본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%9B%90%EC%B2%9C%EA%B8%B0%EC%88%A0%EA%B0%9C%EB%B0%9C%EC%82%AC%EC%97%85
최신순
조회순
치매 정복의 열쇠, PET-MRI 국산화 시대 열린다!
- 순수 국내기술로 PET-MRI 동시 영상 시스템 상용화기술 개발 -- KAIST, 나노종합기술원, 서강대, 서울대병원 융합연구 쾌거 - 수입에만 의존하던 최첨단 의료영상기기 분야에서 국산화에 대한 기대감이 높아지고 있다. 우리 학교 원자력및양자공학과 조규성 교수가 총괄책임을 맡고 있는 3개 대학 공동연구팀은(KAIST, 서강대, 서울대) KAIST 부설기관인 나노종합기술원(원장 이재영)과 함께 순수 국내기술로 PET-MRI 동시영상 시스템을 개발하고 이 시스템을 이용해 자원자 3명의 뇌 영상을 획득하는데 성공했다. PET-MRI는 인체의 해부학적 영상을 보는 자기공명영상기기(MRI, Magnetic Resonance Imaging)와 세포활동과 대사상태를 분석할 수 있는 양전자방출단층촬영기기(PET, Positron Emission Tomography)의 장점이 융합된 최첨단 의료영상기기다. 신체 내 해부학적 정보와 기능적 정보를 동시에 확인할 수 있기 때문에 종양은 물론 치매의 정밀한 조기 진단이 가능하고 신약 개발과 같은 생명과학연구에서도 필수적인 장치다. 기존의 장비는 MRI에서 발생되는 강한 자기장의 영향으로 인해 PET과 MRI 영상을 각각 찍은 후 결합하는 분리형 방식을 주로 사용해 왔다. 이 때문에 촬영시간이 길어지고 환자의 움직임으로 인한 오차가 발생해 두 기기의 영상을 동시에 측정하는 기술이 필요해 자기장내에서 동작되는 PET 개발이 절실했다. 연구팀이 국내 최초로 개발한 일체형 PET-MRI의 핵심 기술은 크게 △자기장 간섭이 없는 PET 검출기 기술 △PET-MRI 융합시스템 기술 △PET-MRI 영상 처리 기술로 나뉜다. PET 검출기는 전체 시스템 가격의 절반을 차지할 정도로 비싸고 가장 핵심적인 요소다. 조 교수와 나노종합기술원 설우석 박사 연구팀은 강한 자기장 내에서 사용 가능한 실리콘 광증배센서(방사선 검출기에 들어오는 빛을 증폭) 개발에 성공했다. 개발된 센서는 반도체 공정을 최적화해 95% 이상의 높은 양산성과 10%대의 감마선 에너지 분해능을 확보해 글로벌 경쟁력을 갖췄다. 서강대 전자공학과 최용 교수는 신개념 전하신호전송방법과 영상위치판별회로를 적용한 최첨단 PET 시스템을 개발했다. 연구결과는 창의성 및 우수성을 인정받아 지난 6월 의학물리(Medical Physics)지에 표지논문으로 게재됐다. 서울대병원 핵의학과 이재성 교수는 △실리콘 광증배센서 기반 PET 영상재구성 프로그램 △MRI 영상기반 PET 영상 보정기술 △PET-MRI 영상융합 소프트웨어 개발을 맡았다. 이 밖에 KAIST 전기및전자공학과 박현욱 교수는 PET과 MRI가 동시설치 가능한 무선주파차폐(RF Shielding) 기술을 확보하고 이를 기반으로 PET과 연계해 설치 가능한 뇌전용 헤드코일을 개발했다. 이 기술들을 바탕으로 공동연구팀은 뇌전용 PET-MRI 시스템 개발에 성공, 지난 6월 3명의 PET-MRI 융합 뇌 영상을 획득했다. 이는 실리콘 광증배센서 기반의 PET과 MRI를 융합한 기기에서 세계 최초로 획득한 인체영상이라고 연구팀은 전했다. 특히, 이 시스템은 기존 전신용 MRI시스템에 뇌전용 PET 모듈 및 MRI 헤드코일이 탈부착 가능하도록 제작해 낮은 설치비용으로 PET-MRI 동시영상을 획득할 수 있는 게 큰 특징이다. 조규성 교수는 “국산 PET의 상용화 기반을 마련하고 세계적으로도 도입기인 PET-MRI 시스템 기술에서 세계 최고 기업들과 견줄 수 있게 됐다”며 “향후 수요가 급증할 것으로 예상되는 치매를 비롯한 뇌질환 진단 비용을 획기적으로 절감할 수 있을 것”이라고 이번 연구의 의의를 밝혔다. 산업통상자원부 산업원천기술개발사업으로 지원(7년간 총 98억원)받아 수행된 이번 연구를 통해 20여편의 특허를 출원하고 20여편의 SCI 논문을 발표했다. 그림1. 개발한 PET-MRI에서 획득한 뇌팬텀(모형) MRI, PET 및 융합 영상 그림2. 개발한 PET-MRI에서 획득한 인체(뇌) MRI, PET 및 융합 영상 그림3. 국산 PET-MRI 임상 영상 촬영 모습 그림4. MRI 내에 삽입된 Head RF 코일과 PET 검출기 그림5. 제작된 삽입형 PET 검출기 모듈 그림6. 제작된 실리콘 광증배센서(좌)와 섬광 크리스탈 블록(우)의 모습 그림7. 제작된 실리콘 광증배센서 그림8. PET 검출원리
2013.11.13
조회수 21236
‘테라헤르츠파’를 아시나요?
정기훈 교수 - 광학나노안테나 접목해 테라헤르츠파 출력 최대 3배 향상시켜 -- 내시경 등 초소형 바이오 진단시스템 등 다양한 분야 응용 기대 - 광학계의 블루오션이라 불리는 ‘테라헤르츠파’의 출력이 KAIST 연구진에 의해 크게 향상됐다. 앞으로 휴대용 투시카메라나 소형 바이오 진단시스템 등 다양한 분야에 응용될 수 있을 것으로 전망된다. 우리 학교 바이오및뇌공학과 정기훈 교수 연구팀이 광학나노안테나 기술을 접목해 테라헤르츠파의 출력을 기존보다 최대 3배 증폭시키는 데 성공했다. 테라헤르츠파는 100GHz에서 30THz 범위의 주파수를 갖는 전자기파로, 가시광선이나 적외선보다 파장이 길어 X선처럼 투과력이 강할 뿐 아니라 X선보다 에너지가 낮아 인체에 해를 입히지 않는다. 이러한 특성으로 X-ray처럼 물체의 내부를 투과해 볼 수 있으며, 주파수 내에서 특정 영역을 흡수하기 때문에 X선으로는 탐지하지 못하는 우편물 등에 숨겨진 폭발물이나 마약을 찾아낼 수 있다. 심지어 가짜약도 판별해낼 수 있다. 또한, 분광정보를 통해 물질의 고유한 성질을 특별한 화학적 처리 없이 분석할 수 있어 인체에 손상이나 고통을 주지 않고도 상피암 등 피부 표면에 발생하는 질병을 효과적으로 즉시 확인할 수 있다. 테라헤르츠파는 펨토초(10-15초) 펄스레이저를 광전도 안테나가 형성된 반도체기판에 쪼여주면 피코초(10-12초) 펄스 광전류가 흐르면서 발생된다. 그러나 출력이 부족해 바이오센서 등 다양한 분야의 상용화에 어려움이 있어 그동안 과학자들이 출력을 증폭시키기 위한 많은 노력들이 이어졌다. 정 교수 연구팀은 광전도안테나 사이에 금 나노막대로 구성된 광학나노안테나를 추가하고 구조를 최적화했다. 그 결과 광전도기판에 나노플라즈모닉 공명현상이 발생되면서 광전류 펄스가 집적도가 높아져 출력이 최대 3배까지 증폭됐다. 이에 따라 물체의 내부를 더욱 선명하게 볼 수 있을 뿐만 아니라 생검을 하지 않고도 좋은 영상과 함께 성분 분석이 가능해졌다. 정기훈 교수는 “이번에 개발한 원천기술을 테라헤르츠파 소자 소형화 기술과 결합해 내시경에 응용하면 상피암을 조기에 감지할 수 있다”며 “앞으로 이 같은 바이오센서 시스템을 구축해 상용화하는 데 주력할 것”이라고 말했다. 바이오 및 뇌 공학과 박상길 박사과정, 진경환 박사과정, 예종철 교수, 이민우 박사과정, 물리학과 안재욱 교수가 공동으로 수행한 이번 연구는 나노분야 세계적 학술지 ‘ACS Nano" 3월호(27일자)에 실렸다. 한편, 이번 연구는 지식경제부 및 한국산업기술평가원의 산업융합기술/산업원천기술개발사업 및 교육과학기술부가 지원하는 한국연구재단의 도약연구자지원사업 등의 일환으로 수행됐다. 그림1. 나노안테나를갖는THz 발생기 전자현미경사진: 광학나노안테나가 집적된 테라헤르츠 생성소자의 전자현미경 이미지. 그림2. NP-PCA 개념도: 광학나노안테나가 집적된 테라헤르츠 생성 소자의 개념도. 테라헤르츠 광전도 안테나 사이의 집적된 광학나노안테나에 의해, 광전류 펄스를 생성하는 펨토초 광펄스의 세기가 기판 표면에서 증가한다. 이를 통해 기존 테라헤르츠 생성소자의 테라헤르츠 출력 파워를 증가 시킬 수 있다. 그림3.나노안테나를갖는THz 발생기모식도 : 광학나노안테나에 의한 증가되는 테라헤르츠 파 출력의 가상도.
2012.04.23
조회수 21071
KAIST, 의료영상기기의 블루오션을 개척한다!
- PET-MR 검출기 용 반도체형 실리콘 광증배관 국산화개발 성공 - - 2년 이내에 순수 국내기술로 상용화 가능 -- 전량수입에 의존하던 방사선 검출기의 국산화도 가능 - 우리 학교 원자력 및 양자공학과 조규성 교수 연구팀과 나노종합팹센터(소장 이귀로) 설우석 박사 연구팀이 공동으로 의료영상기기 중 하나인 PET-MR의 핵심소자인 ‘실리콘 광증배관(SiPM)’을 개발하는 데 성공했다. 실리콘 광증배관은 의료영상기기의 방사선 검출기에 들어오는 빛을 증폭하는 부품이다. 현재 국내에서 시판되는 PET-MR 가격이 약 50억원인데 이 부품은 전체 가격의 10% 이상을 차지할 정도로 매우 고가다. 실리콘 광증배관의 필요성이 최근 들어 크게 대두되고 있지만, 개발이 어려워 전 세계에서 독일, 일본, 미국 등 선진국들만 이 기술을 보유하고 있다. 앞으로 조 교수 연구팀이 개발한 기술이 상용화되면 국내시장 규모가 2010년 3000억원에 달했으나 국산 부품이 전무했던 PET 분야에서 커다란 경제적 파급효과를 낼 것으로 예상된다. PET-MR은 인체조직의 해부학적 영상과 물질대사의 분석이 가능한 자기공명영상기기(MRI, Magnetic Resonance Imaging)와 인체의 세포활동과 대사상태를 분자 수준까지 분석할 수 있는 양전자방출단층촬영기기(PET, Positron Emission Tomography)의 장점이 결합된 최첨단 의료영상기기다. 이처럼 PET와 MRI의 장점만 갖춘 꿈의 의료영상기기인 PET-MR의 상용화를 위해 실리콘 광증배관 개발이 필수적이다. 진공관식 광증배관을 이용하는 기존의 PET는 MR장비의 강한 자기장으로 인해 심각한 영상 왜곡이 발생하기 때문이다. 연구팀은 조도가 낮은 PET 감마선 섬광신호를 측정하는 실리콘 광증배관의 구조를 최적화하고 반응속도를 높여 에너지와 시간분해능을 동시에 향상시켰다. 또 소자 내부증폭을 통해 저조도의 광량을 100만배 증폭 시킬 수 있어 단일광자까지 측정 가능하도록 만들었다. 이와 함께 제작 공정을 단순화해 진공관식 광증배관 대비 1/10 수준의 가격경쟁력을 갖췄으며, 크기는 1/1000 수준으로 소형화를 실현했다. 조 교수 연구팀이 개발한 실리콘 광증배관은 올해 동물실험을 거쳐 앞으로 2년 이내에 우선적으로 뇌전용 PET-MR에 적용해 상용화할 계획이다. 조규성 교수는 “실리콘 광증배관의 국산화를 통해 PET와 같은 의료영상기기는 물론 후쿠시마 원전사고 이후 세계적인 수요가 급증하고 있지만 우리나라로서는 전량 수입에 의존하는 방사선 검출기의 국산화도 가능하게 됐다”며 “원전수출의 급물살에 이어 국내 방사선기기 기술의 해외시장 진출도 머지않았다”고 말했다. 한편, 이번 연구는 지식경제부가 지원하는 산업 원천기술개발사업의 일환으로 지난 4년간 수행됐다. <용어설명> ● 실리콘 광증배관(SiPM)- Silicon Photo Multiplier의 약자로 소자의 내부증폭을 이용하는 광다이오드의 한 종류다. 일반적인 광다이오드는 흡수한 광신호를 외부 증폭회로를 통해 증폭시키게 되는데 이때 외부 잡음도 함께 증폭되는 문제가 있다. 실리콘 광증배관은 소자의 내부에서 100만배로 신호를 증폭시킬 수 있어 단일 광자까지 측정가능 한 소자이다. ● 진공관식 광증배관(PMT)- 광전효과를 이용하여 빛을 증폭시키는 소자이다. 입사된 광자를 전자로 변환시킨 뒤 전기장하에서 가속하여 증폭시키는 과정을 반복한다. 증폭률이 100만배에 가깝고 그 성능을 인정받아 현제까지 가장 많이 사용되고 있는 광소자이다. 하지만 자기장 하에서 전자의 움직임이 영향을 받아 PET-MR에 사용할 수 없다. ● 양전자방출단층촬영기기(PET)- 환자에 양전자를 방출하는 동위원소를 주입한 뒤 특정부위에서 양전자가 방출되면 180° 방향으로 전자의 소멸에 의한 소멸방사선이 발생된다. 이때 환자를 둘러싼 링형태의 검출기에서 두 개의 소멸방사선을 동시에 계측하여 위치를 추정하게 된다. 암은 형성 초기에 다량의 포도당을 이용하여 에너지를 사용하므로 동위원소 표지가된 포도당을 주입하여 암의 조기 진단이 가능하다. 또한 CT나 MRI와 달리 신진대사 및 분자의 거동을 볼 수 있어 분자영상기기라고도 불린다. ● 감마선 - 방사선의 일종으로 에너지가 높아 투과율이 가장 높다. PET에서 사용되는 동위원소에서는 전자의 소멸에 의해 511keV의 감마선 쌍이 180도 방향으로 방출된다. ● 에너지 분해능 - 방사선 측정기에서 서로 다른 에너지의 방사선을 구별할 수 있는 능력. 에너지 분해능이 높아야 잡음 및 외부 방사선으로부터 표적물질이 구분 가능하다. ● 시간 분해능 - 방사선 측정기에서 측정된 서로 다른 신호의 반응 시간을 구별 할 수 있는 능력. 시간 분해능이 높아야 180도 방출된 소멸방사선의 동시계수가 가능하다. <보충자료> ▣ 의료영상기기의 특징 및 현황(2011년 6월 기준) 1) CT - 원리 : 빛 에너지인 X선을 360도 각도에서 촬영해 재구성한다. 2차, 3차원 영상촬영이 가능하다 - 특징 : 조직의 밀도차이를 구별한다. 움직이는 장기(심장, 폐, 내장) 촬영에 적합하다. MRI보다 저렴하며 조영제를 쓰기도 한다.국내보유 : 1743대, 대당가격 : 15억원 2) PET - 원리 : 방사성 약을 인체에 주사하면 포도당 등과 결합해 양전자가 나온다. 이때 나오는 감마선 신호를 영상화 한다. - 특징 : 인체 조직의 기능과 대사 상태를 영상화한다. 한 번 만에 전신을 찍는다. 문제 위치를 정확히 드러내지 않아 최근 CT와 융합해서 많이 사용한다.국내보유 : 155대, 대당가격 : 20억원 3) MRI - 원리 : 체내 물 성분의 하나인 수소 원자핵에 자기장을 걸고 핵 진동을 일으켜 신호를 분석한다. - 특징 : 수분이 많은 근육, 인대, 물렁뼈, 디스크, 혈관, 지방, 뇌를 CT보다 정확히 보여준다. 방사선을 쓰지 않는다.국내보유 : 985대, 대당가격 : 20억원 ▣ PET-MR의 임상적 유용성 PET-MR은 PET(양전자단층촬영장치)와 MRI(자기공명영상장치)의 장점만을 합친 퓨전(융합)영상기기이다. –PET는 뇌세포의 유전자 및 분자과학적인 변화를 알 수 있지만, 공간해상도가 떨어진다는 단점이 있다. –반대로 MR은 수백 mm 정도로 해상도가 높으나 유전자 및 분자과학적인 변화를 볼 수 없다. •PET-MR은 –두 영상기기의 단점을 해결해, 뇌 세포의 기능 및 분자과학적인 변화를 3차원 고정밀 영상으로 얻을 수 있다. –6겹으로 이루어진 뇌의 피질을 층마다 분리해 정밀하게 볼 수 있으며(해부학적 고해상도 영상), 뇌의 미세혈관도 분자수준에서 관찰(생리학적 고민감도 영상)이 가능하다. –MRI영상과 PET 영상을 동시에 얻음으로써 같은 위치에 있는 조직의 생화학적 변화를 동시에 관찰하여 진단의 민감도(sensitivity, TP)와 특이도(specificity, TN)를 향상시킬 수 있다.–저해상도 PET 영상이 호흡이나 심장박동과 같이 인체의 motion artifact에 의해 저해되는 것을 gated MR 영상을 이용하여 보정할 수 있다. ▣ 시장규모-2010년 미국의 PET 및 PET-CT 시장은 약 5.2조원으로 5년 평균 16.7%성장률을 기록하고 있다. 한국의 PET시장은 2010년 까지 150대에 이르는 PET기기 도입으로 3400억에 이르는 시장을 형성하고 있다. 또한 고령화 사회로 진입함에 따라 암, 치매에 대비한 PET-CT 혹은 PET-MR 융합기기의 수요가 증가하여 더 큰 규모의 시장형성이 예상된다. ▣ SiPM개발의의Siemens사는 실리콘 Avalanche photodiode (APD)를 이용하여 직접 융합하는 방식의 PET-MR을 2010년 후반부에 출시한 바 있다. 하지만 실리콘 APD는 진공관식 증배관에 비해 자기장에 강하지만 증폭도가 낮고 이득이 불안정한 것이 단점이다. 실리콘 광증배관은 5~6년전 아일랜드의 SensL사가 최초로 상용화한 광센서로서 실리콘 APD와 진공관식 광증배관의 장점만을 취할 수 있기 때문에 낮은 조도의 광신호를 크게 증폭시킬 수 있는 데 심지어는 단일 광자까지 측정 가능하다. 또한 기존 진공관식 광증배관에 비해 소형이고 양산성이 좋아 경제성이 높은 새로운 광 소자로써 각광을 받아 국내외 연구가 활발히 진행되고 있다. <그림설명> 그림1. 반도체형 광증배관과 섬광체 단결정이 결합된 PET 검출기 개념도 그림2. 연구팀이 개발한 PET-MR용 반도체형 광증배관 사진 그림3. 마이크로 셀 어레이로 구성된 실리콘 광증배소자 그림4. 단일 광증배소자 (우상) 및 4x4 어레이구조의 16채널 광증배소자(우하) 그림5. 격자형 섬광결정과 어레이형 실리콘 광증배소자 및 신호처리회로가 결합된 PET 검출기 모듈
2012.01.26
조회수 25132
스마트폰 질병진단 원천기술 개발
- 신개념의 생체분자 검출기술로 휴대용 체외진단 분야에 획기적 원천기술- 화학분야 세계적 학술지 ‘앙게반테 케미’ 1월호(16일자) 표지논문 선정 스마트폰으로도 질병을 진단하는 원천기술이 국내 연구진에 의해 개발됐다. 우리 학교 생명화학공학과 박현규 교수 연구팀이 스마트폰을 비롯한 휴대용 개인기기에 널리 이용되고 있는 정전기방식의 터치스크린을 이용해 생체분자를 검출하는 원천기술을 세계 최초로 개발하는 데 성공했다. 앞으로 병원에 가지 않고도 스마트폰을 가지고 간단한 질병을 진단하는 시대가 열릴 것으로 기대된다. 최근 스마트폰과 같은 휴대용 전자기기에 적용되는 정전기방식의 터치스크린은 일반적으로 손가락의 접촉을 통해 발생하는 터치스크린 표면의 정전용량 변화를 감지해 작업을 수행하도록 설계돼 있다. 연구팀은 DNA가 자체의 정전용량을 가지고 있으며, 농도에 따라 정전용량이 변화한다는 사실에 착안해 정전기방식의 터치스크린을 생체분자 검출에 활용할 수 있을 것이라고 예상했다. 이를 규명하기 위해 연구팀은 대표적인 생체분자인 DNA를 터치스크린 위에 가하고 정전용량 변화량을 감지했다. 실험결과 터치스크린을 이용해 DNA의 유무와 농도를 정확하게 검출할 수 있었다.이 결과에 따라 DNA뿐만 아니라 세포, 단백질, 핵산, 등 대부분의 생체분자가 정전용량을 갖고 있기 때문에 다양한 생체물질의 검출에도 활용될 수 있다는 가능성을 제시했다는 게 이 기술의 큰 특징이다. 박현규 교수는 “모바일 기기 등에 입력장치로만 이용해 왔던 터치스크린으로 생체 분자 등의 분석에 이용할 수 있음을 세계 최초로 입증한 결과”라며 “이 원천기술을 이용해 앞으로 터치스크린 기반의 스마트폰 또는 태블릿 PC 등을 이용해 개인이 질병을 진단하는 시대가 올 것”이라고 말했다. 이와 함께 논문의 제1저자인 원병연 연구조교수는 “현재는 생체분자의 유무 또는 농도만 측정 가능한 단계이며, 앞으로 특정 생체분자를 선택적으로 검출할 수 있는 기술을 개발해 가까운 시일 내에 상용화에 주력할 것”이라고 덧붙였다. 한편, 이번 연구는 지식경제부가 시행하는 ‘산업원천기술개발사업’으로 수행됐으며, 연구의 중요성을 인정받아 화학 분야의 세계적 학술지 ‘앙게반테 케미(Angewandte Chemie International Edition)’ 1월호(16일자) 표지논문으로 선정됐다. 그림1. 터치스크린을 이용한 생체 분자 검출 시스템 모식도 (앙게반테 케미 논문 표지). 휴대용 모바일 기기의 입력장치인 터치스크린 위에서 세포, 단백실, 핵산, 소분자 등의 생체 분자를 검출할 수 있다. 그림2. 정전용량 터치스크린 방식의 한가지인 surface capacitive touchscreen을 이용한 시스템 모식도. 여러 지점을 동시에 접촉했을 때 접촉점의 시료 농도에 따라 터치 신호의 위치가 변하는 원리를 이용한 방법. 동시에 두 개의 미지 시료의 농도를 측정할 수 있다. 그림3. 정전용량 터치스크린 방식의 한가지인 projected capacitive touchscreen을 이용한 시스템 모식도. 현재 스마트폰 등에 쓰이는 터치스크린 방식으로서, 터치스크린 표면 내부에 여러 라인의 전극이 패턴되어 있어, 각 전극의 정전용량 변화를 각각 측정함으로써 여러 접촉 시료의 농도를 동시에 검출할 수 있다.
2012.01.16
조회수 18336
플렉시블 디스플레이용 개스 배리어 기판기술 개발
- 나노 복합체 개스 배리어 기판 원천기술 확보 - - 투산소도와 투습도 낮아 식품 포장재에 바로 활용 가능 - 우리학교 물리학과 윤춘섭 교수팀이 금오공과대학 고분자공학과 장진해 교수와 공동으로 플라스틱 기판의 투산소도를 1/1,000로 낮춘 독창적 개념의 플렉시블 디스플레이용 개스 배리어(Gas Barrier) 기판을 개발했다. 이번 성과는 평판형 나노입자를 플라스틱 기판에 분산시킨 후 박리 및 배향시키는 나노 복합체 기판 원천기술 개발을 통해 가능해졌다고 공동연구팀은 밝혔다. 개발된 나노 복합체 기판 기술은 차세대 디스플레이인 플렉시블 유기발광 디스플레이(OLED)의 구현에 필수적인 기계적 고유연성, 저 투습도 및 저 투산소도, 높은 광투과도 조건을 모두 만족시킬 수 있는 획기적인 기판 기술로 평가받고 있다. 현존하는 세계최고 수준의 플렉시블 개스 배리어 기판 기술은 플라스틱 기판위에 유기 고분자 층과 무기물 층을 교차로 증착시킨 다층 박막 구조를 가진다. 이 구조로 인해 기판을 곡률반경이 작게 휘거나 접을 경우 무기층에 균열이 생겨 개스 배리어 기능을 상실한다. 이 때문에 기계적 유연성에 한계를 가질 뿐만 아니라 생산 단가가 높은 문제점을 가지고 있었다. 이번에 윤 교수팀이 개발한 나노 복합체 기판 기술은 기판의 골격을 형성하고 있는 유기 고분자가 유연성을 담당하고, 평판형 나노입자가 개스 배리어 기능을 담당한다. 그로 인해 높은 기계적 유연성과 개스 배리어 특성을 동시에 확보할 수 있고 롤투롤(Roll to Roll) 공정이 가능해 생산 단가를 낮출 수 있는 장점이 있다. 플렉시블 디스플레이는 차세대 디스플레이로 각광받고 있으며, 미국을 위시한 일본, 영국, 독일 등 IT 선진국에서는 플렉시블 디스플레이를 모바일 통신기기용 접는 디스플레이, 입는 디스플레이, 디지털 광고판, 스마트 카드, 군복 소매에 부착할 수 있는 작전용 디스플레이 등에 적용하기 위해 대학, 연구소, 기업 및 군이 연구개발 협력체를 구성해 플렉시블 OLED 디스플레이 기술개발을 활발하게 추진하고 있다. 플렉시블 디스플레이를 구현하기 위해서는 유연성이 좋은 플라스틱 기판을 사용해야 하는데, 플라스틱은 내부에 미세한 공간이 있어 개스 분자들이 쉽게 스며들 수 있다. OLED 디스플레이에 습기나 산소가 소자 내부로 침투하면 OLED 소자를 구성하는 유기물질의 분해가 일어나 소자의 기능이 상실되기 때문에 디스플레이의 수명을 단축시킨다. 지금까지 우수한 개스 배리어 특성을 갖는 고유연성 기판의 부재가 플렉시블 OLED 디스플레이의 구현을 막는 중요한 요인 중 하나가 되어 왔다. 이로 인해 현재 상용화되고 있는 소형 모바일 통신기기의 OLED 디스플레이에는 유연성이 없는 유리 기판을 사용하고 있다. 또한, 개발된 나노 복합체 개스 배리어 기판 기술은 플렉시블 디스플레이 뿐만 아니라 투습도 및 투산소도에 대한 요구 조건이 덜 엄격한 식품 포장재에 바로 활용이 가능하다. 식품의 장기 저장 시 산화와 부패를 방지하기 위해서는 투산소도와 투습도가 낮은 포장재의 사용이 필수적이다. 개발된 나노 복합체 기판은 투산소도가 10-2~10-3cc/m2/day로서 현재 일반적으로 사용되고 있는 식품 포장재 투산소도의 1/10 이하이기 때문에 식품 보관 기간을 최소 5배 이상 늘릴 수 있어 식품 유통 구조에 대변혁을 가져올 수도 있다. 라면 봉지와 같은 기존의 식품 포장재는 투산소도와 투습도를 낮추기 위해 플라스틱 필름위에 알루미늄 코팅을 하는데, 인체에 해로운 알루미늄과 음식물의 직접적인 접촉을 피하기 위해 알루미늄 코팅위에 보호막 코팅을 다시 입혀야 되는 번거로운 공정을 거쳐야 한다. 그러나 나노 복합체 개스 배리어 기판 기술을 이용하면 알루미늄 코팅과 보호막 코팅이 필요 없기 때문에 생산 공정이 단순해져 생산 단가도 훨씬 저렴해 지고 친환경적인 장점이 있다. 한편, 윤 교수는 2008년부터 지경부 산업원천기술개발사업의 지원을 받아 ETRI와 공동연구과제로 연구를 수행하고 있으며, 개발된 개스 배리어 기판 기술의 특허 등록을 마치고 관련기업과 기술 이전을 협의 중이다. <용어설명> ○ 플렉시블 디스플레이 : 기존에 유리를 기판으로 사용한 평판형 디스플레이와 달리 유연한 플라스틱 기판을 사용하여 종이와 같이 말거나 접을 수 있는 디스플레이를 말하며, 휴대하거나 착용하기 쉬워 차세대 디스플레이로 각광받고 있다. ○ 유기발광 디스플레이(OLED) : 전기를 가하였을 때 유기물질에서 발생하는 자발광을 이용한 디스플레이로서 LCD에 비해 빠른 응답 속도, 높은 발광 효율, 넓은 시야각, 얇은 두께 등 우수한 특성을 가지고 있어 꿈의 디스플레이로 불린다. 아직 대면적 화면 구현에는 기술적인 난관이 있어 현재는 주로 소형 모바일 통신기기에 상용화되어 사용되고 있다. ○ 롤투롤(Roll-to-Roll) 공정 : 공정하고자 하는 재질을 두루마리 형태로 감아 한 두루마리에서 다른 두루마리로 감아 옮기면서 연속으로 진행하는 공정을 말한다. ○ 개스 배리어(Gas Barrier): 플라스틱 기판으로 스며드는 개스의 통과를 차단 시키는 역할을 하는 방어벽.
2010.09.06
조회수 18756
<<
첫번째페이지
<
이전 페이지
1
2
>
다음 페이지
>>
마지막 페이지 2