-
꿈의 신소재인 그래핀의 결정면 관찰 신기술 개발
(왼쪽부터) 정현수 박사과정생, 김윤호 박사, 김대우 박사과정생
- 네이처 나노테크놀로지誌 발표,“그래핀 상업화를 위한 핵심 난점 해결”-
꿈의 신소재로 잘 알려진 그래핀의 결정면*을 간편하면서도 더 넓게(대면적으로) 관찰할 수 있는 새로운 기술이 국내 연구진에 의해 개발되었다.
※ 결정면(crystal face) : 결정의 외형을 나타내는 평면으로 격자면과 평행인 면
정희태 석좌교수(한국과학기술원, 교신저자)가 주도하고 김대우 박사과정생, 김윤호 박사(공동1저자), 정현수 박사과정생(제3저자)이 참여한 이번 연구는 교육과학기술부와 한국연구재단이 추진하는 WCU(세계수준의 연구중심대학)육성사업과 중견연구자지원사업의 지원을 받아 수행되었고, 연구결과는 나노과학 분야의 권위 있는 학술지인 ‘Nature Nanotechnology’ 온라인 속보(11월 20일)에 게재되었다. (논문명: Direct visualization of large-area graphene domains and boundaries by optical birefringency)
정희태 교수 연구팀은 LCD에 사용되는 액정의 광학적 특성*을 이용해, 그래핀 단결정의 크기와 모양을 대면적에 걸쳐 쉽고 빠르게 시각화할 수 있는 기법을 개발하였다. 특히 그래핀의 단결정을 시각화함으로써, 단결정에서 얻을 수 있는 이론값에 가장 가까운 전기전도도를 직접 측정하는 쾌거를 이루었다.
※ 광학적 특성 : 어느 물질에 빛을 통과시키거나 반사시킬 때 생기는 특성
그래핀은 가장 우수한 전기적 특성이 있으면서 투명하고, 기계적으로도 안정하면서 자유자재로 휘어지는 차세대 전자소재이다. 그러나 현재 제조되고 있는 그래핀은 다결정성을 지니고 있어, 단결정일 때보다 상당히 낮은 전기적․기계적 특성을 보인다. 이것은 그래핀의 특성이 결정면의 크기와 경계구조에 큰 영향을 받기 때문인 것으로 알려져 왔다.
따라서 우수한 특성을 갖는 그래핀을 제조하기 위해서는 그래핀 결정면의 영역(도메인)과 경계를 쉽고 빠르게 관찰하는 것이 향후 그래핀의 물성을 크게 향상하고 상업화하기 위해 꼭 필요한 핵심기술이다.
연구팀은 그래핀을 쉽게 대면적에서 관찰할 수 있는 기법을 개발하여 그래핀 상용화분야에서 원천기술을 획득하게 되었고, 그래핀을 이용한 투명전극, 플렉시블 디스플레이, 태양전지와 같은 전자소자 응용연구에도 한 걸음 다가설 수 있게 되었다.
정희태 석좌교수는 “이번 연구는 우리나라가 보유한 세계 최고의 액정배향제어기술*을 토대로, 대면적에 걸쳐 그래핀의 결정면을 누구나 쉽게 관찰할 수 있는 방법을 제시하였다는 점에서 큰 의미가 있다.
이것은 학계와 산업계의 가장 난제 중 하나인 대면적에서의 그래핀 특성평가에 큰 전환점이 되어 양질의 그래핀 제조에 큰 도움을 줄 것이고, 그래핀을 이용한 미래형 전자소자 개발에 한걸음 다가갈 수 있을 것”이라고 연구의의를 밝혔다. ※ 액정배향제어기술 : 액정의 방향을 일정하게 만드는 기술
(좌) 그래핀 결정면을 따라 배향된 액정분자 배향 모식도 (우) 편광현미경으로 관찰된 실제 그래핀 결정면의 모습
2011.11.28
조회수 19459
-
생명화공 정희태교수, 세계최초 액정 초미세 나노패턴소자 개발
- 15일자 네이처 머티리얼스誌 온라인판 게재- 나노-바이오 전자소자 산업분야에서 시장 선점 기대우리 학교 생명화학공학과 정희태(鄭喜台, 42) 교수 연구팀이 액정 디스플레이 (LCD)의 핵심소재로 잘 알려져 있는 액정물질을 이용, 나노기술의 핵심인 차세대 초미세 나노패턴소자를 세계최초로 개발했다. 관련 연구논문은 15일자 네이처 머티리얼스(Nature Materials)誌 온라인판에 게재된다. 나노패턴 제작은 차세대 초고밀도 반도체 메모리기술과 바이오칩 등 나노기술의 핵심분야다. 특히, 鄭 교수팀의 액정을 이용한 패턴구현은 기존의 패턴 방식에 비해 대면적을 구현할 수 있을 뿐만 아니라 바이오 특성을 가지는 나노물질도 액정 패턴 내에 배열할 수 있다는 것이 큰 장점이다.
LCD를 구동하는 물질인 네마틱 액정과 달리 鄭 교수가 사용한 스메틱 액정은 LCD 응답특성이 매우 우수함에도 불구하고 자연적으로 존재하는 결함구조 때문에 LCD 구동물질로 사용하지 못하고 있다. 이러한 스메틱 액정은 기판의 표면특성에 따라서 무질서한 형태의 회오리 형 결함구조를 가진다. 이번 연구에서는 마이크로미터 수준의 직선이 새겨진 표면 처리된 실리콘 기판을 사용함으로써 무질서한 회오리 형태의 액정 결함구조를 규칙적으로 제어하였다(첨부 자료그림 참조). 특히 이 공정은 기존의 나노패턴에 적용하는 방식과 비교하여 제작시간을 수십 배 이상 줄일 수 있으며, 결함구조 내에 다른 형태의 기능성 물질도 규칙적으로 배열 할 수 있음을 확인하였다. 이는 다양한 형태의 패턴이 필요한 실제 반도체와 단백질 칩 등의 바이오 소자에 적용할 수 있는 가능성을 제시하고 있다 (자료그림 중 삽입사진 참조).
이번 연구결과로 LCD의 세계적 강국인 우리나라가 액정을 이용한 나노분야에서도 세계 최고의 원천기술을 갖게 되었다. 향후 액정을 이용한 새로운 응용의 신기원을 열게 되었으며, 나노-바이오 전자소자 산업분야에서 시장 선점 및 막대한 부가가치 창출 등을 통해 국가경쟁력 강화에 크게 기여할 것으로 기대된다. 연성재료(Soft Materials)를 이용하여 나노패턴을 제조하는 기술은 전 세계적으로 나노-바이오 분야에서 큰 이슈가 되는 연구로써, 연구의 핵심은 바이오 및 광전자소자 응용을 위하여 대면적에서 결함이 없는 소재의 개발에 있다. 이번 鄭 교수팀이 적용한 액정은 결함구조를 가지는 대표적인 물질로서 지금까지 학계에서는 대면적 나노패턴이 불가능하다고 인식돼 왔다.
鄭 교수는 “이번 연구결과는 연성소재를 이용한 나노패턴소자 제작방식의 기존 개념을 완전히 뒤엎는 것이다. 결함을 없애야만 한다는 기존의 생각에서 탈피하여 결함을 규칙적으로 구현하면 패턴에 이용할 수 있다는 발상의 전환으로 대면적 나노패턴을 개발했다는데 의미가 있으며, 향후 나노분야 전반에 걸쳐 영향이 클 것” 이라고 밝혔다.
이번 연구결과는 鄭 교수(교신저자)의 주도 하에 KAIST 물리학과 김만원 교수팀과 미국 캔트 주립대학의 액정센터 올래그 라브랜토비치(Oleg Lavrentovich)교수가 함께 일궈낸 성과다. 鄭 교수는 나노물질분야에서 사이언스, PNAS, Advanced Materials에 최정상급 논문을 다수 발표하는 등 나노물질 분야에서 차세대 주자로서 두각을 나타내고 있는 젊은 과학자다.
<해설>
액정: 유동성이 있으면서 고체적인 특성을 나타낸다. 전기적 특성이 매우 뛰어나 LCD 구동을 위한 핵심 물질로 사용된다. 네마틱, 스메틱, 콜레스테릭 등 다양한 종류의 액정이 존재한다. 현재 LCD에 사용하는 액정은 네마틱 액정이며 콜레스테릭 액정은 반사거울과 초정밀 온도계에 사용된다. 鄭 교수팀이 사용한 액정은 스메틱 액정으로서 네마틱 액정보다 자연계와 합성물질에서 더욱 많이 존재하고, 산업체와 학계에서 오랜기간 동안 연구해 왔음에도 불구하고 결함구조 등의 문제점으로 인하여 산업에 적용하지 못하고 있는 물질이다.
<첨부. 수 밀리미터 크기의 대면적 액정물질 나노패턴 현미경 사진>우측상단 삽입사진은 액정나노패턴내에 형광나노입자를 규칙적으로 포집한 리소그라피 제작사진
2007.10.15
조회수 23390