-
한국 법체계 발전 메커니즘 규명에 나선다
우리나라의 법률은 지난 30년간 법령 개수, 조문, 글자 수 등이 급격하게 늘어나면서 미국 연방 법전보다도 더욱 복잡해지며 법률 접근성이 떨어지고 있어 법령정보 제공의 지능화가 필요한 시점이다. 이에 현 법체계의 복잡성과 강건성(robustness)을 규명하고, 시대별 분석을 통해 우리 법이 어떻게 발전해왔는지 알아냄으로써 미래 입법 방향을 예측하는 연구가 필요하다.
우리 대학 문화기술대학원 박주용 교수(복합계 물리학), 문술미래전략대학원 박태정 교수(법 발전학) 공동연구팀은 국내 법령 데이터와 국제 조약 데이터를 전수 수집한 뒤 복합계 네트워크로 구성하여 분석하는 ‘포스트 AI 시대 법 발전학’ 연구를 수행해 우리 법체계의 안정성을 제고하고 대중의 법률에 대한 이해를 높일 수 있는 섬세한 시각화가 가능한 그래프 데이터베이스를 구축할 계획임을 16일 밝혔다.
법 발전학은 국가 발전을 위한 적절한 법과 제도를 설계하는 학문으로서, 법∙과학기술∙문화가 국가 발전에 미치는 영향을 종합적으로 예측하고 과학적 입법시스템을 고안하기 위한 노력이 국제적으로 활발히 이루어지고 있다. 특히 우리나라에서도 빅데이터, SNS, AI 등 생활 밀착형 정보 과학기술의 발달과법에 대한 대중들이 관심과 접근성이 증대하는 현실에서 과학과 법학이 함께 해야 한다는 목소리가 높아지고 있다.
이에 연구팀은 우리나라 법령데이터를 전수 수집하여 법률 사이의 연결관계를 나타내는 ‘복합계 네트워크’를 분석한 뒤 이를 기반으로 법률 전문가와 일반 국민이 원하는 법률정보를 손쉽고 빠르게 검색할 수 있는 그래프 형태의 데이터베이스를 2023년 6월 1일부터 3년에 걸쳐 구축할 계획이라고 밝혔다. 이러한 법학과 과학기술의 결합으로 법에 대한 일반 국민의 이해도를 높임으로써 일상생활에 도움이 되는 것은 물론, 조금 더 전문적인 과학기술기반 법률 서비스를 일컫는 ‘리걸테크(LegalTech)’ 분야에서 새로운 산업이 창출될 것으로 기대하고 있다.
우리 대학 포스트 AI 연구소장을 맡고 있는 이론물리학자 박주용 교수는 “법령끼리 서로를 인용하는 상호연결성에 주목해 법체계를 분석할 수 있는 과학적 방법론으로서 복합계 네트워크 과학, 기계학습∙자연어 처리 등의 AI 기술을 사용해 모든 일상생활에서 법의 적용을 받는 대중들이 사용하고 이해하기 쉬운 융합형 연구가 반드시 필요하다”고 밝혔다.
또한 법학자 박태정 교수는 “우리나라 법학계는 법의 적용과 해석에 관한 연구에 지나치게 편중되어 있고 입법학, 법정책학 및 법경제학 등 법이 나아가야 할 방향에 대한 연구는 상대적으로 미진한 편이다” 라고 지적하며 “법의 방향성을 연구하기 위해서는 법체계의 과학적 진단이 필수적이며 이러한 연구가 우리나라 입법 제도 발전에 큰 도움이 될 것으로 기대한다”고 밝혔다.
이번 연구는 한국연구재단의 지원을 받아 수행될 예정이며, 연구팀은 특히 학생과 젊은 연구원에 대한 적극적인 지원과, 국제심포지엄 개최 등을 통한 국제화에 힘을 쏟을 예정이다.
2023.06.16
조회수 4042
-
차세대소형위성2호 초기 교신 성공
우리 대학 인공위성연구소(소장 한재흥)에서 개발한 차세대소형위성2호가 지난 5월 25일 18시 24분에 발사된 누리호에서 안전하게 분리되어 목표 궤도에 성공적으로 안착하였으며, 같은날 19시 58분 대전 KAIST 지상국과 최초 교신에 성공했다.
차세대소형위성2호의 최초 비콘 신호는 누리호 발사 후 약 40분 만인 25일 저녁 7시 4분경 항공우주연구원의 남극 세종기지 안테나를 통해 수신할 예정이었으며, 실제로는 7시 7분에 수신이 확인되었다. 위성 발사 후 약 94분 만인 25일 저녁 7시 58분경 대전 KAIST 지상국과 최초 교신에 성공했다.
이후, 남극 세종기지에서 비콘 신호를 2차례 더 확인했고, 스웨덴 보덴 지상국과 대전 KAIST 지상국에서 8차례 교신을 수행하면서 차세대소형위성2호의 통신시스템과 자세제어시스템, 전력시스템, 탑재 컴퓨터 등의 기능을 점검했다.
특히, 국내 우주핵심기술 연구개발 성과물로 차세대소형위성2호의 자세제어시스템에 처음 적용된 반작용휠과 광학자이로의 기능을 점검하고, 차세대소형위성2호 태양전지판이 태양을 바라보는 자세제어와 고속데이터 송신을 위해 안테나를 지상국으로 지향하는 자세제어 기능을 확인했다.
또한, 태양전지판과 태양전력조절기, 리튬이온 배터리 등 차세대소형위성2호의 전력시스템을 점검해, 태양전지판에서 안정적으로 생성된 약 256W의 전력을 통해 위성 배터리가 만충전 상태를 유지하고 있는 것을 확인했다.
차세대소형위성2호는 중점임무인 영상레이더 기술검증과 지구관측, 우주과학임무인 근지구궤도 우주방사선 관측, 그리고 4종의 국내 개발 핵심기술에 대한 우주검증을 수행할 예정이다.
영상레이더는 광학카메라와 달리 빛과 구름의 영향을 받지 않아, 주야간 및 악천후에도 지상 관측이 가능하다. 순수 국내 기술로 개발된 차세대소형위성2호의 X-대역 영상레이더는 해상도 5m, 관측폭 40km의 레이더 영상을 획득을 목표로 한다.
우주방사선 관측기는 근지구 궤도의 중성자·하전입자에 대한 정밀 선량 지도를 작성하고, 태양활동 상승 주기의 우주방사선 변화에 따른 우주환경 영향과 근지구 궤도의 중성자 가중치를 연구하는 데 활용된다.
아울러 산·학·연에서 국산화한 위성핵심기술 4종(①상변환 물질을 이용한 열제어장치, ②X-대역 GaN기반 전력증폭기, ③GPS·Galileo 복합항법수신기, ④태양전지배열기)에 대한 우주검증도 함께 수행된다.
차세대소형위성2호는 약 3개월의 초기 운영 기간 동안 위성 본체 및 탑재체에 대한 기능을 상세히 점검한 후, 계획된 영상레이더에 대한 기술검증•지구관측, 우주방사선 관측 및 핵심기술 검증의 정상적인 임무를 약 2년간 수행할 예정이다.
위성 발사 후 1주일 동안 위성 본체 및 탑재체에 대한 기초적인 상태 점검을 수행하고, 발사 후 1개월까지 위성 본체에 대한 세부 기능을 상세히 점검한 뒤, 발사 후 3개월까지 모든 탑재체에 대한 세부 기능점검을 완료함으로써 향후 정상 임무를 위한 위성 상태 최적화를 수행할 예정이다. 이광형 KAIST 총장은 "우리별 1호부터 30여 년간 축적해온 소형위성 개발과 운영 경험을 바탕으로 차세대소형위성2호의 임무를 성공적으로 완수하여 우리나라 소형위성 기술 수준을 한 단계 높일 수 있을 것으로 기대한다"라고 밝혔다.
2023.05.26
조회수 6700
-
엑스선 현미경 해상도 한계 극복
엑스선 현미경은 대부분 물질을 투과하는 장점이 있어 흉부 엑스선이나 CT 촬영을 통해 신체 내부 장기와 골격을 비침습적으로 관찰할 수 있다. 최근에는 반도체, 배터리의 내부 구조를 나노스케일에서 정밀하게 관찰하기 위해 엑스선 영상 기술의 해상도를 높이려는 연구들이 활발하게 진행되고 있다.
우리 대학 물리학과 박용근 교수 연구팀이 포항가속기연구소 임준 박사 연구팀과 공동연구를 통해 기존 엑스선 현미경의 해상도 한계를 극복할 수 있는 원천 기술 개발에 성공했다고 12일(수) 밝혔다.
물리학과 이겨레 박사가 제1 저자로 참여한 이번 연구는 광학 및 광자학의 세계적인 학술지인 `라이트: 사이언스 앤 어플리케이션 (Light: Science and Application)' 4월 7일 字에 출판됐다. (논문명: Direct high-resolution X-ray imaging exploiting pseudorandomness).
엑스선 나노 현미경은 굴절 렌즈가 없어 렌즈 대용으로 동심원 회절판(zone plate)이라 불리는 원형 모양의 격자를 사용한다. 동심원 회절판을 사용하여 얻어지는 영상의 해상도는 회절판 나노구조의 제작 품질에 의해 결정된다. 이러한 나노구조를 제작하고 유지하는 것은 여러 가지 어려움이 있으며, 이러한 한계가 엑스선 현미경의 해상도 한계를 결정했다.
연구팀은 이 문제를 극복하기 위해 새로운 엑스선 나노 현미경 기술을 개발했다. 연구팀이 제안한 엑스선 렌즈는 얇은 텅스텐 필름에 수많은 구멍을 뚫은 형태로, 입사되는 엑스선을 회절시켜 무작위적인 회절 패턴을 생성한다. 연구팀은 역설적이게도 이러한 무작위적 회절 패턴 속에 시료의 고해상도 정보가 온전히 들어있음을 수학적으로 규명하였으며, 실제 그 시료 정보를 추출하여 영상화하는데 성공하였다.
이러한 무작위 회절의 수학적 성질을 활용한 영상기법은 지난 2016년 이겨레 박사와 박용근 교수가 세계 최초로 제안하고 가시광 대역에서 구현한 기술로서, 당시 네이처 커뮤니케이션즈紙 Lee, KyeoReh, and YongKeun Park. "Exploiting the speckle-correlation scattering matrix for a compact reference-free holographic image sensor." Nature communications 7.1 (2016): 13359. 에 보고된 바 있다. 이번 연구는 해당 선행연구 결과를 엑스선 영역의 난제를 푸는 데 활용한 것이다.
구성된 시료의 영상의 해상도는 사용한 무작위 렌즈에 식각된 패턴의 크기와 직접적인 상관이 없다. 이러한 아이디어를 바탕으로 연구팀은 300 나노미터(nm) 지름의 원형 패턴으로 제작한 무작위 렌즈를 활용해 14 나노미터(nm) 해상도(대략 코로나 바이러스의 7분의 1 크기)의 영상을 취득하는 데 성공했다.
연구팀이 개발한 영상기술은 기존 동심원 회절판 제작상의 문제에 가로막혀 있던 엑스선 나노 현미경 해상도를 그 이상으로 끌어 올릴 수 있는 핵심 기반 기술이다.
제1 저자이자 공동교신저자인 우리 대학 물리학과 이겨레 박사는 “이번 연구에서는 14 나노미터(nm) 해상도에 그쳤지만, 차세대 엑스선 광원과 고성능 엑스선 검출기를 활용한다면, 기존 엑스선 나노 영상의 해상도를 넘어서 전자현미경의 해상도 수준인 1 나노미터 부근까지 근접할 수 있을 것이라 예상한다”라며“전자현미경과는 달리 엑스선은 시료를 훼손하지 않으면서 내부 구조를 관찰할 수 있으므로, 반도체 검수와 같은 비침습적 나노구조 관찰에 새로운 표준을 제시할 수 있을 것이다”라고 말했다.
공동교신저자인 포항가속기연구소 임준 박사는 “같은 맥락에서, 개발된 영상기술은 충북 오창에 신설되는 4세대 다목적방사광가속기에서 크게 성능이 증대될 수 있을 것으로 기대한다”라고 말했다.
이번 연구는 한국연구재단 리더연구사업과 세종과학펠로우십의 지원을 받아 수행됐다.
2023.04.12
조회수 5169
-
바이오경제를 이끌어가는 대사공학 30년 역사와 미래
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 지난 30년간 대사공학이 발전해온 역사를 정리해, 대사공학이 어떻게 지속 가능한 발전에 기여할 수 있는 분석한 결과를 정리하여 ‘지속 가능성과 건강을 위한 대사공학’ 논문으로 발표했다고 25일 밝혔다. 이번 논문은 셀(Cell) 誌가 발행하는 생명공학 분야 권위 리뷰 저널인 `생명공학 동향(Trends in Biotechnology)'의 40주년 특집호 온라인판에 게재됐다.
※ 논문명 : Metabolic engineering for sustainability and health
※ 저자 정보 : 김기배(한국과학기술원, 공동 제1 저자), 최소영(한국과학기술원, 공동 제1 저자), 조인진(한국과학기술원, 공동 제1 저자), 안다희(한국과학기술원), 이상엽(한국과학기술원, 교신저자) 포함 총 5명
대사공학은 1990년대 초반부터 본격적으로 연구되어 지난 30년간 괄목할 만한 발전을 이뤘다. 대사공학은 산업, 의료, 농업 및 환경 분야를 포함한 대부분의 생명공학 분야에서 적용돼왔으며, 특히 미생물 공학에 중점을 두고 연구가 진행됐다. 다양한 발효 식품과 알코올음료 생산 등, 미생물을 사용한 물질 생산은 오랜 역사가 있다. 미생물은 동식물에 비해 빠르게 자랄 수 있어 실험에 드는 시간과 비용이 적게 든다. 또한 유전자 변형 생물(Genetically Modified Organism; GMO) 관련한 윤리 및 안정성 문제에서 동식물과 비교해 미생물의 유전공학은 상대적으로 자유로워 미생물에 관한 대사공학 연구가 광범위하게 시행돼왔다.
지난 수십 년간 대사공학은 유용한 화학물질을 효율적으로 생산하고, 분해가 어려운 오염 물질을 분해할 수 있는 미생물 균주를 성공적으로 개발하는 등, 지속 가능한 발전을 위한 핵심적인 기술로서의 면모를 보여왔다. 특히, 현재까지 대사공학을 통해 개발한 미생물은 재생 가능한 바이오매스로부터 바이오 연료, 바이오 플라스틱, 산업용 대량 화학물질, 화장품 성분 및 의약품까지 수백 가지의 화학물질이 생산을 가능케 했다.
또한, 대사공학은 미생물과 곤충을 포함한 동식물의 자연적 정화 과정에서 영감을 얻어 미생물 기반의 다양한 생물학적 정화 방법을 개발하기 위해 사용돼왔다. 오염 물질과 독성 화학물질의 분해 경로를 조작함으로써 유출된 기름, 폐플라스틱, 살충제, 폐기된 항생제와 같은 물질을 더 높은 효율로 분해할 수 있도록 미생물을 개량할 수 있고, 이는 환경 보존을 위한 연구의 초석으로서 대사공학이 인류 건강에 기여하는 중요 예시다. 이처럼 대사공학은 유엔이 발표한 지속가능발전목표(Sustainable Development Goals; SDG) 달성에 다방면으로 기여하고 있다.
연구팀은 이번 연구에서 지난 30년간 대사 공학이 발전하며 어떻게 바이오 기반 화학물질의 지속 가능한 생산, 인류 건강 및 환경 문제까지 기여했는지에 대한 광범위한 개요를 제공했다. 특히 이상엽 특훈교수는 대사공학의 태동기부터 연구를 수행해 왔으며 2000년대 들어서 두드러진 합성생물학의 발전과도 함께해 왔다. 연구팀은 이번 논문을 통해 대사공학의 출현부터 인공지능을 활용한 최신 기술의 도입까지, 지난 수십 년 동안 어떻게 사회적, 산업적, 기술적 요구를 해결하기 위해 어떻게 발전해왔는지 정리하고, 최근 대사공학 연구가 어떻게 산업용 대량 화학물질 생산, 바이오 연료 생산, 천연물 생산, 생물학적 정화 분야에 기여하고 있는지 논의했다. 나아가 건강 및 환경 문제의 해결과 지속 가능한 바이오 기반의 화학산업을 정착시키기 위해 극복해야 할 대사공학의 문제점을 함께 제시했다.
공동 제1 저자인 생명화학공학과 김기배 박사과정생은 “기존의 석유화학 공정 기반의 화학물질 생산으로 인한 기후 위기와 화석 연료 고갈 문제를 고려했을 때 대사공학을 이용한 화학물질의 지속 가능한 생산 연구는 더욱 중요해지고 있다”라고 말했으며, 이상엽 특훈교수는 “이번 연구에서 대사공학의 역사를 돌이켜봄으로써 대사공학의 지속가능발전목표를 달성하기 위한 기여를 조명했으며, 우리 사회가 직면한 기후 위기, 환경 오염, 헬스케어, 식량 및 에너지 부족 문제에 대한 해결책으로서 대사공학이 점점 더 중요한 역할을 할 것”이라고 밝혔다.
한편, 이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발 과제, 바이오·의료기술개발사업의 맞춤형 세포공장 기반 유해선충제어 바이오소재 기술 개발 과제, 그리고 산업통상자원부가 지원하는 e바이오리파이너리 직접공기포집 C1전환 합성생물학의 통합 과제의 지원을 받아 수행됐다.
2023.01.25
조회수 6537
-
형광 염색 없이 분자 정보를 보는 AI 현미경 개발
우리 대학 물리학과 박용근 석좌교수 연구팀이 형광 염색 없이 세포의 분자 정보를 볼 수 있는 인공지능 현미경 기술을 개발했다고 20일 밝혔다.
광학 현미경은 수백 년 전부터 현재에 이르기까지 생물학 및 의학에서 가장 중요하게 쓰이는 기술 중 하나로, 이미지 형성 원리에 따라 여러 형태로 발전해왔다. 최근 수십 년간 분자생물학이 눈부시게 발전하면서 세포 내의 특정 구조를 형광(fluorescence) 으로 표지하는 것이 가능해졌고, 이처럼 높은 생화학적 특이성(biochemical specificity) 덕분에 형광 현미경은 현재 가장 폭넓게 쓰이는 광학 현미경 기술이 됐다.
그러나 형광 현미경은 형광 표지 자체가 세포를 변형하는 것이기 때문에 세포에 부담을 주게 되고, 밝기와 세포독성, 안정성 문제 때문에 초고속 또는 장기간 측정이 힘들며, 제한된 색깔로 인해 다양한 구조를 동시에 보는 것이 어려운 근본적인 한계가 있다.
이와는 대조적으로, 각 물질과 빛의 상호작용을 결정하는 근본적인 특성인 굴절률(refractive index)을 이용해 아무런 염색을 하지 않아도 되는 현미경 기술 또한 꾸준히 발전해왔다. 굴절률로부터 파생되는 빛의 흡수, 위상차 등을 이용한 전통적인 현미경은 물론, 최근에는 굴절률 자체를 3차원 상에서 정량적으로 측정하는 다양한 홀로그래픽 현미경(holographic microscopy) 기술이 박용근 교수 연구팀에서 개발돼 상용화된 바 있다. 이러한 비표지(label-free) 현미경 기술은 형광 현미경과 비교해 여러 가지 장점을 갖고 있지만, 굴절률과 세포 내 구조들의 관계가 명확하지 않아 분자 특이성이 떨어진다는 단점이 있었다.
박용근 교수 연구팀에서는 2012년 초부터 조영주 졸업생(제1 저자, 물리학과·수리과학과 학사 11학번·KAIST 총장 장학생, 現 스탠퍼드대학교 응용물리학과 박사과정) 주도로 홀로그래픽 현미경 분야에 인공지능을 도입해 특이성 문제를 해결하려는 일련의 연구가 시작됐다.
우선 형태적으로는 비슷하나 생화학적인 구성에 차이가 있는 시료(여러 종의 박테리아, 다양한 분류의 백혈구 등)의 굴절률 영상은 사람 눈에는 비슷하게 보이는데, 흥미롭게도 인공지능은 이를 높은 정확도로 분류할 수 있음을 보였다(2013-2014년 KAIST 학부연구프로그램(URP) 이후, 2015년 Optics Express, 2017년 Science Advances, 2020년 ACS Nano 등 게재). 이러한 결과는 매우 다양한 생체 시료에서 일관되게 관찰됐고, 따라서 연구팀은 생화학적 특이성이 높은 정보가 굴절률의 공간 분포에 숨겨져 있다는 가설을 세웠다.
세포생물학 분야 최고 권위지인 `네이처 셀 바이올로지(Nature Cell Biology, IF 28.82)'에 12월 7일 발표된 이번 연구(논문명: Label-free multiplexed microtomography of endogenous subcellular dynamics using generalizable deep learning)에서, 연구팀은 홀로그래픽 현미경 영상으로부터 형광 현미경 영상을 직접 예측할 수 있음을 보임으로써 이 가설을 증명했다. 인공지능이 찾아낸 굴절률 공간 분포와 세포 내 주요 구조 간의 정량적인 관계를 이용해 굴절률의 공간 분포 해독이 가능해졌고, 놀랍게도 이러한 관계는 세포 종류와 관계없이 보존돼 있음을 확인했다.
이 과정에서 만들어진 `인공지능 현미경'은 홀로그래픽 현미경과 형광 현미경의 장점만을 갖는다. 즉, 형광 표지 없이 형광 현미경의 특이적인 영상을 얻을 수 있다. 따라서 자연 상태 그대로의 세포에서 동시에 수많은 종류의 구조를 3차원으로 볼 수 있으며, 밀리초(ms) 수준의 초고속 측정과 수십 일 수준의 장기간 측정이 가능해졌다. 더욱이 기존 데이터에 포함되지 않은 새로운 종류의 세포에도 즉시 적용이 가능하기에, 다양한 생물학 및 의학 연구에 응용이 가능할 것으로 기대된다.
이번 연구는 조영주 박사과정과 박용근 교수가 지난 10여 년간 발전시켜온 광학 및 인공지능 기술력 이외에도, 다학제적 접근과 KAIST 기술을 바탕으로 한 창업 덕분에 가능했다. 생명과학과 허원도 교수(공동 교신저자)와 박외선 박사(공동 제1 저자)가 오랜 기간 발전시켜온 분자생물학 및 형광 현미경 기술 덕분에 인공지능 학습에 필요한 데이터를 얻을 수 있었으며, 조영주 박사과정이 허원도 교수 연구팀에서 2015년 1년간 연구했던 경험 덕분에 구체적인 아이디어가 나오게 됐다.
또한 박용근 교수 연구팀 홀로그래픽 현미경 기술로 창업한 ㈜토모큐브를 통해 현미경 및 데이터 형식이 규격화돼 대규모 인공지능 학습이 용이했고, 이를 바탕으로 ㈜토모큐브 조형주 연구원(공동 제1 저자) 및 민현석 연구원(공동 교신저자) 등 인공지능 전문 인력이 합류하면서 최신 인공지능 기법들의 빠른 도입이 가능했다.
한편 이번 연구는 한국연구재단의 창의연구사업, 과학기술정보통신부의 정보통신방송 기술개발사업 (홀로그램핵심기술), 일자리진흥원의 연구장비개발 및 고도화지원사업, 한국보건산업진흥원의 보건의료기술 연구개발사업의 지원을 받아 수행됐다.
2021.12.20
조회수 8619
-
세로토닌 신호 억제를 통한 당뇨병 및 지방간 억제 효과 규명
우리 대학 의과학대학원 김하일 교수 연구팀이 분당서울대병원 내분비대사내과 최성희 교수 연구팀과 공동연구를 통해 지방조직의 *세로토닌 신호 억제로 당뇨병 개선 및 지방간 억제 효과를 규명했다고 8일 밝혔다.
☞ 세로토닌 : 신경전달물질 중 하나로 감정, 수면 등의 조절에 관여를 한다. 주로 위장관, 혈소판, 뇌, 중추신경계에서 볼 수 있으며 행복을 느끼는 데에 기여한다고 여겨진다.
공동연구팀은 지방조직의 세로토닌 수용체 2B 신호전달 억제를 통해 지방조직에서 분비되는 지방산을 조절하고 그 결과 혈중 지방산 수치를 낮추어 전신적인 대사 지표와 지방간을 개선하는 기작을 통해 지방간 치료제 연구 분야에 새로운 방향성을 제시하고 기존 대사질환 치료제 연구의 한계를 극복할 가능성을 제시해 주었다.
우리 대학 의과학대학원 최원근 박사, 최원석 박사 (현 화순전남대학교병원 내분비대사내과), 분당서울대병원 내분비대사내과 오태정 교수가 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `임상연구저널 (Journal of Clinical Investigation)' 10월 7일 字 온라인판에 출판됐다. (논문명 : Inhibiting serotonin signaling through HTR2B in visceral adipose tissue improve obesity induced insulin resistance )
세로토닌은 뇌에서의 역할과 달리 말초조직에서 비만, 당뇨 상황에서 다양한 에너지대사를 조절한다. 특히 간조직의 세로토닌 신호전달은 지방 합성을 촉진한다고 알려져 있으며, 이 신호를 억제하였을 때 지방간 형성이 개선되는 것을 확인한 바 있다. 이에 공동연구팀은 세로토닌의 내장지방에서의 역할을 확인해 보기로 하였고, 지방세포에서 세로토닌 2B 수용체의 신호를 억제하면 지방조직 내 염증반응이 감소하고, 지방간 억제 및 전신적 인슐린 감수성 증가 등 전반적인 대사 지표가 개선되는 효과를 확인하였다. 이는 세로토닌이 중추신경을 통해서가 아니라 직접적으로 지방조직에 작용한다는 것을 새롭게 발견한 것으로, 향후 새로운 당뇨병 및 지방간 치료제 개발의 표적을 제시하였다는 데에 의의가 있다.
세로토닌 신호 억제를 주요 표적으로 한 지방간 혹은 당뇨병 치료제 개발은 생물학적, 임상적으로 중요한 의미를 가진다. 기존에 개발된 치료제들과 달리 지방조직과 간조직을 동시에 표적으로 하는 세로토닌 신호 억제제는 향후 대사질환 치료제 개발 연구분야에서 괄목할만한 성과를 보일 것으로 기대된다.
비만이 당뇨병 및 지방간과 같은 만성질환을 유발하는 데에 내장지방의 양적 증가와 대사 변화가 중요할 것이라는 점은 학계에서 널리 받아들여지고 있는 현상이다. 본 연구는 세로토닌 2B 수용체가 비만과 같은 인슐린 저항성이 유발되는 상황에서 내장지방 특이적으로 발현이 증가한다는 관찰에서 시작되었으며, 사람의 지방조직 및 다양한 마우스 모델을 이용하여 다학제적 접근으로 임상적인 의미를 잘 파고든 연구라는 점에서 높은 가치를 지닌다.
공동 제1 저자인 우리 대학 최원근 박사는 "이번 연구를 통해 세로토닌 수용체를 표적으로 한 약물이 지방간을 포함한 다양한 대사질환 치료에 새로운 지평을 열 것으로 사료된다"고 말했다. 또한 공동교신저자인 김하일 교수는 "최근 의과학 연구분야에 있어 기초연구자와 임상의사의 협업의 중요성이 강조되는 가운데 KAIST와 분당서울대병원의 공동연구를 통해 의미있는 결론이 도출되어 기쁘다"고 말했다.
이어 공동 교신저자인 분당서울대병원 최성희 교수는 “이번 연구결과를 바탕으로 세로토닌 2B 수용체 신호를 효과적으로 억제할 수 있는 치료법 개발을 통해, 지방세포에도 직접적으로 작용할 수 있는 새로운 인슐린 저항성 약물을 개발할 수 있을 것”이라고 덧붙였다.
한편 이번 연구는 한국연구재단 바이오·의료기술개발사업과 중견연구자지원사업의 지원을 받아 수행됐다.
2021.10.08
조회수 8296
-
KPC4IR, 보건의료 분야 인공지능 활용 가이드 개발
우리 대학이 ʻ사회를 위한 보건의료 분야 인공지능 활용 가이드(Using Artificial Intelligence to Support Healthcare Decisions: A Guide for Society)ʼ를 국제 공동연구를 통해 개발했다. 코로나 19의 세계적인 대유행은 인공지능 기술의 빠른 상용화를 촉진했다. 일례로, 영국의 인공지능 스타트업인 베네볼런트AI(BenevolentAI)는 신종 질병 치료약물을 식별하기 위해 통상적으로 8년이 걸리던 기간을 인공지능 기술을 활용해 단 1주일로 단축시켰다. 이처럼 인공지능 기술은 경제·산업·사회·문화 등 전방위로 확산되면서 엄청난 부가가치와 생활의 편익을 창출하고 있다. 하지만, 급속한 기술 도입이 데이터의 편향이나 오·남용 등의 맹점을 함께 가져왔다는 우려도 중요하게 대두되고 있다. 특히, 보건의료 분야는 인공지능을 뒷받침하는 데이터의 품질과 검증 여부가 생명과 직결되기 때문에 인공지능 기술의 타당성과 안전성이 무엇보다도 우선시 되어야 한다. KAIST 한국4차산업혁명정책센터(센터장 김소영, 이하 KPC4IR)는 보건의료 분야에 적용되고 있는 인공지능 기술의 신뢰성을 확보하기 위해 보다 많은 사람이 인공지능 기술의 책임성에 관한 질문을 던져야 한다는 문제의식을 바탕으로 이번 가이드를 제작했다. 연구진이 말하는 책임성이란 인공지능 기술이 데이터의 편향성으로 현존하는 불평등을 악화시키지 않도록 주의하고 데이터의 정확성을 확보해 결과의 오류를 최소화하는 등의 노력이다.
KPC4IR은 이번 가이드 개발을 위해 싱가포르국립대학교의 리스크공공이해연구소(National University of Singapore Lloyd’s Register Foundation Institute for the Public Understanding of Risk), 영국의 대표적인 과학 기술 비영리 기관인 센스 어바웃 사이언스(Sense about Science)와 함께 지난 1년 간 국제 공동연구를 수행했다.
연구진은 의료영상 분석 및 진단의 효과성 제고와 빅데이터를 활용한 질병 예측 및 임상적 의사결정, 신약 개발 분야 시간 단축 등 의료 분야에 인공지능 기술을 적용한 국내·외 사례를 이번 가이드에 담았다.
또한, 학습 데이터에 누락되거나 제외된 정보가 있다면 인공지능이 편향성을 나타낼 수 있으며, 원래와는 다른 용도로 사용할 경우 변수 간의 연관 관계나 심지어는 결과까지도 잘못 판단할 수 있다는 점도 강조했다. 독일에서는 피부의 병변을 감지해 암 발생 가능성을 진단하는 인공지능을 개발해 실제 의사들의 진단 소견과 비교하는 실험을 진행했다. 동일한 병변 이미지를 인공지능과 다양한 국적을 가진 피부과 전문의 58명에게 보여준 결과 인공지능은 87%의 정확도로 병변 의심 사례를 식별해냈다. 79%의 정확도를 보인 의사들의 정확도를 앞지른 것이다. 인공지능이 의사가 환자를 치료하며 결정을 내리는 과정에서 도움이 될 수 있다는 것을 보여준 사례다. 그러나 인공지능이 옅은 피부색을 가진 사람들로부터 수집한 데이터를 주로 활용해 학습한다면 짙은 피부색을 가진 환자들의 병변은 제대로 진단하지 못할 가능성이 커진다. 인공지능을 ʻ지능적ʼ이라고 하는 이유는 데이터를 단순히 검색하는 수준에 머무는 것이 아니라 데이터에 숨어 있는 특정 패턴을 분석해 유의미한 자료로 추출하기 때문이다. 그래서 사람들은 인공지능의 의사결정이 냉철하고 객관적일 것이라고 생각하지만, 인공지능은 현실에 존재하는 데이터들 바탕으로 학습한다. 우리가 가진 사회적 편견과 편향, 위험한 가정들을 그대로 내재한 결과가 도출될 수도 있다는 뜻이다.연구진은 인공지능 기술을 보건의료 분야에 활용하는 데 있어 가장 중요한 요소 중 하나인 신뢰성(reliability)을 중심으로 데이터의 품질·변수 등과 관련된 공정성 문제를 파악하고 기술의 정확성을 점검할 수 있는 다섯 가지 기준을 이번 가이드에 담았다. ▴출처가 정확한 데이터 사용 ▴사용 목적에 맞는 데이터의 수집 또는 선택 ▴제한 사항과 가정의 정확한 언급 ▴데이터의 편향성 명시 ▴실제 환경에서의 적절한 테스트 등이 이행되었는지 점검하기 위해 우리 사회가 이와 관련한 적극적인 질문을 던져야 한다고 강조했다.
연구를 총괄한 김소영 KPC4IR 센터장은 "보건의료 분야의 인공지능 기술이 충분히 견고한지를 검증하는 질문들이 우리 사회에서 활발하게 논의된다면, 궁극적으로 인공지능 기술의 역량을 끌어올리는 것과 동시에 신뢰할 수 있는 기준을 마련할 수 있을 것ˮ이라고 말했다.
이어, 김 센터장은 "인공지능 기술에 대한 국민의 이해도를 높여 한계점과 개선 사항을 인식해나가는 과정에서 이번 가이드가 중요한 역할을 해 줄 것으로 기대하고 있다ˮ라고 덧붙였다. KPC4IR의 이번 연구는 유럽과 아시아를 아우르는 국제 공동 연구자들이 보건의료라는 특정 분야에서 인공지능 기술의 가이드를 제시한 세계 최초의 사례다. 이를 위해 싱가포르국립대학교·테크놀로지기업 어피니디(Affinidi), 스페인 마드리드 카를로스 3세 대학교, 영국 로이드 선급 재단·가이 앤드 세인트 토마스 국가보건서비스 재단 등에 소속된 전문가들이 자문과 인터뷰, 워크숍 등의 방식으로 참여했다. 국내에서는 서울아산병원, 분당서울대병원 등을 비롯한 의료계와 KAIST AI대학원·바이오및뇌공학과, 과학기술정책연구원, 정보통신정책연구원, 인공지능 솔루션 기업 뷰노 등 다수의 산·학·연 관계자들이 함께했다. KPC4IR은 이번 성과를 국제적으로 공유하기 위해 8월 15일 오전 10시부터 온라인으로 열린 ʻ2021 KDD 국제 워크숍ʼ에서 연구 내용을 발표했다. ʻ사회를 위한 보건의료 분야 인공지능 활용 가이드ʼ의 전체 내용은 KAIST 한국4차산업혁명정책센터 (https://kpc4ir.kaist.ac.kr/)와 싱가포르국립대 리스크공공이해연구소(https://ipur.nus.edu.sg/)의 홈페이지에서 확인할 수 있다.
2021.08.17
조회수 10676
-
이상수 교수팀, iF 디자인 어워드 금상 포함 8개상 석권
우리 대학 이상수 산업디자인학과 교수가 이끄는 디자인팀이 세계 최고 권위의 디자인 공모전인 'iF 디자인 어워드 2021(International Forum Design Award 2021)'에서 최고상인 금상(Gold Award)을 비롯해 총 8개의 상을 받았다.
이 교수팀의 이번 성과는 우리 대학이 iF 디자인 어워드에서 금상을 받은 최초의 사례로 산학 연계 수업을 통해 수상작을 배출했다는 점에서 특히 주목할 만하다. 금상을 수상한 얼라인(ALINE, 정은희, 남서우, 박수연, 황영주, Edwin Truman, 이선옥, 최다솜 학생 참여)은 최근 화두로 떠오르고 있는 ESG 투자(사회적책임투자)를 기반으로 디자인됐다. 새로운 개념으로 투자할 수 있게 도와주는 모바일 애플리케이션 솔루션으로 수익률을 중심으로 판단하던 기존의 방식에서 벗어나 사용자의 가치관을 반영해 투자와 소비를 유도하는 서비스다. 심사위원단은 "정제된 사용자경험(UX) 디자인을 통해 투자 및 소비의 새로운 장을 열었다”고 평가했다.
이뿐만이 아니라 iF 디자인어워드 2021의 서비스디자인 부문 표지 작품으로 게재된 것과 동시에 iF가 지구의 날을 맞아 발행한 '2020-2021 지속 가능한(sustainable) 소비를 위한 디자인 10선'에도 선정되는 등 많은 관심을 받았다.
또한, 대학에서 구성된 디자인팀이 학생 부문이 아닌 일반 기업 경쟁 부문에 참가해 한 번에 8개의 상을 수상한 것 역시 국제적으로도 극히 이례적인 성과로 평가받고 있다. 이상수 교수팀은 52개국 1만여 개 작품이 출품된 올해 공모전에서 서비스 디자인 부문 3개, 사용자 인터페이스(UI) 부문 2개, 사용자 경험(UX) 부문 2개, 커뮤니케이션 부문 1개 등 4개 부문에 걸쳐 총 8개의 상을 받았다. 특히, 금상은 1만여 개의 경쟁 작품 중에서 75개의 출품작에만 주어지는 최고 등급의 상이라는 점에서 이 교수팀의 이번 성과는 더욱 큰 의미를 가진다. 그밖에, 서비스 디자인 부문에서는 부모와 자녀가 함께하는 투자 서비스 핀토(Pinto, 김영우, 김태륜, 조해나 학생 참여), UI부문에서는 멘탈 어카운팅을 반영한 인터페이스 디자인 아쿠아(Aqua, 정기항, 신동욱, 최성민, 임현승 학생 참여), 커뮤니케이션 부문에서는 주식 선물 모바일 애플리케이션 스톡박스(Stockbox, 김병재, 박찬형, 신준범, 이민하, 김우석 학생 참여) 등이 본상을 받았다.
이번 성과를 이끈 이상수 교수는 2020년 NH투자증권-KAIST UX디자인 연구센터를 개소해 새로운 투자 서비스 및 UX디자인을 목표로 연구해왔다. 이 교수(NH투자증권-KAIST UX디자인 연구센터장)는 "KAIST 산업디자인학과 학생들이 세계 최고 수준의 디자인 역량을 갖췄다는 것을 입증받아 기쁘다”라고 소감을 전했다. 이어, "디자인이 단순히 사용자를 즐겁게 만드는 것에 그치는 것이 아니라 더 좋은 사회를 만드는데 기여할 수 있도록 앞으로도 최선을 다할 것ˮ 이라고 수상 소감을 밝혔다.
이상수 교수는 매년 산학 연계 수업을 통해 산업 현장에서 쓰일 수 있는 실질적인 디자인 교육을 지향하고 있으며, 지난 2018년에도 네이버와의 협업을 통해 레드닷 디자인 어워드에서 본상 3개를 한 번에 수상하며 주목받은 바 있다. 한편, iF 디자인 어워드는 레드닷, IDEA 디자인상과 더불어 세계 3대 디자인상으로 손꼽히는 권위 있는 시상식이다. 제품·패키지·커뮤니케이션·서비스디자인·사용자 경험(UX)·사용자 인터페이스(UI)·콘셉트·인테리어·건축 등 총 9개 부문에서 디자인 차별성과 영향력 등을 종합적으로 평가해 수상작을 선정하고 있다.
2021.05.04
조회수 26721
-
세계 최대 규모의 3차원 암 게놈 지도 구축
우리 대학 생명과학과 정인경 교수가 한국생명공학연구원 국가생명연구자원정보센터(KOBIC) 이병욱 박사 연구팀과 공동연구를 통해 전 세계 최대 규모의 3차원 암 게놈 지도 데이터베이스를 구축해 공개했다고 28일 밝혔다. (데이터베이스 주소: 3div.kr)
공동연구팀은 인체 정상 조직과 암 조직, 그리고 다양한 세포주 대상 3차원 게놈 지도를 분석 및 데이터베이스화 해, 약 400여 종 이상의 3차원 인간 게놈 지도를 구축했으며, 이를 통해 암세포에서 빈번하게 발생하는 대규모 유전체 구조 변이(structural variation)의 기능을 해독할 수 있는 신규 전략을 제시했다.
정인경 교수, 이병욱 박사가 공동 교신 저자로 참여한 이번 연구 결과는 국제 학술지 `핵산 연구(Nucleic Acid Research)' 저널 11월 27일 字 온라인판에 게재됐다. (논문명 : 3DIV update for 2021: a comprehensive resource of 3D genome and 3D cancer genome)
현재까지 많은 연구를 통해 암세포 유전체에서 발생하는 돌연변이를 규명해 암의 발병 기전을 이해하려는 시도가 있었다. 최근에는 유전자에서 발생하는 점 돌연변이뿐 아니라 대규모 구조 변이에 관한 연구가 활발하게 이루어지고 있으며, 이들을 활용한 신규 암세포의 특이적 유전자 발현 조절 기전 규명의 중요성이 제시되고 있다.
하지만, 대다수의 구조 변이는 DNA가 단백질을 생성하지 않는 비 전사 지역에 존재해, 1차원적 게놈 서열 분석만으로 이들의 기능을 규명하는 데는 한계가 있었다.
한편 지난 10년간 비약적으로 발전한 3차원 게놈 구조 연구는 비 전사 지역에 존재하는 대규모 구조 변이로 인해 생성되거나 소실되는 염색질 고리 구조(chromatin loop)를 3차원 게놈 구조 해독을 통해 규명하면 유전자 조절 기능을 해독할 수 있다는 모델을 제시하고 있다.
이에 정인경 교수 연구팀은 지금까지 공개된 모든 암 유전체의 3차원 게놈 지도를 확보해 전 세계 최대 규모의 3차원 암 유전체 지도를 작성했다. 그리고 대규모 구조 변이와 3차원 게놈 지도를 연결할 수 있는 분석 도구들을 개발했다. 그 결과 연구팀은 대규모 암 유전체 구조 변이에 따른 3차원 게놈 구조의 변화 그리고 이들의 표적 유전자를 규명할 수 있었다.
공동 교신 저자 이병욱 박사는 "최근 세포 내 3차원 게놈 구조 변화가 다양한 질병, 특히 암의 원인이 된다는 것이 밝혀지고 있는데, 이번 연구를 통해 이를 연구할 수 있는 도구들을 세계 최초로 개발했다ˮ라며 "이번 연구 결과를 활용하면 암의 발병 원리를 이해하고 더 나아가 항암제 개발에도 중요한 정보를 제공할 것으로 기대된다ˮ라고 말했다.
정인경 교수는 "암에서 빈번하게 발생하는 대규모 구조 변이의 기능을 3차원 게놈 구조 해독을 통해 정밀하게 규명 가능함을 보여줬다ˮ라며 "이번 연구 결과는 아직 해독이 완벽하게 이루어지고 있지 않은 암 유전체를 정밀하게 해독하는 기술을 한 단계 더 발전시키는 계기가 될 것이다”라고 말했다.
이번 연구는 한국연구재단 기반산업화 인프라 그리고 서경배과학재단의 지원을 통해 수행됐다.
2020.12.28
조회수 49552
-
성형진 교수 연구팀, 랩온어칩(Lab on a Chip)지 표지논문 게재
우리 대학 기계공학과 성형진 교수 연구팀(초세대협업연구실)이 고주파수 표면탄성파 기반 마이크로스케일 음향흐름유동을 이용해 나노리터급 액적 내 화학적 농도 제어 기술을 개발했다.
동전 크기의 초소형 미세유체칩 내에 서로 섞이지 않는 두 유체로 조성된 마이크로스케일 액적을 기반으로 하는 액적 기반 미세유체역학 분야에서 개별 액적 내 화학적 농도를 제어하기 위해 그동안 많은 노력이 기울여져 왔다. 하지만 지금까지 개발된 액적 내 화학적 농도 제어 기술은 복잡한 미세유로 혹은 별도의 외부 구동시스템이 필요하거나, 만들어진 액적의 병합 혹은 희석을 통해 액적 내 화학적 농도를 제어하기 때문에 동적 제어가 불가능하고 액적 간 화학적 농도 구배를 형성하기 어렵다는 한계를 지니고 있었다.
이번 연구에서 성형진 교수 연구팀은 고주파수 표면탄성파를 미세유체칩 내 유동에 집속하여 음향흐름유동을 발생시켜 농도 제어가 필요한 액상 화학 시료와 완충용액을 혼합한 후, 혼합된 액상 시료를 분산상으로 하는 나노리터급 액적을 생성함으로써 액적 내 화학적 농도의 정밀 제어할 수 있음을 보였다. 개발된 기술을 활용하여 미세유체칩 내 고속으로 생성되는 개별 액적의 화학적 농도를 동적으로 제어할 수 있으며, 더 나아가 액적라이브러리 내 액적 간 화학적 농도 구배를 자유롭게 형성할 수 있는 최초의 기술이라는 점에서 기존 기술보다 진일보한 기술이라는 평가를 받았다.
아울러 평면파 각스펙트럼 이론과 등가 구경 이론을 이용해 원형 빗살무늬전극에서 생성되는 집속 표면탄성파의 집속점 위치가 기하학적 중심이 아니라는 점을 밝혔다. 또한 MHz 대역의 초음파 대역의 압전기판 위 표면탄성파 및 유체 내 종파의 감쇄에 의해 생성되는 마이크로스케일 음향흐름유동 및 와류를 전산유체역학적으로 가시화하여 인가되는 표면탄성파의 진폭과 생성되는 음향흐름유동장 사이의 관계를 규명해 효율적인 마이크로스케일 유동 혼합을 위한 조건을 제시했다.
이번 연구는 영국왕립화학회(Royal Society of Chemistry)에서 발간하는 미세유체역학 및 마이크로타스(microTAS) 분야의 세계적 권위 국제학술지인 랩온어칩(Lab on a Chip)지 2020년 21호의 표지논문으로 선정됐다 (논문명: Acoustofluidic generation of droplets with tunable chemical concentrations). 이는 성형진 교수의 Lab on a Chip 학술지 2016년 4호, 17호, 2017년 6호, 2018년 3호, 19호에 이은 여섯 번째 표지논문으로 미세유체역학 분야의 선도적 연구 성과다.
성형진 교수 연구팀은 그동안 미세유체역학, 난류, 고체-유체 상호작용 연구 분야에서 탁월한 연구 성과를 내 SCI급 국제학술지에 380여편의 논문을 게재했으며, 이번 연구는 과학기술정보통신부의 재원으로 한국연구재단의 중견연구와 초세대협업연구실의 지원으로 수행됐다.
박진수 박사 (현 전남대 교수)와 성형진 교수는 “이번 연구에서 개발된 음향미세유체역학 기술을 통해 마이크로스케일 액적 내 화학적 농도를 칩 내에서 정밀·동적 제어하고 액적 간 농도 구배를 형성할 수 있는 최초의 기술로서, 개발된 기술이 약물스크리닝, 단일 세포 및 입자 기반 분석, 기능성 마이크로캡슐 합성 등 액적 기반 미세유체역학 시스템이 사용되는 다양한 분야에서 핵심 원천기술로 널리 활용될 수 있을 것으로 기대된다”라며 연구 의의를 밝혔다.
2020.11.10
조회수 31038
-
수학 모델로 불안정한 수면 사이클 원인 밝혀
우리 대학 연구진이 수학적 모델을 이용해 세포질 혼잡을 유발하는 비만과 치매, 노화가 어떻게 불안정한 수면을 유발하는지를 밝히고 해결책을 제시했다.
수리과학과 김재경 교수 연구팀은 수학적 모델을 이용해 세포 내 분자 이동을 방해하는 세포질 혼잡(Cytoplasmic congestion)이 불안정한 일주기 리듬(Circadian rhythms)과 수면 사이클을 유발함을 예측하고, 미국 플로리다 주립대학 이주곤 교수 연구팀과 실험을 통해 검증하는 데 성공했다고 9일 밝혔다.
수리과학과 김대욱 박사과정이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `미국국립과학원회보(PNAS)' 10월 26일 字 온라인판에 실렸다. (논문명 : Wake-sleep cycles are severely disrupted by diseases affecting cytoplasmic homeostasis)
우리 뇌 속에 있는 생체시계(Circadian clock)는 인간이 24시간 주기에 맞춰 살아갈 수 있도록 행동과 생리 작용을 조절하는 역할을 한다. 생체시계는 밤 9시경이 되면 우리 뇌 속에서 멜라토닌 호르몬의 분비를 유발해 일정 시간에 수면을 취할 수 있도록 하는 등 운동 능력이나 학습 능력에 이르기까지 거의 모든 생리 작용에 관여한다.
2017년 노벨생리의학상을 수상한 마이클 영, 제프리 홀 그리고 마이클 로스바쉬 교수는 *PER 단백질이 매일 일정한 시간에 세포핵 안으로 들어가 PER 유전자의 전사를 일정 시간에 스스로 억제하는 음성피드백 루프를 통해 24시간 주기의 리듬을 만드는 것이 생체시계의 핵심 원리임을 밝혔다.
☞ PER 단백질: 포유류의 일주기 리듬을 통제하는 핵심 생체시계 단백질이다. 세포질에서 번역(translation)된 PER 단백질은 핵 안으로 들어가 자기 자신의 DNA 전사(transcription)를 조절한다. 이로 인해 세포 내 PER 단백질의 농도는 24시간 주기로 변화한다.
하지만 다양한 물질이 존재하는 복잡한 세포 내 환경에서 어떻게 수천 개의 PER 단백질이 핵 안으로 일정한 시간에 들어갈 수 있는지는 오랫동안 생체시계 분야의 난제로 남아있었다. 이는 서울 각지에서 출발한 수천 명의 직원이 혼잡한 도로를 통과해서 매일 같은 시간에 회사에 들어갈 수 있는 방법을 찾는 것과도 같은 문제다.
김 교수 연구팀은 난제 해결을 위해 세포 내 분자의 움직임을 묘사하는 시공간적 확률론적 모형(Spatiotemporal Stochastic model)을 자체 개발했다. 또 이를 이용해 분석한 결과, PER 단백질이 세포핵 주변에서 충분히 응축돼야만 동시에 인산화돼 핵 안으로 함께 들어간다는 사실을 알아냈다.
김 교수는 "인산화 동기화 스위치 덕분에 수천 개의 PER 단백질이 일정한 시간에 함께 핵 안으로 들어가 안정적인 일주기 리듬을 만들어낼 수 있음을 확인했다ˮ고 설명했다.
김 교수팀은 또 PER 단백질의 핵 주변 응축을 방해하는 지방 액포와 같은 물질들이 세포 내에 과도하게 많아져 세포질이 혼잡해지면 인산화 스위치가 작동하지 않아 불안정한 일주기 리듬과 수면 사이클이 유발된다는 사실도 확인했다.
김재경 교수팀의 수리 모델 예측은 미국 플로리다 주립대학 이주곤 교수 팀과 협업을 통해 실험으로 검증하는 한편 한 발짝 더 나가 비만·치매·노화가 세포질 혼잡을 일으킴으로써 수면 사이클의 불안정을 가져오는 핵심 요인임을 규명하는 데도 성공했다. 세포질 혼잡 해소가 수면 질환 치료의 핵심이기 때문에 김 교수팀의 이번 연구는 수면 질환 치료의 새로운 패러다임을 제시했다는 점에서 큰 의미가 있다.
김재경 교수는 "비만과 치매, 그리고 노화가 불안정한 수면을 유발하는 원인을 수학과 생명과학의 융합 연구를 통해 밝힌 연구ˮ라고 소개하면서 "이번 성과를 통해 수면 질환의 새로운 치료법이 개발되기를 기대한다ˮ라고 말했다.
2020.11.09
조회수 36303
-
사람 3D 폐포 배양 기술로 코로나19 감염 기전을 규명하는 데 성공
우리 대학 연구진 포함 국내 연구진이 실험실에서 3차원으로 키운 사람의 폐포(허파꽈리)에 코로나19 바이러스를 배양해 감염 기전과 치료제 개발에 적용이 가능한 기술 개발에 성공했다.
국제 통계 사이트 월드오미터에 따르면 전 세계 누적 코로나바이러스감염증-19(이하 코로나19) 확진자 수는 25일 기준 4,331만 8,941명으로 지난 18일(4,030만 1,609명) 4,000만 명을 넘어선 후 일주일 만에 4,331만을 돌파하는 2차 대유행이 점차 현실화돼 가고 있다.
우리 대학 의과학대학원 주영석 교수 연구팀은 인간의 폐포 세포를 실험실에서 구현하는 3D 미니 장기기술을 개발하고 이를 활용해 코로나19 바이러스가 인간의 폐 세포를 파괴하는 과정을 정밀하게 규명하는 데 성공했다고 26일 밝혔다.
이번 연구는 영국 케임브리지대학 이주현 박사를 비롯해 국립보건연구원 국립감염병연구소 최병선 과장·기초과학연구원(IBS) 고규영 혈관연구단장(우리 대학 의과학대학원 교수)·서울대병원 김영태 교수와 우리 대학 교원창업기업인 ㈜지놈인사이트와 공동으로 진행됐다.
공동연구팀의 이번 연구 결과는 줄기세포 분야 세계적인 학술지 `Cell Stem Cell' 10월 22일 字 온라인판에 실렸다. (논문명: Three-dimensional human alveolar stem cell culture models reveal infection response to SARS-CoV-2)
정확한 질병 기전의 이해를 기반으로 치료제를 효과적으로 개발하기 위해서는 실험실에서 사용 가능한 인체를 모사한 모델 사용이 필수적이다. 코로나19 바이러스는 생쥐 모델에 감염시키기가 어렵고, 특히 실험실에서 사용할 수 있는 폐 세포 모델은 존재하지 않기 때문에 직접적인 감염 연구의 한계가 존재해왔다.
공동연구팀은 이런 문제를 해소하기 위해 지속적으로 배양이 가능한 3차원 인간 폐포 모델을 새롭게 정립했다. 이를 이용하면 실험실에서 사람의 폐 세포를 이용해 코로나19 바이러스 등 각종 호흡기 바이러스의 질병 기전을 연구할 수 있기 때문이다. 더 나가서 3차원 인간 폐포 모델은 약물 스크리닝 등 치료법 개발에도 직접적으로 응용할 수 있다는 장점이 있다.
공동연구팀은 폐암 등 사람의 수술 검사재료에서 확보되는 사람 폐 조직을 장기간 안정적으로 3차원 배양할 수 있는 조건을 알아내는 데 성공했다. 실험 결과, 3D 폐포는 코로나19 바이러스에 노출되면 6시간 내 급속한 바이러스 증식이 일어나 세포 감염이 완료됐으나, 이를 막기 위한 폐 세포의 선천 면역 반응 활성화에는 약 3일가량의 시간이 걸렸다.
이와 함께 하나의 코로나19 바이러스 입자는 하나의 세포를 감염시키는 데 충분하다는 사실을 알아냈다. 감염 3일째 공동연구팀은 세포 가운데 일부분이 고유의 기능을 급격히 상실한다는 사실도 확인했다.
공동 교신저자인 주영석 교수는 "이번에 개발한 3차원 인체 폐 배양 모델 규모를 확대한다면 코로나19 바이러스를 포함한 다양한 호흡기 바이러스의 감염 연구에 유용하게 사용될 것ˮ이라고 말했다.
주 교수는 이어 "동물이나 다른 장기 유래의 세포가 아닌 호흡기 바이러스의 표적 세포인 사람의 폐 세포를 직접적으로 질병 연구에 응용함으로써 효율적이고 정확한 기전 규명은 물론 치료제 개발에도 이용할 수 있다ˮ고 강조했다.
코로나19 바이러스 대응 기술개발을 위해서는 다양한 기관의 지원과 관련 연구자들의 협력 연구가 필수적이다. 공동연구팀의 이번 연구는 한국연구재단·질병관리청·기초과학연구원(IBS)·서울대학교 의과대학·유럽연구이사회(ERC)·서경배과학재단·휴먼프론티어과학재단의 지원을 받아 수행됐다.
2020.10.26
조회수 29882