본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%97%90%EB%84%88%EC%A7%80
최신순
조회순
빛을 이용해 간단하게 유용한 화합물 만든다
환경 오염을 유발하는 부산물이나, 높은 에너지가 필요한 고온 공정 없이 빛을 이용해 친환경적으로 의약품의 주요 원료를 만들 수 있는 새로운 합성 공정이 개발됐다. 우리 대학 화학과 홍승우 교수(IBS 분자활성 촉매반응 연구단 부연구단장) 연구팀은 광(光)촉매를 이용해 질소 고리화합물을 합성하는 새로운 화학반응을 제시하고, 의약품의 주요 골격인 ‘락탐’과 ‘피리딘’을 하나의 분자에 도입하는 데 성공했다. ‘질소 고리화합물’은 약용 화합물의 주요 구성요소다. 고리(원) 형태로 결합한 탄소 원자 사이에 질소 원자가 끼어 있는 구조로, 여기에 작용기를 결합해 약품을 합성한다. 미국 식품의약국(FDA)이 승인한 약물의 60% 이상이 질소 고리화합물 구조를 포함하고 있다. 신약 후보 물질 발굴만큼이나 질소 고리화합물을 쉽게 합성할 수 있는 전략 개발이 중요한 이유다. 연구팀은 안정적인 유기 분자를 불안정한 삼중항 상태(triplet state)로 만들어 유용 물질을 합성하는 전략을 새롭게 제시했다. 우선 연구팀은 피리딘에 아미드 그룹을 부착한 피리디늄 염이 삼중항 에너지를 가질 수 있음을 계산화학적으로 예측했다. 삼중항은 분자에서 스핀이 한 방향으로 존재하는 상태로, 매우 불안정하여 자연에서는 잘 발견되지 않는다. 삼중항 상태를 상온에서 구현한다면, 기존에 없었던 새로운 화학반응에 적용할 수 있다. 이후 실제 실험을 통해 피리디늄 염을 삼중항 상태로 만들었다. 피리디늄 염이 빛 에너지를 받아 삼중항 상태가 될 수 있도록 광촉매를 활용했다. 제1저자인 이우석 연구원은 “계산화학적 예측과 실험적 확인을 통해 ‘삼중항 에너지 전달’이라는 새로운 화학반응을 보고했다”며 “환경 오염을 유발하는 시약을 첨가해야 던 기존 합성법과 달리 가시광선을 활용하기 때문에 친환경적이다”라고 설명했다. 더 나아가 연구진은 하나의 분자에 피리딘과 락탐을 동시에 선택적으로 생성할 수 있음을 처음으로 보여줬다. 기존에는 피리딘과 락탐을 동시에 도입하기 위해서는 별도의 재료와 여러 단계의 화학반응을 거쳐야 했지만, 이제는 한 번의 반응으로 두 작용기가 선택적으로 결합된 화합물을 합성할 수 있다. 주요한 생리활성을 지닌 골격을 한 분자에 결합시킬 수 있어 더 경제적인 합성이 가능할 뿐만 아니라 약효도 증가시킬 수 있다. 또한, 연구진은 삼중항 에너지 전달 메커니즘을 피리딘뿐만 아니라 여러 고리 구조 합성 반응에 적용할 수 있다는 것도 확인했다. 연구를 이끈 홍승우 부연구단장은 “삼중항 에너지 전달을 이용하면 의약품 합성에 필요한 단계를 줄일 수 있다”며 “과정이 간단할 뿐만 아니라 친환경적인 방법으로 향후 신약 및 각종 화학제품 개발 등 산업계 전반에 큰 도움을 줄 것으로 기대된다”고 말했다.
2023.07.11
조회수 6124
생체 에너지 발전소 부산물로 병원균 감염 제어
코로나 팬데믹 이후 바이러스 등 병원성 물질에 대응하는 면역력 조절의 중요성이 높아지고 있다. 사람을 포함한 동물은 외부 감염원에 대항하는 병원체 저항성이 발달해 있다. 미토콘드리아는 우리 몸 세포가 사용하는 에너지를 생성하는 발전소 역할에 더해 병원체에 저항하는 중요한 역할을 한다. 하지만 미토콘드리아가 에너지를 생성할 때 만들어지는 다양한 대사 부산물이 병원체 저항성에 어떤 역할을 하는지는 잘 알려져 있지 않다. 우리 대학 생명과학과 이승재 교수 연구팀(RNA 매개 건강장수 연구센터)이 세포 속 발전소인 미토콘드리아의 부산물을 활용해 병원체 저항성을 제어하는 방법을 찾았다고 10일 밝혔다. 이승재 교수 연구팀은 사람과 많은 유전자를 공유하여 생물학 연구에 많이 활용되는 작은 동물인 예쁜꼬마선충과 인간 세포를 활용한 연구를 수행했다. 그 결과, 세포 안에서 필요한 에너지를 만들어내는 세포 소기관인 미토콘드리아 안에서 에너지 및 대사 부산물을 형성하는 ‘TCA 회로’를 구성하는 효소인 아코니타제-2를 억제하자 개체 내 옥살아세트산 농도가 감소해 병원균 저항성이 강화된다는 사실을 밝혔다. 미토콘드리아의 TCA 회로는 포도당, 지방산, 아미노산 등 세포의 주요 에너지원을 분해하여 에너지를 만들고, 그 과정에서 각종 부산물을 생성한다. 연구진은 생성된 부산물 중 하나인 아코니타제-2의 억제로 줄어든 옥살아세트산이 미토콘드리아가 손상되었을 때 생기는 스트레스 반응인 미토콘드리아 미접힘 단백질 반응 (Mitochondrial unfolded protein response, UPRmt)을 활성화해 병원균 저항성을 강화함을 발견했다. 이러한 현상은 인간의 세포에서도 마찬가지여서 아코니타제-2 및 옥살아세트산의 저하에 의한 병원균 저항성 향상 효과가 예쁜꼬마선충부터 포유류까지 보존되어 있음을 입증했다. 아코니타제-2는 미토콘드리아 기능에 필수적인 효소로, 이를 억제하는 것은 미토콘드리아 손상과 암을 포함한 심각한 질환을 유발하기도 한다. 그러나 이번 연구에서 연구진들은 아코니타제-2의 기능을 적절히 감소시키면 예쁜꼬마선충의 장수를 유도하고 병원균에 대한 저항성을 증진하는 등 긍정적인 효과가 있음을 보고했다. 이는 미토콘드리아 아코니타제가 병원균 저항성을 조절하는 치료제의 새로운 표적이 될 수 있다는 가능성을 제시한다. 이번 연구는 또한 미토콘드리아가 세포 내 발전소로서 에너지를 형성할 뿐 아니라 그 과정에서 생기는 부산물인 옥살아세트산이 병원균 저항성을 조절함을 밝혀 완전히 새로운 방법으로 세포 면역을 조절할 수 있음을 제시하였기에 의의가 크다. 우리 대학 생명과학과 김은아 박사, 이유진 박사, 박혜은 박사와 함석진 박사가 공동 제1 저자로 참여한 이번 연구는 세계적 석학인 아담 안테비 박사 (Adam Antebi, 독일 막스플랑크 연구소) 연구팀과의 공동연구로 진행됐으며, 국제 학술지 ‘네이처 커뮤니케이션즈 (Nature Communications)’에 지난 6월 22일 출판됐다. 한편 이번 연구는 한국연구재단 리더연구과제에서 지원을 받았다. (논문명: Mitochondrial aconitase suppresses immunity by modulating oxaloacetate and the mitochondrial unfolded protein response)
2023.07.11
조회수 6329
그린수소 저가 생산 실마리 풀어
탄소중립의 필요성이 대두됨에 따라 수소를 에너지 캐리어로 활용하는 수소 에너지 사회로의 변화가 선택이 아닌 필수가 되어가고 있다. 이를 위해 수소를 생산하는 다양한 기술들이 제시되고 있으며, 수소 생산시 이산화탄소 배출이 전혀 없는 수소를 ‘그린수소 기술’이라고 한다. 그 중, 물을 전기분해하여 수소와 산소를 생성하는 수전해 기술이 변동성이 높은 재생에너지 기반 전력 시스템에 우수한 안정성을 가져, 앞으로 급증할 그린 수소의 수요를 책임질 차세대 시스템으로 주목받고 있다. 우리 대학 생명화학공학과 김희탁 교수 연구팀이 얇은 고분자 막을 분리막으로 사용하는 고분자전해질 수전해 시스템에서 양극 귀금속 촉매 함량을 낮췄을 때 발생하는 성능 악화 현상을 규명해 그린 수소 생산기술 저가화에 대한 실마리를 찾았다고 22일 밝혔다. 생명화학공학과 두기수 박사가 제1 저자로 참여한 이번 연구 결과는 국제학술지 `ACS 에너지 레터스(ACS Energy Letters)' 5월 12일 자 온라인판 표지논문으로 게재됐다. (논문명: Contact Problems of IrOx Anodes in Polymer Electrolyte Membrane Water Electrolysis) 양이온 전도성 고분자전해질 수전해는 물을 전기분해하여 수소 기체를 발생시키는 친환경 수소생산 장치로 기존의 알칼리성 수전해 대비 높은 성능과 높은 수소생산 순도를 강점으로 지닌다. 이 수전해 시스템은 산성 환경에서 작동하며 효율적인 물의 분해를 위해 귀금속 기반의 촉매를 사용한다. 하지만 백금, 이리듐 등의 귀금속 소재들은 수급 부족과 높은 가격 문제를 수반한다. 특히, 이리듐 기반 촉매는 양극 반응에 가장 적합하지만 매장량이 적어 현재보다 십 분의 일 수준의 촉매가 요구되는 고분자전해질 수전해 장치를 개발할 필요가 있다. 하지만 이리듐 촉매 함량을 줄일 때 발생하는 급격한 성능 저하 현상이 고분자전해질 수전해 저가화의 발목을 잡고 있다. 이러한 문제해결을 위한 대부분의 연구는 이리듐을 대체하는 새로운 촉매의 발굴에 주력하고 있다. 수전해 시스템에 사용하는 전극은 이리듐 촉매와 바인더로 구성된 촉매층과 티타늄 확산층 결합된 구조를 가지고 있다. 김희탁 교수 연구팀은 고분자전해질 수전해의 양극 내 이리듐 촉매 함량을 낮췄을 때 발생하는 성능 저하 문제가 촉매층과 확산층 계면에서 바인더의 함량이 증가하기 때문이라는 새로운 시각을 제시하고 이를 규명했다. 이리듐 촉매와 티타늄 확산층이 접촉하면, 티타늄 표면에 존재하는 자연 산화막의 전자띠가 굽는 띠굽음(band bending) 현상이 일어난다. 연구팀의 결과에 따르면 낮은 이리듐 함량의 전극에서는 이 띠굽음 현상이 바인더에 의해 증폭된다. 전자띠가 굽을수록 전자전달이 더욱 어려워지므로 성능 저하가 발생하게 되는 것이다. 연구팀은 띠굽음 현상이 완화된 계면을 설계하는 경우, 이리듐 함량을 1/10 수준으로 저감시켜도 동일한 수전해 성능을 얻을 수 있음을 확인하였다. 이는 전극계면의 조성을 변화시킴으로써 비싼 귀금속 촉매 사용량을 획기적으로 저감 가능하다는 것을 증명했다. 김희탁 교수는 "이번 연구결과는 그동안 베일에 싸여있던 이리듐 저감형 수전해 전극의 성능 문제를 짚어 그 이유를 규명하고 해결 전략을 제공했다는 점에서 중요한 의미가 있다ˮ라고 말하면서, "이를 바탕으로 효율과 가격을 동시에 잡을 수 있는 그린 수소 생산 시스템의 개발에 응용되기를 기대한다ˮ고 말했다. 한편 이번 연구는 산업통상지원부 에너지기술개발사업의 지원을 받아 수행됐다.
2023.05.22
조회수 5844
폭발 위험 없고 저렴한 레독스 흐름전지 개발
대표적인 2차전지인 리튬-이온 전지를 대체할 수 있는 수계 레독스 흐름 전지는 낮은 원가, 낮은 발화 위험, 그리고 20년 이상의 장수명 특성을 가져 신재생 에너지와 연계한 에너지 저장장치 (ESS, energy storage system)로 활용할 수 있다. 레독스 흐름전지로 가장 널리 사용되는 활성물질은 바나듐 원소이지만, 최근 바나듐의 원가 상승으로 인해 이를 대체할 수 있는 레독스 물질의 연구가 활발히 진행되고 있다. 우리 대학 화학과 변혜령, 백무현 교수 연구팀, POSTECH 화학과 서종철 교수팀이 공동연구를 통해 수계 레독스 흐름전지에 활용할 높은 용해도의 안정한 유기 활성 분자를 개발했다고 23일 밝혔다. 연구팀은 유기 분자의 설계를 통한 수계 레독스 흐름 전지 개발 연구에 집중하였다. 유기 분자는 다양한 합성 디자인을 통해 용해도, 전기화학적 레독스 전위 등을 조절할 수 있어 바나듐보다 높은 에너지 저장이 가능한 유망한 활성물질의 후보군이다. 대부분의 유기 레독스 활성 분자들은 낮은 용해도를 가지거나 레독스 반응 시 화학적 안정성이 낮은 문제점을 가지고 있다. 활성 분자들의 용해도가 낮으면 에너지 저장 용량이 낮아지며, 분자의 화학적 안정성이 낮으면 사이클 성능의 감소가 나타난다. 연구팀은 나프탈렌 다이이미드(naphthalene diimide, NDI)를 활성분자로 사용하였는데, NDI는 높은 전기화학적 안정성을 가짐에도 수계 전해액에서 낮은 용해도를 가져 지금까지 연구가 많이 이루어지지 않았다. NDI 분자는 물에 거의 용해되지 않지만 연구팀은 NDI에 네 개의 암모늄 기능기를 도입하여 용해도를 최대 1.5 M*까지 상승시켰다. 또한, 1 M의 개발된 NDI 분자를 중성의 수계 레독스 흐름전지에 사용시 500 사이클 동안 약 98%의 용량이 유지됨을 확인하였다. 이는 한 사이클 당 약 0.004%의 용량만이 감소하며 총 45일간 작동 시 처음의 용량 대비 오로지 2%만이 감소됨을 의미한다. 또한 개발된 NDI는 한 분자당 2개의 전자를 저장할 수 있어 1 M의 NDI를 사용 시 약 2 M의 전자 저장이 가능함을 증명하였다. 참고로 고농도의 황산용액을 사용하는 바나듐 레독스 흐름 전지의 활성물질인 바나듐의 용해도는 약 1.6 M이며 전자 저장 수는 원소당 1개여서 총 1.6 M의 전자 저장이 가능하다. 따라서 개발한 NDI 활성 분자는 기존의 바나듐보다 높은 용량을 구현할 수 있다. *1 M (mol/L) : 용액 1 L에 6.022 x 1023 개의 활성분자가 존재함을 의미함 싱 비크람 연구교수, 권성연, 최윤섭 박사과정 연구원이 1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스 머터리얼즈(Advanced Materials)' 2월 7일에 온라인으로 출판됐다. (논문명 : Controlling π–π interactions of highly soluble naphthalene diimide derivatives for neutral pH aqueous redox flow batteries). 또한 전자상자성 공명 분석의 우리 대학 화학과 이예림 박사과정 연구원 및 임미희 교수팀이 함께 연구를 수행했다. 변혜령 교수는 "기존에 낮은 용해도를 가지는 유기 활성 분자를 이용하여 레독스 흐름전지의 활성 분자로 사용할 수 있는 분자 디자인 원리를 보였다. 또한 레독스 반응에서 분자들이 결합하거나 분리되는 상호 결합력을 이용하여 라디칼로 형성된 분자들의 화학적 반응성을 억제할 수 있음을 보여주었다ˮ 라며 "향후 수계 레독스 흐름전지로 사용 시 고에너지밀도, 고용해도의 장점과 함께 중성의 수계 전해액을 사용할 수 있어, 기존의 바나듐 레독스 흐름전지의 산성용액 사용에서 오는 부식 문제 등을 해결할 수 있을 것으로 기대된다. 현재 사용하고 있는 리튬-이온전지 기반의 ESS는 화재의 위험이 높기 때문에 안전하고 저렴한 차세대 ESS의 개발이 필요하며 본 연구는 그 가능성을 보여준 것ˮ 이라고 말했다. 이번 연구는 삼성미래기술육성사업, 기초과학연구원, 재단한국연구재단의 지원을 받아 수행됐다.
2023.03.23
조회수 8033
방사선에도 문제없는 초저에너지 메모리 최초 개발
지상에서 잘 동작하던 반도체 메모리가 우주나 비행기 안에서 갑자기 오동작을 일으키는 일이 있는데, 이는 고고도에 존재하는 방사선 때문이다. 이 뿐만 아니라, 최근 자율 주행 운송 수단과 같이 사람의 안전이 중요한 장치에 사용되는 반도체 메모리도 대기 방사선에 의해 오동작할 확률이 있다는 연구 결과들이 보고되면서 방사선에 대해 높은 안정성을 갖는 메모리 소자의 중요성이 점차 증가하고 있다. 우리 대학 전기및전자공학부 윤준보 교수 연구팀이 나노종합기술원(원장 이조원) 강민호 박사와의 협업을 통해 우주 부품 수준의 내방사선 특성을 가지면서도 일반적인 비휘발성 플래시 메모리보다 30,000배 이상 프로그래밍 에너지가 낮은 나노 전자 기계식 비휘발성 메모리 소자를 세계 최초로 개발했다고 28일 밝혔다. 전기및전자공학부 이용복 박사과정이 제1 저자로 수행한 이번 연구는 저명 국제 학술지 `네이처 커뮤니케이션즈 (Nature Communications)' 2023년 1월호에 출판됐다. (논문명: Sub-10 fJ/bit radiation-hard nanoelectromechanical non-volatile memory). (Impact Factor : 17.690). (https://www.nature.com/articles/s41467-023-36076-0) 반도체 메모리 소자들은 동작 원리상 근본적으로 방사선에 취약해, 이를 보완하기 위해서는 복잡한 회로나 추가적인 데이터 프로세싱을 수반하는데 그 과정에서 많은 에너지가 소모된다. 즉, 일반적인 반도체 메모리 소자들은 내방사선과 낮은 동작 에너지를 동시에 만족하는 것이 매우 어렵다는 것을 의미한다. 윤준보 교수 연구팀은 방사선에 원천적으로 강인한 특성을 가진 나노 전자 기계 기술(Nano Electro Mechanical System, NEMS)을 활용해 고에너지 방사선에도 강인할 뿐만 아니라 매우 낮은 프로그래밍 에너지를 가지고, 전원이 공급되지 않아도 저장된 정보를 유지할 수 있는 비휘발성 메모리 소자를 세계 최초로 개발했다. 연구팀은 반도체 메모리를 사용하는 대신, 나노 크기의 매우 작은 기계 구조에 전기 신호를 가함으로써 나노 기계 구조체가 실제로 움직여서 하부 전극에 붙고 떨어지는 방식을 사용하였다. 또한, 매우 낮은 프로그래밍 에너지를 달성하기 위해 파이프-클립 스프링 구조와 구부러진 외팔보 구조로 구성된 상부 전극을 도입했으며, 특히 파이프-클립 모양의 나노 기계 구조에 전류를 가해 열을 내는 구동 방식을 통해 프로그램된 구조체가 초기 상태로 복구할 수 있도록 하여 반복적인 프로그램 동작에도 낮은 프로그래밍 에너지를 유지할 수 있도록 하였다. 연구진은 나노종합기술원의 반도체 장비·시설 인프라를 활용해 8인치 웨이퍼 수준의 대면적 기판에 신뢰적으로 소자를 제작했고, 제작한 나노 전자 기계식 비휘발성 메모리의 프로그래밍 에너지는 차세대 메모리들과 비교했을 때도 매우 낮은 수준이었다. 또한, 기계적인 움직임을 기반으로 하는 동작 방식 덕분에 고에너지 방사선 조사 후에도 누설 전류 증가, 동작 전압 변화, 비트 오작동 등의 성능 저하 없이 우수한 내방사선 특성을 보였다. 연구개발에 주도적으로 참여한 이용복 박사과정은 “이번 연구 결과는 연구팀이 보유한 나노 전자 기계 설계 기술과 나노종합기술원의 첨단 공정 기술이 만나 내방사선 특성과 낮은 동작 에너지 소모를 동시에 만족하는 비휘발성 메모리를 세계 최초로 구현했다는 점에서 중요한 의미를 가지고, 해당 기술은 우주 환경에서의 인공지능, 초안정성 자율주행 시스템 등 내방사선과 높은 에너지 효율성이 필요한 다양한 미래 응용 분야에서 핵심 기술이 될 것” 이라고 말했다. 또한, “세계 차세대 반도체 시장에서 우리나라가 메모리 원천 기술을 선도할 수 있도록 기여하고 싶다”며 앞으로의 계획을 밝혔다. 해당 기술과 관련해 미국, 중국, 대만, 한국 등에 6건의 특허가 출원돼 있다. 한편, 이번 연구는 한국연구재단의 차세대지능형반도체기술개발사업과 삼성전자의 지원을 받아 수행됐다.
2023.02.28
조회수 7922
차량 배기열을 에너지원으로 화학합성 가능성 최초 밝혀
우리 대학 신소재공학과 박찬범 교수와 정연식 교수 공동 연구팀이 한밭대학교(총장 최병욱) 오민욱 교수팀과 네덜란드 델프트 공과대학교(TU Delft) 프랭크 홀만(Frank Hollmann) 교수팀과의 협력을 통해 상온용 *열전소재 기반 열전 촉매반응과 산화환원 효소반응을 접목해 폐열로 고부가가치 화학물질을 합성하는 데 성공했다고 22일 밝혔다. ☞ 열전효과: 물질의 양단에 온도 차가 존재할 때 내부에 전위차가 생겨 전기가 발생하는 현상. 신소재공학과 윤재호, 장한휘 박사과정이 공동 제1 저자로 참여한 이번 연구는 국제학술지 `네이처 커뮤니케이션즈 (Nature `Communications)' 6월 29일 字에 게재됐다. (논문명: Heat-fueled enzymatic cascade for selective oxyfunctionalization of hydrocarbons) 전 세계적으로 1차 에너지 소비를 기준으로 약 70%의 에너지가 사용되지 못한 채 폐열(Waste heat)로 사라진다. 열전(Thermoelectric)소재는 열을 직접 전기로 변환할 수 있는 소재로, 다양한 환경에서 버려지는 폐열을 회수하여 전기에너지로 변환하는 열전발전에 사용되는 등, 지속 가능한 에너지 물질로서 주목받고 있다. 그러나 우리가 일상생활에서 쉽게 접할 수 있는 낮은 온도의 열원에서 발생하는 저온 폐열은 열전소재를 이용해 충분한 발전 효율을 확보할 수 없어, 실 사용처가 매우 제한적이라는 한계점이 있었다. 연구팀은 이러한 문제를 해결하기 위해 전기 에너지가 아닌 화학 에너지에 주목했다. 화학 에너지는 전기 에너지보다 안정하여 보관과 운송이 간편하다는 장점이 있다. 연구팀은 상온용 열전소재인 비스무트 텔루라이드(Bismuth telluride)가 섭씨 100도 이하의 낮은 온도에서도 물과 산소로부터 과산화수소를 생성하며, 이러한 현상이 열전소재가 만들어내는 전위차에 비례한다는 것을 실험적으로 입증했다. 연구팀은 더 나아가 저온 폐열을 사용하는 비스무트 텔루라이드의 열전 촉매반응을 생체촉매인 퍼옥시게나아제(Peroxygenase) 활성에 적용했다. 퍼옥시게나아제는 과산화수소를 이용해 유기합성에서 중요하게 여겨지는비활성 탄화수소의 선택적 옥시관능화(oxyfunctionalization)를 유도하여 고부가가치 화학원료로 쓰이는 반응성 산소화 화학종을 생성할 수 있는 효소이다. 연구팀은 열전소재가 과산화수소를 실시간으로 공급하도록 설계해 퍼옥시게나아제가 지속해서 탄화수소의 옥시관능화 반응을 수행하도록 만드는 데 성공했다. 연구팀은 그뿐만 아니라 차량의 대전 시내 주행 중에 발생하는 배기열을 활용해서 고부가가치 화학물질 합성에 성공해, 이번에 개발한 시스템의 실용화 가능성도 높였다. 연구팀은 "이번 연구는 폐열을 고부가가치 화학물질 생산에 이용할 수 있음을 처음으로 발견했다는 것에 의의가 있다ˮ며, "열전소재의 반응 메커니즘을 더 자세하게 밝혀 성능을 높이고, 다양한 생체촉매와 접목 및 규모 확대를 통해, 산업적 파급력을 높일 계획ˮ이라고 밝혔다. 한편 이번 연구는 한국연구재단 리더연구자지원사업(창의연구)의 지원을 받아 수행됐다.
2022.07.22
조회수 7904
급속 충전이 가능한 고에너지 하이브리드 리튬전지 개발
우리 대학 신소재공학과 강정구 교수 연구팀이 우수한 성능의 급속 충전이 가능한 고에너지·고출력 하이브리드 리튬 이온 전지를 개발했다고 21일 밝혔다. 연구팀은 고분자 수지 배향의 변화를 통해 넓은 표면적의 다공성 탄소 중공 구조체를 합성했고, 이를 기반으로 하는 음극 및 양극 소재를 개발해 고성능 하이브리드 리튬 이온 전지를 구현했다. 현재 리튬이온 배터리는 대표적인 상용화 에너지 저장 장치로 스마트 전자기기부터 전기 자동차까지 전반적인 전자 산업에 필수적인 요소로 자리 잡고 있어 `제2의 반도체'로 불린다. 그러나 느린 전기화학적 반응 속도, 전극 재료의 한정 등의 특성에 의한 낮은 출력 밀도, 긴 충전 시간, 음극 및 양극 비대칭성에 따른 큰 부피 등의 근본적인 한계로 인해 고성능 전극 재료 및 차세대 에너지 저장 소자의 개발이 필요하다. 이러한 문제를 해결하기 위해 최근 활발하게 연구 중인 하이브리드 전지는 배터리용 음극과 축전기용 양극을 결합해 높은 저장 용량과 빠른 충·방전 속도의 장점을 모두 가지고 있기에 기존 리튬이온 배터리를 대체할 수 있는 차세대 에너지 저장 장치로 주목받고 있다. 하지만 고에너지 및 고출력 밀도의 하이브리드 전지를 구현하기 위해서 배터리용 음극의 전기 전도성 및 이온 확산 속도 개선, 축전기용 양극의 에너지 저장 용량 증가, 서로 다른 이온 저장 메커니즘에 따른 두 전극의 최적화 과정이 필요하다. 이에 강 교수 연구팀은 고분자 수지의 배향 변화를 통해 넓은 표면적을 가진 다공성 탄소 구조체를 합성할 수 있는 새로운 합성법을 제시했고, 이를 기반으로 음극 및 양극 소재를 개발해 고에너지·고출력의 하이브리드 리튬이온 에너지 저장 장치를 성공적으로 구현했다. 연구팀은 레졸시놀-폼알데하이드(Resorcinol-Formaldehyde) 수지 합성 과정에 멜라민(Melamine)을 첨가해 수지의 배향을 선형에서 꼬인 형태로 변화시켰다. 꼬인 형태의 수지가 탄화(carbonization)될 경우 더 많은 마이크로 기공이 형성됐으며, 기존 선형 구조의 수지로 생성된 탄소 구조체보다 12배 넓은 표면적을 가진 탄소 구조체가 생성됐다. 이 과정을 통해 생성된 탄소 구조체는 축전기용 양극 재료로 사용됐으며, 넓은 표면적으로 많은 이온이 표면에 흡착될 뿐만 아니라 중공 구조 및 메조 기공을 통해 이온이 빠르게 확산할 수 있어 높은 용량과 속도 특성을 보이는 것을 연구팀은 확인했다. 그뿐만 아니라 연구팀은 꼬인 형태의 수지 구조체 내에 높은 에너지 저장 용량을 가진 저마늄(Ge) 전구체를 삽입하는 합성방식을 통해 분자 수준 크기의 저마늄 입자가 삽입된 탄소 중공 구조체를 합성해 이를 배터리용 음극 재료로 사용했다. 다공성 탄소 구조체 내 삽입된 분자 수준 크기의 저마늄 입자의 경우 충·방전시 큰 부피 팽창으로 인한 성능 저하 현상을 억제할 뿐만 아니라 내부까지 빠르게 리튬 이온이 확산할 수 있어 높은 수명 특성 및 속도 특성을 가지는 것을 확인했다. 연구팀은 개발된 음극과 양극을 완전셀로 구성해 고성능 하이브리드 리튬 이온 전지를 구현했다. 이 하이브리드 리튬 이온 전지는 기존 상용화된 리튬이온 배터리에 필적하는 에너지 밀도와 축전기의 출력 밀도 특성을 모두 가지는 것을 확인했으며, 차세대 에너지 저장 장치로 수 초에서 수 분의 급속 충전으로도 활용 가능해 전기 자동차, 드론, 스마트 전자기기 등에 적용 가능할 것으로 예상된다. 우리 대학 신소재공학과 김기환 박사과정이 제1 저자로 참여한 이번 연구 결과는 나노 분야의 국제 저명학술지 `ACS 나노'에 4월 4일 字 게재됐다. (논문명 : Coiled Conformation Hollow Carbon Nanosphere Cathode and Anode for High-Energy Density and Ultrafast Chargeable Hybrid Energy Storage) 강 교수는 "전극기준으로 높은 에너지 밀도 (285 Wh/kg)를 가지며, 고출력 밀도(22,600W/kg)에 의한 급속 충전이 가능한 하이브리드 리튬 이온 전지는 현 에너지 저장 시스템의 한계를 극복할 수 있는 새로운 돌파구가 될 것이다ˮ라며 "전기 자동차를 포함한 모든 전자기기의 활용 범위를 확대해 적용될 수 있을 것이다ˮ고 말했다. 이번 연구는 과학기술정보통신부 글로벌프론티어사업의 하이브리드 인터페이스 기반 미래소재연구단의 지원을 받아 수행됐다.
2022.04.22
조회수 10570
물과 산소로 햇빛을 이용해 과산화수소를 생산하는 고효율 촉매 개발
우리 대학 신소재공학과 강정구 교수 연구팀이 물과 산소만으로 햇빛을 이용해 과산화수소를 생산하는 고효율 촉매를 개발했다고 31일 밝혔다. 과산화수소는 주로 소독, 염색, 산화제, 의약품, 반도체, 디스플레이, 로켓 추진연료 등 다양한 산업군에 쓰이는 유용한 자원이다. 연구팀이 개발한 나노구조체 촉매는 빛을 흡수해 산소 분자를 과산화수소 분자로 선택적으로 환원시키며, 지구에 풍부하고 친환경적인 물을 산화제로 이용하기 때문에 친환경적이고 경제적인 원천기술이다. 이 기술은 현재 공정에서 이용되는 고가의 팔라듐 촉매보다 각각 1,500배, 4,500배, 115,000배 저렴한 코발트, 티타늄, 철 산화물을 이용했기 때문에 경제성이 뛰어날 뿐만 아니라, 환경 문제를 유발하는 유기화합물 없이 물과 산소, 햇빛만으로 과산화수소를 생산하기 때문에 친환경적인 특성을 가진다. 김건한 박사(現 옥스포드 대학교 화학과, 우리 대학 신소재공학과 졸업)가 제1 저자로 참여하고, 우리 대학 화학과 김형준 교수 연구팀이 공동으로 참여한 강정구 교수 연구팀의 이번 연구 결과는 재료 분야 국제 학술지 `어드밴스드 에너지 머티리얼즈(Advanced Energy Materials, IF 29.37)' 2월 25일 字 온라인 게재됐다. (논문명: Triphasic metal oxide photocatalyst for reaction site-specific production of hydrogen peroxide from oxygen reduction and water oxidation) 현재 과산화수소 생산은 대부분 `안트라퀴논 공정'을 통해 생산된다. 이 공정은 고압의 수소 기체와 값비싼 팔라듐 기반 수소화 촉매를 이용하기 때문에 경제성과 안전성에서 문제를 가지고 있을 뿐만 아니라 반응 중에 이용되는 유기 오염 물질이 방출되기 때문에 환경 문제를 유발한다. 반면, 햇빛을 에너지원으로 이용해 산소를 과산화수소로 환원시키는 광촉매는 물리적으로 반도체 특성을 갖는 전이 금속산화물을 이용할 수 있기 때문에 기존 팔라듐 촉매보다 수 천배 이상 저렴하다. 또한, 지구에 풍부한 산소로부터 태양에너지를 통해 과산화수소를 생산할 수 있어 안전하고 친환경적인 특성을 가진다. 하지만 기존 과산화수소 생산 광촉매는 산소로부터 과산화수소를 생산하기 위해 전자를 전달하는 산화 반응에 과산화수소보다 더 비싼 알코올류의 산화제를 첨가해야 했다. 또한, 생산된 과산화수소가 광촉매 표면에서 빠르게 분해돼 촉매 효율이 떨어지는 단점을 가지고 있었다. 이에 강정구 교수 연구팀은 고가의 팔라듐 촉매보다 훨씬 저렴한 코발트, 티타늄, 철 산화물을 요소-수열 합성법을 통해 나노 구조화했다. 두 가지 이상의 금속 조합을 갖는 금속산화물의 경우, 일반적으로 각기 다른 금속이 혼합되어 한 가지 구조의 상을 형성한다. 하지만 연구팀은 코발트 전구체의 비율을 높여 철과 코발트 산화물을 분리한 후, 2가 철 산화물의 화학적 비안정성을 이용해 티타늄 산화물과 다시 분리함으로써, 각기 다른 세 가지 금속 산화물이 각자의 산화물 상으로 분리되어 형성되는 삼상 산화물 (Triphasic metal oxide)을 합성했다. 삼상 산화물 광촉매는 2차원적으로 넓은 나노시트(nanosheet) 형태의 코발트 산화물이 있고, 그 위에 코어-쉘(core-shell) 구조를 가진 철 산화물-티타늄 산화물 나노입자가 배열된 독특한 구조를 하고 있다. 또한, 연구팀은 김형준 교수 연구팀과 공동 연구를 통해, 코어-쉘 구조의 나노입자는 효율적으로 가시광선과 자외선을 흡수해 전자를 전달함을 계산 과학을 통해 입증에 성공했다. 코발트 산화물은 기존 물 산화 반응 촉매로 가장 잘 알려진 물질이기 때문에, 물 분자를 흡착해 산소로 환원하고 전자를 제공할 수 있는 능력이 있다. 즉, 물을 산화제로 이용하기 때문에 기존 광촉매에서 이용하는 알코올류를 이용하지 않고도 환원 반응점(reduction reaction-site)으로 원활한 전자전달을 할 수 있다. 한 편, 철 산화물-티타늄 산화물 코어-쉘 나노입자는 각각 가시광선과 자외선을 흡수할 수 있어 효율적인 방법으로 태양광을 흡수할 수 있을 뿐 아니라 산소 흡착 능력이 우수해 반응물인 산소 분자를 선택적으로 흡착할 수 있다. 또한, 구조적으로 코발트 산화물 나노시트 위에 배열되어 있어, 물 산화 반응에서 생긴 전자를 철 산화물이 받아 효율적으로 티타늄 산화물에 전달해 산소 환원 반응을 통한 과산화수소를 생산할 수 있다. 이렇게 생성된 과산화수소는 환원점과 산화점이 분리돼있는 광촉매의 구조적인 특성으로 인해 분해되지 않고 안정적으로 농축되는 특성을 가진다. 강 교수는 "신재생에너지를 이용한 친환경적인 이 기술은 수소 분자와 유기물질을 이용하지 않아 안전성이 뛰어나고, 비교적 값이 저렴한 전이 금속산화물을 이용하기 때문에 경제성이 뛰어나다ˮ라고 소개하면서 "3가지 상의 각 구역에서 산소 환원 반응, 전자-홀 수송, 그리고 물 산화 반응이 일어나기 때문에 광촉매에서 문제가 되고 있던 과산화수소 분해 문제나 알코올 산화제 이용 문제에서 벗어나며 이를 통한 높은 촉매 효율은 기존에 가장 효율이 높다고 알려진 귀금속계 촉매보다 수 천배 저렴할 뿐만 아니라 약 30배 정도 높은 생산성능을 가져 광촉매를 통한 과산화수소 생산의 상용화에 이바지할 것이다ˮ고 말했다. 한편 이번 연구는 과학기술정보통신부 글로벌프론티어사업의 하이브리드인터페이스기반 미래소재연구단의 지원을 받아 수행됐다.
2022.03.31
조회수 12776
일산화질소로부터 암모니아 생산하는 고효율 전기화학 기술 개발
발전소, 산업 시설 등에서 배출되는 배기가스 내 주요 대기오염 물질인 일산화질소(NO)로부터 암모니아를 생산하는 기술이 국내 연구진에 의해 개발됐다. 대기 중에서 초미세먼지를 유발하는 골칫거리인 일산화질소를 사용해 최근 수소 저장체로 주목받는 암모니아를 생산한 것이다. 우리 대학 건설및환경공학과 한종인 교수 연구팀이 UNIST(총장 이용훈) 에너지화학공학과 권영국 교수팀, 한국화학연구원(원장 이미혜) 환경자원연구센터 김동연 박사와 함께 일산화질소로부터 암모니아를 생산하는 고효율 전기화학 시스템을 개발했다고 23일 밝혔다. 개발된 시스템은 비싼 귀금속 촉매 대신 값싼 철 촉매를 이용해 상온 및 상압 조건에서 세계 최고 수준의 전기화학적 암모니아 생산 속도를 기록했다. 일산화질소는 발전소, 산업용 보일러, 제철소 등 연소시설에서 배출되는 질소산화물(NOx)의 대부분(95% 이상)을 차지하고 있는 유해 가스로, 호흡기 질환을 유발할 뿐만 아니라 산성비 및 대기 중 오존을 생성해 배출량이 엄격히 규제되고 있다. 현재 대부분의 처리 기술은 일산화질소의 단순 제거에만 초점을 맞추고 있지만 한 교수팀은 버려지는 일산화질소의 가치에 주목했다. 일산화질소의 높은 반응성을 이용해 적은 에너지만으로 유용 자원인 암모니아 생산의 가능성을 본 것이다. 연구팀은 물에 잘 녹지 않는 일산화질소의 한계를 극복하기 위해 기존의철-킬레이트를 포함한 일산화질소 흡수제를 사용하는 방식 대신 기체를 직접적으로 전극에 주입하는 기체 확산 전극을 사용해 물질전달 속도를 획기적으로 늘렸다. 이로써 공정에 소모되는 화학약품 비용을 줄이고 전기화학 셀 운전 시 발생하는 폐수 처리를 간편화했다. 나노 크기의 철 촉매를 전극에 도포해 부반응을 억제하고 암모니아에 대한 생성물의 선택도를 확보했으며, 전기화학적 암모니아 생산 성능을 결정하는 중요한 지표인 암모니아 생산 속도는 1,236μmolcm-2h-1를 기록했다. 이는 기존의 질소 기체(N2)를 활용한 전기화학적 암모니아 생산 속도 범위인 10μmolcm-2h-1을 100배 이상 넘어선 수준이다. 이러한 접근법은 대부분의 전기화학 반응에서 100%의 순수한 원료 기체를 필요로 하는 것과 달리 사용되는 일산화질소 가스의 농도를 1~10%까지 낮출 수 있어 해당 기술의 현장 적용성을 높일 수 있을 것으로 기대된다. 또한 기존의 암모니아 생산 공정인 하버-보쉬법이 섭씨 400도, 200기압 이상의 고에너지 조건을 요구하는 데 반해, 연구팀이 개발한 전기화학 시스템은 상온 및 상압 조건에서 암모니아 생산이 가능해 공정 설비와 비용 부담을 크게 줄일 수 있을 전망이다. 이번 연구를 주도적으로 진행한 한 교수 연구팀의 천선정 박사과정 학생은 "최근 대기오염, 탄소 중립 등의 이슈가 꾸준히 확산하는 가운데 지속할 수 있는 기술 개발에 대한 중요성이 커지고 있다ˮ며 "대기오염의 원인을 효과적으로 제거하는 동시에 탄소배출이 없는 암모니아 연료를 생산해 새로운 관점으로 환경문제를 해결하고자 했다ˮ고 말했다. 우리 대학 천선정 박사과정, 창원대학교 김원준 교수가 공동 제1 저자로 참여한 이번 연구성과는 저명 국제 학술지인 `ACS 에너지 레터스(Energy Letters)'에 3월 11일 자로 출판됐으며, 속표지논문으로 선정됐다. (논문명: Electro-synthesis of ammonia from dilute nitric oxide on a gas diffusion electrode). 한편 이번 연구는 한국에너지기술평가원, 한국연구재단 등의 지원을 받아 수행됐다.
2022.03.24
조회수 12318
물에서 작동하는 급속충전 가능한 전지 개발
우리 대학 신소재공학과 강정구 교수 연구팀이 물에서 작동하는 우수한 성능의 급속충전이 가능한 하이브리드 전지를 개발했다고 25일 밝혔다. 연구팀은 현재 전극 물질로 가장 많이 사용되고 있는 금속 산화물보다 전도성이 좋은 *다가의 금속 황화물을 양쪽의 전극 물질로 활용했다. 그리고 표면적이 높은 메조 다공성의 전극 구조를 기반으로 높은 에너지 밀도와 고출력을 갖는 하이브리드 수계 이온 에너지 저장 소재를 구현했다. ☞*전자를 잃고 (+)전기를 띄고 있는 상태를 말한다. 예를 들어 2+ 는 2가 이온으로 전자를 2개, 3+ 는 3가 이온으로 전자를 3개 잃어버린 상태다. 이 기술은 현재 주로 사용되는 리튬 이온 배터리 및 다른 수계 배터리보다 안전성 및 경제성 등에서 우수성을 가져 급속충전이 필요한 휴대용 전자기기 및 안전이 중요시되는 상황에서 배터리 사용 등에 적용할 수 있을 것으로 기대된다. 강정구 교수 연구팀의 이번 연구 결과는 재료 분야 국제 학술지 `어드밴스드 에너지 머터리얼즈(Advanced Energy Materials, IF 25.245)' 2월 9일 字에 게재됐다. (논문명: Mesoporous thorn-covered core-shell cathode and 3D reduced graphene oxide aerogel composite anode with conductive multivalence metal sulfides for high-performance aqueous hybrid capacitors) 현재 리튬 이온 배터리는 대표적인 에너지 저장 시스템으로 에너지 밀도가 높다는 장점이 있다. 그러나 배터리 발화와 전해액 누출 같은 안정성 문제 및 리튬 광물의 높은 가격, 이온의 느린 삽입/탈리과정에 의한 낮은 출력 특성과 짧은 수명 등의 문제가 있어 많은 개선이 필요하다. 반면 물에서 작동하는 금속 산화물 기반 에너지 저장 소자는 안전하고 친환경적이며 가격이 상대적으로 매우 저렴하고 전해질 이온이 전극 물질의 표면에서만 반응해 빠른 충전-방전이 가능하다는 장점이 있다. 따라서 리튬 이온을 대체하면서 기존의 문제점을 극복할 수 있는 차세대 에너지 저장 소자로 주목받고 있다. 하지만 기존의 전기 전도성이 낮은 금속 산화물은 충전/방전 속도 면에서 성능이 떨어졌고 질량 당 표면적이 낮아 많은 양의 이온이 반응하지 못하면서 고용량을 구현하기에 어려움이 있었다. 이에 강정구 교수 연구팀은 전도성이 금속 산화물보다 100배 정도 높은 다가의 금속 황화물을 수계 에너지 저장 시스템의 각각 양극과 음극의 전극 물질로 활용해 고용량과 고출력의 성능을 달성했다. 양극 물질로 쓰인 니켈 코발트 황화물과 음극 물질로 쓰인 철 황화물은 모두 두 개의 산화수 상태로 존재해 작동 전압 범위 내에서 더 풍부한 레독스 반응을 일으켜 고용량을 달성할 수 있는 물질로 알려져 있다. 양극 물질은 표면이 가시로 둘러싸인 메조 다공성 코어-쉘 구조로 표면이 30nm(나노미터) 크기의 니켈 코발트 황화물 나노입자들로 이루어져 있어서 표면적이 높고 이온 확산 통로가 풍부하게 존재해 수계 이온 기반 에너지 저장 시스템에서 고용량과 고출력의 에너지 저장성능을 달성했다. 또한 음극 물질은 환원된 산화 그래핀이 쌓이지 않고 무질서하게 엉킨 3D 환원된 산화 그래핀 에어로젤 구조를 뼈대로 삼고 30nm(나노미터) 크기의다가의 철 황화물 나노입자들이 무수히 올려져 있는 구조로서 역시 풍부한 나노입자에 의해 활성 표면적이 높고 3D 그래핀 구조가 가지고 있는 이온 확산 통로 덕분에 높은 출력의 에너지 저장이 가능하다. 이러한 풍부한 메조 다공성의 이온 확산 통로가 있는 구조는 전해질 이온이 빠른 속도로 전극 깊숙이 빠른 침투가 가능해 고출력의 충전-방전 속도를 나타낼 수 있어 고출력 에너지 요구에 응할 수 있다. 또한 모든 활성물질이 나노입자로 이루어져서 기존의 표면적이 낮은 금속 산화물 전극의 낮은 용량의 문제를 해결했다. 이 수계 하이브리드 저장 소자는 기존의 수계 배터리에 비해 같은 수준의 저장용량을 유지하면서 100배 이상의 높은 에너지 저장용량을 보이며 기존의 리튬이온 배터리보다 높은 빠른 출력 밀도를 보인다. 또한 고용량으로 수십 초 내 급속충전이 가능해 안전성이 요구되는 여러 에너지 저장 시스템에 활용 가능할 것으로 기대된다. 강 교수는 "친환경적인 이 기술은 물에서 작동해 전해액 누출 및 화재의 위험성이 없어 안전성이 뛰어나고 리튬을 이용하지 않아 저비용으로 제작할 수 있고 활용성이 뛰어나다ˮ라고 소개하면서 "표면에서의 빠른 화학반응을 이용한 고 표면적의 전극 물질을 이용해 기존보다 높은 전력 밀도와 에너지 밀도를 갖는 시스템 구현이 가능하므로 수계 에너지 저장 장치의 상용화에 이바지할 것이다ˮ고 말했다. 한편 이번 연구는 과학기술정보통신부 글로벌프론티어사업의 하이브리드인터페이스기반 미래소재연구단과 수소에너지 혁신기술사업의 지원을 받아 수행됐다.
2021.02.25
조회수 94763
인공지능으로 3차원 고해상도 나노입자 영상화 기술 개발
우리 대학 바이오및뇌공학과 예종철 교수 연구팀이 삼성전자 종합기술원과 공동연구를 통해 나노입자의 3차원 형상과 조성 분포의 복원 성능을 획기적으로 향상한 인공지능 기술을 개발했다고 16일 밝혔다. 공동연구팀은 에너지 분산형 X선 분광법(EDX)을 주사 투과전자현미경(STEM)과 결합한 시스템을 활용했다. 이번 연구를 통해 나노입자를 형성하고 있는 물질의 형상과 조성 분포를 정확하게 재구성함으로써, 실제 상용 디스플레이를 구성하는 양자점(퀀텀닷)과 같은 반도체 입자의 정확한 분석에 도움을 줄 것으로 기대된다. 예종철 교수 연구팀의 한요섭 박사, 차은주 박사과정, 정형진 석사과정과 삼성종합기술원의 이은하 전문연구원팀의 장재덕, 이준호 전문연구원이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `네이처 머신 인텔리전스(Nature Machine Intelligence)' 2월 8일 字 온라인판에 게재됐다. (논문명 : Deep learning STEM-EDX tomography of nanocrystals) 에너지 분산형 X선 분광법(이하 EDX)은 나노입자의 성분 분석에 주로 이용되며, X선과 반응한 물체의 성분에 따라 고유한 방출 스펙트럼을 보인다는 점에서 화학적인 분석이 가능하다. 퀀텀닷 및 배터리 등 다양한 나노 소재의 열화 메커니즘과 결함을 해석하기 위해 형상 및 조성 분포 분석이 가능한 이 분광법의 필요성과 중요도가 급증하고 있다. 그러나 EDX 측정 신호의 해상도를 향상하기 위해, 나노 소재를 오랜 시간 전자빔에 노출하면 소재의 영구적인 피해가 발생한다. 이로 인해 나노입자의 3차원 영상화를 위한 투사(projection) 데이터 획득 시간이 제한되며, 한 각도에서의 스캔 시간을 단축하거나 측정하는 각도를 줄이는 방식이 사용된다. 기존의 방식으로 획득된 투사 데이터를 이용해 3차원 영상을 복원할 시, 미량 존재하는 원자 신호의 측정이 불가능하거나 복원 영상의 정밀도와 해상도가 매우 낮다. 그러나 공동 연구팀이 자체 개발한 인공지능 기반의 커널 회귀(kernel regression)와 투사 데이터 향상(projection enhancement)은 정밀도와 해상도를 획기적으로 발전시켰다. 연구팀은 측정된 데이터의 분포를 네트워크가 스스로 학습하는 인공지능 기반의 커널 회귀를 통해 스캔 시간이 단축된 투사 데이터의 신호 대 잡음비(SNR)를 높인 데이터를 제공하는 네트워크를 개발했다. 그리고 개선된 고화질의 EDX 투사 데이터를 기반으로 기존의 방법으로는 불가능했던 적은 수의 투사 데이터로부터 더욱 정확한 3차원 복원 영상을 제공하는 데 성공했다. 연구팀이 개발한 알고리즘은 기존의 EDX 측정 신호 기반 3차원 재구성 기법과 비교해 나노입자를 형성하고 있는 원자의 형상과 경계를 뚜렷하게 구별했으며, 복원된 다양한 코어-쉘(core-shell) 구조의 퀀텀닷 3차원 영상이 샘플의 광학적 특성과 높은 상관관계를 나타내는 것이 확인됐다. 예종철 교수는 "연구에서 개발한 인공지능 기술을 통해 상용 디스플레이의 핵심 기반이 되는 퀀텀닷 및 반도체 소자의 양자 효율과 화학적 안정성을 더욱 정밀하게 분석할 수 있다ˮ고 말했다.
2021.02.16
조회수 83915
촉각 증강을 위한 고탄성 압전 세라믹 신소재 개발
언택트(비대면) 시대를 맞아 가상현실(VR)과 증강현실(AR) 기술을 통한 소통의 필요성이 증가함에 따라 인간의 오감(五感, five senses)을 전자기기를 통해 구현 및 측정하는 기술의 연구 역시 가속화되고 있다. 우리 대학 신소재공학과 홍승범 교수 연구팀이 촉감이나 촉각 증강기술에 활용이 가능하도록 3D 나노 구조체를 활용해 탄성 변형률이 3배로 향상된 압전 세라믹 소재를 개발했다고 2일 밝혔다. 전자기기와 상호작용하는 기술에 관한 사람들의 관심이 꾸준히 높아지는 추세를 감안한다면 특히 인간의 일반적인 자극인지 방식을 고려할 때, 사용자에게 2개 이상의 복합 감각이 제공되면 전자기기와 더욱 자연스럽게 상호작용을 할 수 있다. 따라서 최근 들어 시각 및 청각보다 상대적으로 발전이 더딘 촉감 구현 및 증강 기술이 주목을 받고 있다. 촉각 증강 기술은 의료용 로봇을 주축으로 한 로봇 기술뿐만 아니라 촉각을 통해 정보를 전달하는 햅틱 디스플레이, 햅틱 장갑 등 정보 전달 기술에 활용할 수 있다. 이러한 촉각 증강 분야에서는 전기적-기계적 결합이 있는 압전 재료의 활용이 필수적이다. 압전 재료는 전기적 에너지를 기계적 에너지로 변환하거나 기계적 에너지를 전기적 에너지로 변환할 수 있는 소재로서 촉각 증강 분야에서 사용자에게 촉각을 전달하거나 사용자의 움직임을 전기적 신호로 변형시키는데 적합한 소재다. 촉각 증강 소재로 활용하기 위한 압전 재료의 중요한 특징은 압전 계수와 탄성 변형률이다. 압전 계수는 기계적 힘과 전기적 전하량 간의 변환 효율을 나타내는 수치로써 촉각 증강 장치의 감도에 영향을 준다. 또 탄성 변형률은 소재가 가질 수 있는 기계적 변형 한계를 나타내는 수치인데 소재 및 장치가 가지는 유연성에 영향을 준다. 따라서 촉각 증강 기술로 활용하기 위해서는 압전 계수와 탄성 변형률 모두가 높은 압전 소재를 개발하는 것이 필수적이다. 하지만 압전 세라믹 소재의 경우 압전 계수는 높으나 탄성 변형률이 낮고, 고분자 소재는 탄성 변형률은 높으나 압전 계수가 낮아 하나의 소재에서 높은 압전 계수와 탄성 변형률을 모두 얻기는 힘들다. 특히 세라믹 소재는 상대적으로 높은 압전 계수에도 불구하고 소재 내부의 결함으로 인해 탄성 변형률을 높이기가 어려워 아직 실용화 단계까지는 이르지 못하고 있다. 홍 교수 연구팀은 문제해결을 위해 근접장 나노 패터닝(Proximity field nanopatterning, PnP) 기술 및 원자층 증착(Atomic layer deposition, ALD) 기술을 이용해 3차원 나노 트러스(truss) 구조를 갖는 산화물 아연 (ZnO) 세라믹을 제작했다. 또 나노 인덴테이션 (Nano-indentation) 기술과 압전 감응 힘 현미경(Piezoelectric force microscopy, PFM) 기술을 이용, 제작된 구조체의 높은 기계적 특성과 압전 특성을 입증하는데 성공했다. 홍 교수팀이 개발한 압전 아연 산화물 구조체는 100 나노미터(nm) 이하의 두께를 가지면서 내부가 비어있는 트러스 구조체다. 기존 세라믹이 보유하고 있는 내부 결함의 크기를 나노미터 단위로 제한해 재료의 기계적 강도를 증가시켰다. 이 아연 산화물 트러스 구조체의 탄성 변형률은 10% 수준으로 기존 아연 산화물 대비 3배나 더 큰 것으로 나타났으며 압전 계수 역시 9.2 pm/V로 박막 형태의 아연 산화물보다 2배 이상 더 큰 값을 나타냈다. 특히 홍 교수팀이 개발한 이 구조체의 탄성 변형률 증가는 아연 산화물 외에도 다양한 압전 세라믹 소재에 적용할 수 있기에 향후 촉각 증강 기술에서 매우 중요한 유연한 센서와 액추에이터에 압전 세라믹을 활용할 수 있는 새로운 방법으로 사용할 수 있을 것으로 기대된다. 홍승범 교수는 "언택트 시대의 도래로 감성 소통의 중요성이 증가하고 있는데 시각, 청각에 이어 촉각 구현 기술의 발전을 통해 인류는 장소와 관계없이 누구와도 소통할 수 있는 새로운 세상을 맞이할 것ˮ이라고 전망했다. 홍 교수는 이어 "이번 연구 결과를 촉각 증강 소자에 바로 적용하기에는 공정적인 측면에서 다소 보강작업이 필요하지만, 소재 활용에 큰 문제가 됐던 기계적 한계를 극복해 압전 세라믹 소자로의 응용 가능성을 연 것ˮ이라고 이번 연구에 대한 의미를 부여했다. 우리 대학 신소재공학과 김훈 박사과정, 윤석중 박사과정, 김기선 박사가 공동 제1 저자로 참여한 이번 연구는 신소재공학과 전석우 교수와 한승민 교수 연구팀과 함께 진행됐으며 연구 결과는 국제 학술지 `나노 에너지(Nano Energy)'에 게재됐다. (논문명: Breaking the Elastic Limit of Piezoelectric Ceramics using Nanostructures: A Case Study using ZnO) 한편 이번 연구는 과학기술정보통신부·한국연구재단 지원 웨어러블 플랫폼 소재 기술센터 지원과 미래소재 디스커버리 지원, 그리고 기초연구 지원 및 KAIST 글로벌특이점 연구 지원으로 수행됐다.
2020.12.02
조회수 41222
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
>
다음 페이지
>>
마지막 페이지 7