작용은 적은 신개념 항암치료제 신약 개발에 새로운 가능성을 제시하였다”라고 연구의의를 밝혔다.
2010.08.18
조회수 16211
박제균 교수, 개인 맞춤형 항암치료 원천기반기술 개발
- 극소량의 암 조직으로 다양한 암 판별 물질을 동시에 검사할 수 있는 기술 개발 - 유방암을 비롯한 현대인의 각종 암을 개인별 특성에 맞게 맞춤형 항암 치료할 수 있는 원천기반기술이 국내 연구진에 의해 개발되었다. 우리대학 바이오 및 뇌공학과 박제균 교수 연구팀과 고려대 안암병원 유방센터 이은숙 교수 연구팀이 주도한 이번 연구는 교육과학기술부(장관 안병만)와 한국연구재단(이사장 박찬모)이 추진하는 중견연구자지원 사업(도약연구), 바이오전자사업 및 고려대 학술연구비의 지원을 받아 수행되었고, 연구 결과는 국제적으로 저명한 온라인 오픈액세스 과학 전문지인 “플로스원(PLoS ONE)” 최신호(5월 3일자)에 게재되었다. 연구팀은 극소량의 암 조직만으로도 다양한 암 판별 물질(종양 표지자, 바이오마커)을 동시에 검사할 수 있는 기술(미세유체기술을 이용한 면역 조직화학법과 랩온어칩)을 개발하는데 성공하였다. 암 진단과 치료를 위한 필수검사는 암 조직을 떼어내 암 여부를 판별하는 물질인 표지자 4개를 모두 검사해야만 최종적으로 판단할 수 있는데,기존의 검사는 떼어낸 암 조직 하나에 1개의 표지자밖에 검출하지 못해, 많은 암 조직을 떼어내야 하기 때문에 불편하고, 검사가 하나씩 순차적으로 이루어지기 때문에 검사 시차가 달라, 정확한 검사가 어려워 검사비용과 시간이 늘어나 환자의 부담이 컸었다. 그러나 연구팀이 개발한 기술을 이용하면, 하나의 작은 암 조직만으로도 한 번에 최대 20여개의 표지자까지 동시에 검사할 수 있어, 비용을 1/200로 절감하고, 분석시간도 1/10로 단축하는 등 획기적인 기술로 평가된다. 특히 이번 연구결과는 동물이 아닌 인간의 암 조직을 직접 이용한 임상실험을 통해 증명한 최초의 사례로 그 의미가 크다. 연구팀은 유방암 환자 115명의 실제 암 조직을 가지고 복잡한 실험을 하나의 칩 위에서 간단히 구현할 수 있는 기술(랩온어칩 기술)을 이용해 임상 실험한 결과, 기존 검사결과와 최대 98%까지 일치하는 등 검사의 정확도를 입증하였다. 고려대 이은숙 교수는 “미세바늘로 추출한 소량의 조직만으로도 다양한 검사가 가능하고 객관적으로 판독할 수 있다”면서, “검사에 필요한 비용과 시간을 상당부분 줄일 수 있을 뿐만 아니라, 초기 정밀검진이 가능하여, 향후 개인 맞춤형 항암치료에 크게 기여할 것으로 기대된다” 라고 강조하였다. 또한 바이오공학, 병리학 및 종양학 등 공학과 의학이 융합된 학제적 연구성과로, 향후 사업화를 통한 경제적 부가가치도 클 것으로 기대된다. 현재 이 기술은 특허협력조약(Patent Cooperation Treaty, PCT)의 특허 1건을 포함해 국내 특허 6건을 출원하였고, 종양분석과 조직시료 검사에 활용되는 기반기술로, 개인 맞춤형 항암제 효력 테스트용 랩온어칩 등 사업화를 위한 후속연구가 활발히 진행되고 있다. 특히 조직병리, 암 진단, 질병의 경과예측 등 의학뿐만 아니라, 바이오 마커 개발 등 생명공학에도 응용될 것으로 기대하고 있다. 우리대학 박제균 교수는 “이번 연구성과로 지금까지 분석할 수 없었던 매우 작은 조직도 쉽고 빠르게 검사할 수 있게 되어 정확한 진단을 통한 치료가 가능하게 되었다”면서, “개인별 맞춤형 항암치료의 대중화를 통해 우리나라 보건의료의 선진화에 크게 기여할 것”이라고 연구 의의를 밝혔다. 한편, 제1저자인 우리대학 김민석 박사는 이번 연구성과로, 제16회 삼성 휴먼테크 논문 대상에서 금상을, 교육과학기술부가 후원하는 젊은 파스퇴르상에서 대상을 수상하는 영예를 안았다. [그림. 암 조직 시료 상부에 올려지게 되는 투명한 플라스틱으로 이루어진 랩온어칩의 구조]
2010.05.10
조회수 18173
<<
첫번째페이지
<
이전 페이지
1
2
>
다음 페이지
>>
마지막 페이지 2