본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%9D%B8%EA%B3%B5%EC%A7%80%EB%8A%A5
최신순
조회순
암세포 약물반응 예측 ‘그레이박스’ 개발
지난 수십 년간 많은 의생명과학자의 집중적인 연구에도 불구하고 여전히 국내 사망원인 1위는 암이다. 이처럼 암 치료가 난해한 이유는 환자마다 암 발생의 원인이 되는 유전자 돌연변이와 그로 인한 유전자 네트워크 변형이 서로 달라서 전통적인 실험생물학 접근만으로 표적치료를 적용하는 데에는 본질적인 한계가 있기 때문이다. 한편 딥러닝과 같은 소위 블랙박스(black-box) 방식의 인공지능 기술을 활용해 실험을 대체하고 데이터 학습을 통해 약물 반응을 예측할 수 있으나 이에 대한 생물학적 근거를 설명할 수 없어 결과를 신뢰하기 어려웠다. 우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 인공지능과 시스템생물학을 융합해 암세포의 약물 반응 예측 및 메커니즘 분석을 동시에 이룰 수 있는 새로운 개념의 ‘그레이박스’ 기술을 개발했다고 3일 밝혔다. 조광현 교수 연구팀은 높은 예측 성능을 보이지만 그 근거를 알 수 없어 블랙박스로 불리는 딥러닝과 복잡한 대규모 모델의 경우 예측 성능의 한계를 지니지만 예측 결과에 대한 상세한 근거를 제시할 수 있어서 화이트박스로 불리는 시스템생물학 기술을 융합함으로써 두 기술의 한계를 동시에 극복할 수 있는 소위 ‘그레이박스’ 기술을 착안했다. 연구팀은 다양한 암종의 돌연변이 및 표적항암제 타겟 유전자 정보를 집대성해 분자 조절 네트워크 모델을 구축함으로써 여러 암종과 항암제의 약물 반응 예측에 활용될 수 있는 범용적 골격 모델을 우선 정립했다. 특히 다양한 암종에서 돌연변이가 빈번하게 발생하는 유전자들을 중심으로 전암(pan-cancer) 유전자 네트워크를 제작했고 표적항암제별 약물 반응과 관련된 돌연변이 및 연관 유전자들로 구성된 부분네트워크(sub-network)를 추출함으로써 약물 반응 예측을 위한 시스템생물학 모델을 제작했다. 연구팀은 이렇게 제작된 모델의 매개변수를 딥러닝 블랙박스 최적화기를 통해 결정하는 방식으로 트라메티닙, 아파티닙, 팔보시클립 세 개의 표적항암제 및 대장암, 유방암, 위암 세 개의 암종에 대한 그레이박스 모델을 구축했다. 완성된 모델의 약물 반응 컴퓨터시뮬레이션 결과는 각 암종별 약물반응의 민감도 차이를 보이는 세포주(cancer cell lines) 실험을 통해 비교 검증됐다. 특히 개발된 모델은 미국 국립암연구소(National Cancer Institute)의 돌연변이 정보 기반 약물 반응 예측으로는 동일한 반응을 보일 것으로 예상된 암세포주들이 실제로는 서로 다른 약물 반응을 보일 수 있다는 것을 정확히 예측했으며, 약물 반응의 차이가 발생하는 원인 또한 세포 주별 분자 네트워크 동역학의 차이로 상세히 설명할 수 있었다. 이번 연구 성과는 학습에 의한 시뮬레이션 모델 최적화를 통해 블랙박스 모델인 인공지능 기술의 높은 예측력과 화이트박스 모델인 시스템생물학 기술의 해석력을 동시에 달성한 새로운 약물 반응 예측 기술 개발이어서 그 의미가 크다. 특히, 발생 원인이 이질적이고 복잡한 네트워크 질환인 암에 대해 범용적으로 활용가능한 약물 반응 예측 원천기술이므로 향후 기술 고도화를 통해 다양한 종류의 암종 및 환자 맞춤형 치료 전략 제시에 활용될 수 있을 것으로 기대된다. 조광현 교수는 "인공지능 기술의 높은 예측력과 시스템생물학 기술의 우수한 해석력을 동시에 갖춘 새로운 융합원천기술로서 향후 고도화를 통해 신약 개발 산업의 활용이 기대된다ˮ고 말했다. 바이오및뇌공학과 김윤성 박사, 한영현 박사 등이 참여한 이번 연구 결과는 셀 프레스(Cell Press)에서 출간하는 국제저널 `셀 리포트 메소드(Cell Reports Methods)' 5월 20일 字 표지논문으로 출판됐다. (논문명: A grey box framework that optimizes a white box logical model using a black box optimizer for simulating cellular responses to perturbations) 논문링크: https://www.cell.com/cell-reports-methods/fulltext/S2667-2375(24)00117-6 한편 이번 연구는 삼성미래기술육성사업 및 과학기술정보통신부와 한국연구재단의 중견연구사업 등의 지원으로 수행됐다.
2024.06.03
조회수 2986
생성형 AI로 혁신적 신약 개발 가능성 열어
최근 자연어나 이미지, 동영상, 음악 등 다양한 분야에서 주목받는 생성형 AI가 신약 설계 분야에서도 기존 신규성 문제를 극복하고 새로운 혁신을 일으키고 있다고 하는데 어떤 기술일까? 우리 대학 화학과 김우연 교수 연구팀이 단백질-분자 사이의 상호작용을 고려해 활성 데이터 없이도 타겟 단백질에 적합한 약물 설계 생성형 AI를 개발했다고 18일 밝혔다. 신규 약물을 발굴하기 위해서는 질병의 원인이 되는 타겟 단백질에 특이적으로 결합하는 분자를 찾는 것이 중요하다. 기존의 약물 설계 생성형 AI는 특정 단백질의 이미 알려진 활성 데이터를 학습에 활용하기 때문에 기존 약물과 유사한 약물을 설계하려는 경향이 있다. 이는 신규성이 중요한 신약 개발 분야에서 치명적인 약점으로 지적되어 왔다. 또한 사업성이 높은 계열 내 최초(First-in-class) 타겟 단백질에 대해서는 실험 데이터가 매우 적거나 전무한데, 이 경우 기존 방식의 생성형 AI를 활용하는 것이 불가능하다. 연구팀은 이런 데이터 의존성 문제를 극복하기 위해 단백질 구조 정보만으로 분자를 설계하는 기술 개발에 주목했다. 타겟 단백질의 약물 결합 부위에 대한 3차원 구조 정보를 주형처럼 활용해 해당 결합 부위에 꼭 맞는 분자를 주조하듯 설계하는 것이다. 마치 자물쇠에 딱 맞는 열쇠를 설계하는 것과 같은 이치다. 또한 기존 단백질 구조 기반 3차원 생성형 AI 모델들은 신규 단백질에 대해 설계한 분자들의 안정성과 결합력이 떨어지는 등 낮은 일반화 성능을 개선하기 위해서 연구팀은 신규 단백질에 대해서도 안정적으로 결합할 수 있는 분자를 설계할 수 있는 기술을 개발하는 데 초점을 뒀다. 연구팀은 설계한 분자가 단백질과 안정적으로 결합하기 위해서는 단백질-분자 간 상호작용 패턴이 핵심 역할을 하는 것에 착안했다. 연구팀은 생성형 AI가 이러한 상호작용 패턴을 학습하고, 분자 설계에 직접 활용할 수 있도록 모델을 설계하고 재현할 수 있도록 학습시켰다. 기존 단백질 구조 기반 생성형 AI 모델들은 부족한 학습 데이터를 보완하기 위해 10만~1,000만 개의 가상 데이터를 활용하는 반면, 이번 연구에서 개발한 모델의 장점은 수천 개의 실제 실험 구조만을 학습해도 월등히 높은 성능을 발휘한다는 것이다. 이는 자연에서 관찰되는 단백질-분자 상호작용 패턴을 사전 지식의 형태로 학습에 활용함으로써 적은 데이터만으로도 일반화 성능을 획기적으로 높인 것에 기인한다. 일례로 아시아인에 주로 발견되는 돌연변이 상피 성장인자 수용체(EGFR-mutant)*는 비소세포폐암의 주요 원인으로 알려져 있는데, 이를 타겟으로 하는 약물을 설계하기 위해서는 야생형(wild-type) 수용체**에 대한 높은 선택성을 고려하는 것이 필수적이다. *상피 성장인자 수용체: 상피 성장인자 수용체:상피 성장인자 수용체는 상피 세포의 성장을 촉진하는 인자에 결합함으로써 활성화되는 막 단백질로, 이 수용체의 돌연변이로 인한 지나친 활성은 다양한 종양의 발생과 관련이 있다고 알려져 있음 **야생형 수형체: 야생형은 자연 상태에서 가장 흔하게 발견되는 유전자형 또는 표현형으로, 유전자나 생체 분자 등의 변이가 없는 정상적인 상태를 말함 연구진은 생성형 AI를 통해 돌연변이가 일어난 아미노산에 특이적인 상호작용을 유도해 분자를 설계했고, 그 결과 생성된 분자의 23%가 이론상으로 100배 이상의 선택성을 가지는 것으로 예측됐다. 이와 같은 상호작용 패턴에 기반한 생성형 AI는 인산화효소 저해제(kinase inhibitor)* 등과 같이 약물 설계에 있어 선택성이 중요한 상황에서 더욱 효과적으로 활용될 수 있다. *인산화효소 저해제: 단백질의 인산화를 촉진하는 효소로, 일반적으로 아데노신 삼인산(ATP)으로부터 인산기를 단백질의 특정 잔기에 전달함. 인산화효소는 세포 내 신호전달 네트워크의 핵심 조절자로서, 다양한 질병의 기전에 관여하여 약물 개발의 표적으로 여겨지고 있음. 이를 위해 인산화효소에 결합하여 활성을 억제하는 목적을 가지는 분자를 인산화효소 저해제라 함 제1 저자로 참여한 화학과 정원호 박사과정 학생은 “사전 지식을 인공지능 모델에 사용하는 전략은 상대적으로 데이터가 적은 과학 분야에서 적극적으로 사용되어 왔다”며 “이번 연구에서 사용한 분자 간 상호작용 정보는 약물 분자뿐 아니라 다양한 생체 분자를 다루는 바이오 분야의 문제에도 유용하게 적용될 수 있을 것”이라고 말했다. 한국연구재단의 지원을 받아 수행된 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications) (IF=16.6)’ 2024년 3월 15호에 게재됐다. (논문명: 3D molecular generative framework for interaction-guided drug design, 논문 링크: https://www.nature.com/articles/s41467-024-47011-2)
2024.04.18
조회수 4271
설명해주는 인공지능 구현을 위한 초저전력 하드웨어 기술 개발
우리 대학 신소재공학과 김경민 교수 연구팀이 다양한 멤리스터* 소자를 이용한 설명 가능한 인공지능 (XAI) 시스템을 구현하는데 성공했다고 25일 밝혔다. *멤리스터 (Memristor): 메모리 (Memory)와 저항 (Resistor)의 합성어로, 입력 신호에 따라 소자의 저항 상태가 변하는 소자 최근 인공지능 (AI) 기술의 급속한 발전이 다양한 분야에서 성과를 이루고 있다. 이미지 인식, 음성 인식, 자연어 처리 등에서 AI의 적용 범위가 확대되며 우리의 일상생활에 깊숙이 자리 잡고 있다. AI는 인간의 뉴런 구조를 모방해 만든 ‘인공신경망’을 기반으로, 적게는 수백만 개에서 많게는 수조 개에 달하는 매개변수를 통해 데이터를 분석하고 의사 결정을 내린다. 그러나 이 많은 매개변수로 인해 AI 모델의 동작 원리를 정확하게 이해하기 어렵고, 이는 통상적으로 블랙박스에 비유되곤 한다. AI가 어떤 기준으로 결정을 내는지 알 수 없다면, AI에 결함이나 오작동이 발생했을 때 이를 해결하기 어렵고, 이로 인해 AI가 적용되는 다양한 산업 분야에서 문제가 발생할 수 있다. 이에 대한 해답으로 제시된 것이 바로 설명 가능한 인공지능 (XAI)이다. XAI는 AI가 어떠한 결정을 내렸을 때, 그 근거가 무엇인지를 사람이 이해할 수 있도록 만드는 기술이다. <그림1> 생성형 AI 등 점점 더 복잡해지는 AI 기술의 등장으로 개발자, 사용자, 규제 기관 모두에게 XAI 시스템의 필요성이 강조되고 있다. 하지만, XAI는 일반적으로 엄청난 양의 데이터 처리를 요구하기 때문에, 이를 보다 효율적으로 동작할 수 있는 하드웨어 개발이 필요한 상황이다. 김경민 교수 연구팀은 교란(Perturbation) 기반 XAI 시스템을 서로 다른 멤리스터 소자를 이용해 하드웨어로 구현하는데 성공하였다. 세 가지 멤리스터 소자는 각각 휘발성 저항변화 특성, 아날로그 비휘발성 저항변화 특성, 아날로그 휘발성 저항변화 특성을 가지며 <그림 2>, 각 소자는 교란 기반 XAI 시스템의 필수적인 기능인 입력 데이터 교란, 벡터곱 연산, 그리고 신호 통합 기능을 수행한다. 연구팀은 개발된 XAI 하드웨어를 평가하기 위해, 흑백 패턴을 인식하는 신경망을 설계하였다. 여기에 개발한 XAI 하드웨어 시스템으로 설계한 신경망이 흑백 패턴을 인식하는 근거를 설명하였다. <그림3> 그 결과 기존 CMOS 기술 기반 시스템 대비 에너지 소비를 24배 감소하여 AI 판단의 이유를 제공하는 것을 확인하였다. <그림4> KAIST 김경민 교수는 “AI 기술이 일상화되면서 AI 동작의 투명성 및 해석가능성이 중요해지고 있는데, 이번 연구는 다양한 종류의 멤리스터 소자를 이용해 AI 판단에 대한 근거를 제공하는 XAI 하드웨어 시스템을 구현할 수 있었다는 점에 큰 의의가 있다”며 “이 연구는 AI 의사 결정에 도달하는 과정을 이해하기 쉽게 설명을 제공함으로써 AI 시스템의 신뢰성 향상에 기여할 수 있어, 향후 의료, 금융, 법률 등 민감한 정보를 다루는 AI 기반 서비스에 적용될 수 있을 것으로 기대된다”고 밝혔다. 이번 연구는 KAIST 신소재공학과 송한찬 박사과정, 박우준 박사과정 학생이 공동 제1 저자로 참여했으며, 국제 학술지 ‘어드밴스드 머티리얼즈(Advanced Materials, IF: 29.4)’에 03월 20일 字 온라인 게재됐으며, 한국연구재단 중견연구사업, 차세대지능형반도체기술개발사업, PIM인공지능반도체핵심기술개발사업, 나노종합기술원 및 KAIST 도약연구사업의 지원을 받아 수행됐다. (논문명: Memristive Explainable Artificial Intelligence Hardware, 논문링크: https://doi.org/10.1002/adma.202400977)
2024.03.25
조회수 3240
인공지능이 상황에 따라 알아서 업데이트되다
최근 실생활에 활용되는 인공지능 모델이 시간이 지남에 따라 성능이 점차 떨어지는 현상이 다수 발견되었고, 이에 따라 지속가능한 인공지능 학습 기술에 대한 필요성이 커지고 있다. AI 모델이 꾸준히 정확한 판단을 내리는 것은 더욱 안전하고 신뢰할 수 있는 인공지능을 만들기 위한 중요한 요소이다. 우리 대학 전기및전자공학부 황의종 교수 연구팀이 시간에 따라 데이터의 분포가 변화하는 드리프트 환경에서도 인공지능이 정확한 판단을 내리도록 돕는 새로운 학습 데이터 선택 기술을 개발했다고 14일 밝혔다. 최근 인공지능이 다양한 분야에서 인간의 능력을 뛰어넘을 정도의 높은 성능을 보여주고 있지만, 대부분의 좋은 결과는 AI 모델을 훈련시키고 성능을 테스트할 때 데이터의 분포가 변하지 않는 정적인 환경을 가정함으로써 얻어진다. 하지만 이러한 가정과는 다르게 SK 하이닉스의 반도체 공정 과정에서 시간에 따른 장비의 노화와 주기적인 점검으로 인해 센서 데이터의 관측값이 지속적으로 변화하는 드리프트 현상이 관측되고 있다. 시간이 지나면서 데이터와 정답 레이블 간의 결정 경계 패턴이 변경되면, 과거에 학습되었던 AI 모델이 내린 판단이 현재 시점에서는 부정확하게 되면서 모델의 성능이 점차 악화될 수 있다. 본 연구팀은 이러한 문제를 해결하기 위해, 데이터를 학습했을 때 AI 모델의 업데이트 정도와 방향을 나타내는 그래디언트(gradient)를 활용한 개념을 도입하여 제시한 개념이 드리프트 상황에서 학습에 효과적인 데이터를 선택하는 데에 도움을 줄 수 있음을 이론적으로 실험적으로 분석했다. 그리고 이러한 분석을 바탕으로 효과적인 학습 데이터 선택 기법을 제안하여, 데이터의 분포와 결정 경계가 변화해도 모델을 강건하게 학습할 수 있는 지속 가능한 데이터 중심의 AI 학습 프레임워크를 제안했다. 본 학습 프레임워크의 주요 이점은, 기존의 변화하는 데이터에 맞춰서 모델을 적응시키는 모델 중심의 AI 기법과 달리, 드리프트의 주요 원인이라고 볼 수 있는 데이터 자체를 직접 전처리를 통해 현재 학습에 최적화된 데이터로 바꿔줌으로써, 기존의 AI 모델 종류에 상관없이 쉽게 확장될 수 있다는 점에 있다. 실제로 본 기법을 통해 시간에 따라 데이터의 분포가 변화되었을 때에도 AI 모델의 성능, 즉 정확도를 안정적으로 유지할 수 있었다. 제1 저자인 김민수 박사과정 학생은 "이번 연구를 통해 인공지능을 한번 잘 학습하는 것도 중요하지만, 그것을 변화하는 환경에 따라 계속해서 관리하고 성능을 유지하는 것도 중요하다는 사실을 알릴 수 있으면 좋겠다ˮ고 밝혔다. 연구팀을 지도한 황의종 교수는 “인공지능이 변화하는 데이터에 대해서도 성능이 저하되지 않고 유지하는 데에 도움이 되기를 기대한다”고 말했다. 본 연구에는 KAIST 전기및전자공학부의 김민수 박사과정이 제1 저자, 황성현 박사과정이 제2 저자, 그리고 황의종 교수(KAIST)가 교신 저자로 참여했다. 이번 연구는 지난 2월 캐나다 밴쿠버에서 열린 인공지능 최고 권위 국제학술 대회인 ‘국제 인공지능 학회(Association for the Advancement of Artificial Intelligence, AAAI)’에서 발표되었다. (논문명: Quilt: Robust Data Segment Selection against Concept Drifts) 한편, 이 기술은 SK 하이닉스 인공지능협력센터(AI Collaboration Center; AICC)의 지원을 받은 ‘노이즈 및 변동성이 있는 FDC 데이터에 대한 강건한 학습’ 과제 (K20.05) 와 정보통신기획평가원의 지원을 받은 ‘강건하고 공정하며 확장가능한 데이터 중심의 연속 학습’ 과제 (2022-0-00157) 와 한국연구재단의 지원을 받은 ‘데이터 중심의 신뢰 가능한 인공지능’ 과제 성과다.
2024.03.14
조회수 3473
인공지능으로 인간 추론 능력 극대화시키다
최근 인공지능 기술이 인식, 생성, 제어, 대화와 같은 실제 문제를 빠르게 해결해 나감에 따라 인간의 역할과 일자리 생태계가 변화하고 있다. 인공지능의 발전 속도를 본다면 가까운 미래에는 인공지능이 인간보다 똑똑해질 수도 있다. 이와 반대로 인공지능을 이용해 인간의 사고력 자체를 향상시킬 순 없을까? 우리 대학 뇌인지과학과 이상완 교수(신경과학-인공지능 융합연구센터장) 연구팀이 인간의 빠른 추론 능력을 유도해 인과관계의 학습 효율을 향상할 수 있는 뇌 기반 인공지능 기술 개발에 성공했다고 31일 밝혔다. 우리는 일상생활에서 다양한 사건을 경험하며 세상의 다양한 요소에 대한 인과관계를 학습해 나가고, 공부할 때는 지식 조각들을 조합하며 통합적인 지식을 습득한다. 이러한 과정은 점진적으로 추론하는 베이시안 모델 또는 특정한 상황에서 한 번의 경험으로부터 빠르게 결론을 도출하는 고속추론 또는 원샷 추론이 있다. 연구팀은 이전 연구에서 인간의 원샷 추론 과정을 모델링하고 전두엽과 해마가 이러한 과정에 관여하고 있음을 규명한 바 있다. 이번 연구에서 이 모델에 인간의 원샷 추론 과정을 특정한 상태로 유도하기 위해 알파고에 사용된 바 있는 심층 강화학습 기술을 접목했다. 이는 강화학습 알고리즘이 인간의 원샷 추론 과정을 수없이 시뮬레이션하면서 전두엽과 해마가 가장 효율적으로 학습할 수 있는 최적의 조건을 탐색하는 과정으로 볼 수 있다. 연구팀은 126명의 인간 피험자를 대상으로 한 인과관계 학습 및 추론 실험에서 제안 기술을 사용해 학습했을 때 단순 반복 학습 대비 최대 약 40%까지 학습 효율이 향상됨을 보였다. 더 나아가 오랜 시간에 걸쳐 신중하게 학습하거나 몇 가지 단서만을 조합해 빠르게 결론을 도출하는 것 같은 개인별 학습 성향을 고려한 맞춤형 설계가 가능함을 보였다. 인간의 사고체계에 대한 뇌과학적인 이해를 바탕으로 원샷 추론과 같은 인간의 잠재적 능력을 극대화하는 이 기술은 차세대 인공지능의 중요한 도전과제 중 하나이며, 뇌 기반 인공지능 기술은 인간과 유사한 사고체계를 바탕으로 가치판단을 할 수 있으므로 장기적으로 인간과 인공지능이 협업하는 분야에서 인공지능의 신뢰성 및 윤리성을 높이는 데도 기여할 수 있을 것으로 기대된다. 개발 기술은 스마트 교육, 게임 콘텐츠 개발, 추론 능력 측정, 인지훈련 등 인간의 추론 학습과 관련된 모든 분야에 적용될 수 있다. 기존 기술은 단편적인 기억회상, 특정 인지기능, 정답률 증가와 같은 행동적 측면에 집중해 왔다면, 이번 기술은 인공지능을 이용해 과거의 경험을 일반화시키는 인간의 사고체계 자체를 높이는 가능성을 확인한 최초의 사례로 평가된다. KAIST에서 연구를 주도한 제1 저자 이지항 교수(현 상명대 서울캠퍼스 조교수)는 "이번 연구를 통해 인간의 인지기능을 인공지능에 이식하여 뇌 기반 인공지능을 실현하는 사례를 보였고, 이를 통해 인간의 고위 수준 인지를 적절한 방향으로 유도할 수 있는 새로운 인간-인공지능 상호작용 패러다임을 제시했다ˮ라고 강조하며, 추후 "인간중심 인공지능 연구 개발뿐만 아니라 바이오메디컬 분야, 특히 정신 건강과 관련된 디지털 치료 분야에 적용했을 때 큰 파급력을 보일 것ˮ이라고 말했다. 연구 책임자인 이상완 교수는 "이번 기술의 잠재력은 인공지능의 방대한 지식을 인간이 빠르게 흡수할 수 있는 형태로 변환할 수 있다는 데 있다ˮ며, "챗 GPT, GPT-4와 같은 언어 인공지능에서 추출되는 다양한 정보를 인간이 빠르게 추론 학습할 수 있게 변환하거나, 게임이나 가상현실의 콘텐츠를 인간의 추론 과정에 맞게 최적화해 몰입도를 높일 수 있고, 반대로 몰입도를 적절한 수준에서 제어할 경우 중독을 완화하는 효과를 기대할 수 있다ˮ라고 말했다. 관련 기술은 국내 및 해외에 특허 출원된 상태이며, KAIST 기술설명회(테크페어)에 소개된 바 있다. 이상완 교수 연구팀은 이러한 뇌 기반 인공지능 원천기술의 파급력을 높이기 위해 2019년 KAIST 신경과학-인공지능 융합연구센터를 설립하고, 구글 딥마인드, 마이크로소프트 연구소, IBM 연구소, 옥스퍼드 대학 등 다양한 해외 연구팀들과 함께 국제공동연구를 수행해 오고 있다. 이번 연구는 `시뮬레이션 기반 실험 디자인을 이용한 인간의 인과관계 추론과정 제어'라는 제목으로 국제 학술지 셀(Cell)의 오픈 액세스 저널인 `셀 리포트(Cell Reports)'에 1월 호 온라인판에 1월 30일 자 게재됐다. (논문명: Controlling human causal inference through in-silico task design) 한편 이번 연구는 삼성전자 미래기술육성센터, 과학기술정보통신부 정보통신기획평가원 SW스타랩 및 한국연구재단의 지원을 받아 수행됐다.
2024.01.31
조회수 3726
‘당신 우울한가요?’ 스마트폰으로 진단하다
요즘 현대인들에게 많이 찾아오는 우울증을 진단하기 위한 스마트폰으로 진단하는 연구가 개발되어 화제다. 우리 대학 전기및전자공학부 이성주 교수 연구팀이 사용자의 언어 사용 패턴을 개인정보 유출 없이 스마트폰에서 자동으로 분석해 사용자의 정신건강 상태를 모니터링하는 인공지능 기술을 개발했다고 21일 밝혔다. 사용자가 스마트폰을 소지하고 일상적으로 사용하기만 해도 스마트폰이 사용자의 정신건강 상태를 분석 및 진단할 수 있는 것이다. 연구팀은 임상적으로 이뤄지는 정신질환 진단이 환자와의 상담을 통한 언어 사용 분석에서 이루어진다는 점에 착안해 연구를 진행했다. 이번 기술에서는 (1) 사용자가 직접 작성한 문자 메시지 등의 키보드 입력 내용과, (2) 스마트폰 위 마이크에서 실시간으로 수집되는 사용자의 음성 데이터를 기반으로 정신건강 진단을 수행한다. 이러한 언어 데이터는 사용자의 민감한 정보를 담고 있을 수 있어 기존에는 활용이 어려웠다. 이러한 문제의 해결을 위해 이번 기술에는 연합학습 인공지능 기술이 적용됐는데, 이는 사용자 기기 외부로의 데이터 유출 없이 인공지능 모델을 학습해 사생활 침해의 우려가 없다는 것이 특징이다. 인공지능 모델은 일상 대화 내용과 화자의 정신건강을 바탕으로 한 데이터셋을 기반으로 학습되었다. 모델은 스마트폰에서 입력으로 주어지는 대화를 실시간으로 분석하여 학습된 내용을 바탕으로 사용자의 정신건강 척도를 예측한다. 더 나아가, 연구팀은 스마트폰 위 대량으로 주어지는 사용자 언어 데이터로부터 효과적인 정신건강 진단을 수행하는 방법론을 개발했다. 연구팀은 사용자들이 언어를 사용하는 패턴이 실생활 속 다양한 상황에 따라 다르다는 것에 착안해, 스마트폰 위에서 주어지는 현재 상황에 대한 단서를 기반으로, 인공지능 모델이 상대적으로 중요한 언어 데이터에 집중하도록 설계했다. 예를 들어, 업무 시간보다는 저녁 시간에 가족 또는 친구들과 나누는 대화에 정신건강을 모니터링 할 수 있는 단서가 많다고 인공지능 모델이 판단해 중점을 두고 분석하는 식이다. 이번 논문은 전산학부 신재민 박사과정, 전기및전자공학부 윤형준 박사과정, 이승주 석사과정, 이성주 교수와 박성준 SoftlyAI 대표(KAIST 졸업생), 중국 칭화대학교 윤신 리우(Yunxin Liu) 교수, 그리고 미국 에모리(Emory) 대학교 최진호 교수의 공동연구로 이뤄졌다. 이번 논문은 올해 12월 6일부터 10일까지 싱가폴에서 열린 자연어 처리 분야 최고 권위 학회인 EMNLP(Conference on Empirical Methods in Natural Language Processing)에서 발표됐다. ※ 논문명(FedTherapist: Mental Health Monitoring with User-Generated Linguistic Expressions on Smartphones via Federated Learning) 이성주 교수는 "이번 연구는 모바일 센싱, 자연어 처리, 인공지능, 심리학 전문가들의 협력으로 이루어져서 의미가 깊으며, 정신질환으로 어려워하는 사람들이 많은데, 개인정보 유출이나 사생활 침범의 걱정 없이 스마트폰 사용만으로 정신건강 상태를 조기진단 할 수 있게 되었다ˮ라며, "이번 연구가 서비스화되어 사회에 도움이 되면 좋겠다ˮ라고 소감을 밝혔다. 이 연구는 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행됐다. (No. 2022-0-00495, 휴대폰 단말에서의 보이스피싱 탐지 예방 기술 개발, No. 2022-0-00064, 감정노동자의 정신건강 위험 예측 및 관리를 위한 휴먼 디지털 트윈 기술 개발)
2023.12.21
조회수 5241
혹시 나도 수면 질환? AI로 간단히 검사해 보세요
각종 장비를 몸에 부착한 채 병원에서 하룻밤을 보내야 하는 번거로운 검사 없이 웹사이트를 통해 간단히 수면 질환 위험도를 파악할 방법이 나왔다. 우리 대학 수리과학과 김재경 교수 연구팀이 삼성서울병원 주은연‧최수정 교수팀, 이화여대 서울병원 김지현 교수팀과 공동 연구를 통해 개발한 세 가지 수면 질환을 예측할 수 있는 알고리즘 ‘슬립스(SLEEPS‧SimpLe quEstionnairE Predicting Sleep disorders)’를 12일 공개했다. ‘잠이 보약’이라는 말처럼 수면은 정신적‧신체적 건강에 주요한 영향을 미친다. 성인의 60%가량이 수면 질환을 앓고 있지만, 관련하여 전문 의료진에게 문의한 비율은 6% 수준에 불과하다. 병원 방문을 꺼리는 원인 중 하나로는 수면 질환 진단을 받기 위해 시행하는 수면다원검사가 번거롭다는 이유가 있다. 공동연구진은 약 5,000명의 수면다원검사 결과를 기계 학습을 통해 학습시켜 수면 질환 위험도를 예측하는 알고리즘 ‘슬립스’를 개발했다. 슬립스에서 나이, 성별, 키, 체중, 최근 2주간의 수면 시 어려움, 수면 유지 어려움, 기상 시 어려움, 수면 패턴에 대한 만족도, 수면이 일상 기능에 미치는 영향 등 간단한 9개의 질문에 답하는 것만으로 만성불면증, 수면호흡장애, 수면호흡장애를 동반한 불면증의 위험도를 90%의 정확도로 예측할 수 있다. 가령, 슬립스 검사 결과 수면호흡장애 위험도가 50%라는 결과가 나왔다면, 실제 수면다원검사를 시행했을 때 수면호흡장애가 발견될 확률이 50%임을 의미한다. 제1 저자인 하석민 미국 MIT 박사과정생(前 IBS 의생명 수학 그룹 연구원)은 “미국 하버드대 연구팀도 AI 기반 수면 질환 검사 알고리즘을 개발한 바 있으나, 이 시스템은 목둘레, 혈압 등 쉽게 답하기 어려운 문항이 포함되어 있어 사용이 까다로웠다”며 “또한, 하버드대 연구팀의 시스템은 예측 정확도도 70% 정도에 그쳤다”고 말했다. 슬립스 사이트(www.sleep-math.com)를 통해 누구나 수면 질환 여부를 예측해볼 수 있다. 현재 본인의 상태를 기준으로 몸무게 변화나 나이가 듦에 따른 수면 질환 위험도 변화도 살펴볼 수 있다. 김재경 교수는 “이번 연구는 수학으로 우리가 직면한 건강 문제를 해결해보고자 하는 시도에서 시작됐고, 중요하지만 쉽게 간과할 수 있는 수면 질환에 기계 학습을 접목했다”며 “수면 질환 진단의 복잡한 과정을 줄인 만큼, 많은 사람이 슬립스를 통해 자신의 수면 건강을 알 수 있는 계기가 되길 바란다”고 말했다. 주은연 삼성서울병원 교수는 “슬립스는 간편한 수면 질환 자가 검진 시스템”이라며 “향후 건강검진 항목에 AI 기반 자가 검진 시스템을 포함한다면 잠재적인 수면 질환 환자들을 스크리닝하여 수면 질환으로 인해 발생하는 수많은 질병을 선제적으로 예방할 수 있을 것”이라고 말했다. 슬립스 개발 성과는 지난 9월 의료 건강 분야 국제학술지 ‘Journal of Medical Internet Research’에 실린 바 있다.
2023.12.14
조회수 4738
구글딥마인드와 공동연구를 통해 인공지능으로 시각을 상상하다
‘노란 포도'나 `보라색 바나나'와 같이 본 적 없는 시각 개념을 이해하고 상상하는 인공지능 능력 구현이 가능해졌다. 우리 대학 전산학부 안성진 교수 연구팀이 구글 딥마인드 및 미국 럿거스 대학교와의 국제 공동 연구를 통해 시각적 지식을 체계적으로 조합해 새로운 개념을 이해하는 인공지능 새로운 모델과 프로그램을 수행하는 벤치마크를 개발했다고 30일 밝혔다. 인간은 `보라색 포도'와 `노란 바나나' 같은 개념을 학습하고, 이를 분리한 뒤 재조합해 `노란 포도'나 `보라색 바나나'와 같이 본 적 없는 개념을 상상하는 능력이 있다. 이런 능력은 체계적 일반화 혹은 조합적 일반화라고 불리며, 범용 인공지능을 구현하는 데 있어 핵심적인 요소로 여겨진다. 체계적 일반화 문제는 1988년 미국의 저명한 인지과학자 제리 포더(Jerry Fodor)와 제논 필리쉰(Zenon Pylyshyn)이 인공신경망이 이 문제를 해결할 수 없다고 주장한 이후, 35년 동안 인공지능 딥러닝 분야에서 큰 도전 과제로 남아 있다. 이 문제는 언어뿐만 아니라 시각 정보에서도 발생하지만, 지금까지는 주로 언어의 체계적 일반화에만 초점이 맞춰져 있었고, 시각 정보에 관한 연구는 상대적으로 부족했다. 안성진 교수가 이끄는 국제 공동 연구팀은 이러한 공백을 메우고자 시각 정보에 대한 체계적 일반화를 연구할 수 있는 벤치마크를 개발했다. 시각 정보는 언어와는 달리 명확한 `단어'나 `토큰'의 구조가 없어, 이 구조를 학습하고 체계적 일반화를 달성하는 것이 큰 도전이다. 연구를 주도한 안성진 교수는 “시각 정보의 체계적 일반화가 범용 인공지능을 달성하기 위해 필수적인 능력이며 이 연구를 통해 인공지능의 추론능력과 상상능력 관련 분야의 발전을 가속할 것으로 기대한다”고 말했다. 또한, 딥마인드의 책임 연구원으로 연구에 참여한 연구원이자 현재 스위스 로잔연방공과대학교(EPFL)의 찰라 걸셔(Caglar Gulcehre) 교수는 “체계적 일반화가 가능해지면 현재보다 훨씬 적은 데이터로 더 높은 성능을 낼 수 있게 될 것이다”라고 전했다. 이번 연구는 12월 10일부터 16일까지 미국 뉴올리언스에서 열리는 제37회 신경정보처리학회(NeurIPS)에서 발표될 예정이다. 관련논문: “Imagine the Unseen World: A Benchmark for Systematic Generalization in Visual World Models”, Yeongbin Kim, Gautam Singh, Junyeong Park, Caglar Gulcehre, Sungjin Ahn, NeurIPS 23
2023.11.30
조회수 4162
인공지능으로 북한 등 경제지표 추정하다
유엔기구(UN)의 지속가능발전목표(SDGs)에 따르면 하루 2달러 이하로 생활하는 절대빈곤 인구가 7억 명에 달하지만 그 빈곤의 현황을 제대로 파악하기는 쉽지 않다. 전 세계 중 53개국은 지난 15년 동안 농업 관련 현황 조사를 하지 못했으며, 17개국은 인구 센서스(인구주택 총조사)조차 진행하지 못했다. 이러한 데이터 부족을 극복하려는 시도로, 누구나 웹에서 받아볼 수 있는 인공위성 영상을 활용해 경제 지표를 추정하는 기술이 주목받고 있다. 우리 대학 차미영-김지희 교수 연구팀이 기초과학연구원, 서강대, 홍콩과기대(HKUST), 싱가포르국립대(NUS)와 국제공동연구를 통해 주간 위성영상을 활용해 경제 상황을 분석하는 새로운 인공지능(AI) 기법을 개발했다고 21일 밝혔다. 연구팀이 주목한 것은 기존 통계자료를 기반으로 학습하는 일반적인 환경이 아닌, 기초 통계도 미비한 최빈국(最貧國)까지 모니터링할 수 있는 범용적인 모델이다. 연구팀은 유럽우주국(ESA)이 운용하며 무료로 공개하는 센티넬-2(Sentinel-2) 위성영상을 활용했다. 연구팀은 먼저 위성영상을 약 6제곱킬로미터(2.5×2.5㎢)의 작은 구역으로 세밀하게 분할한 후, 각 구역의 경제 지표를 건물, 도로, 녹지 등의 시각적 정보를 기반으로 AI 기법을 통해 수치화했다. 이번 연구 모델이 이전 연구와 차별화된 점은 기초 데이터가 부족한 지역에도 적용할 수 있게끔 인간이 제시하는 정보를 인공지능의 예측에 반영하는 `인간-기계 협업 알고리즘'에 있다. 즉, 인간이 위성영상을 보고 경제 활동의 많고 적음을 비교하면, 기계는 이러한 인간이 제공한 정보를 학습하여 각각의 영상자료에 경제 점수를 부여한다. 검증 결과, 기계학습만 사용했을 때보다 인간과 협업할 경우 성능이 월등히 우수했다. 이번 연구를 통해 연구팀은 기존 통계자료가 부족한 지역까지 경제분석의 범위를 확장하고, 북한 및 아시아 5개국(네팔, 라오스, 미얀마, 방글라데시, 캄보디아)에도 같은 기술을 적용하여 세밀한 경제 지표 점수를 공개했다. (그림 1) 이 연구가 제시한 경제 지표는 기존의 인구밀도, 고용 수, 사업체 수 등의 사회경제지표와 높은 상관관계를 보였으며, 데이터가 부족한 저개발국가에 적용 가능함을 연구팀은 확인했다. 이러한 변화탐지를 북한에 적용한 결과, 대북 경제제재가 심화된 2016년과 2019년 사이에 북한 경제에서 세 가지 경향을 발견할 수 있었다. 첫째, 북한의 경제 발전은 평양과 대도시에 더욱 집중되어 도시와 농촌 간 격차가 심화됐다. 둘째, 경제제재와 달러 외환의 부족을 극복하기 위해 설치한 관광 경제개발구에서는 새로운 건물 건설 등 유의미한 변화가 위성영상 이미지와 연구의 경제 지표 점수 변화에서 드러났다. 셋째, 전통적인 공업 및 수출 경제개발구 유형에서는 반대로 변화가 미미한 것으로 확인됐다. 연구에 참여한 우리 대학 전산학부·IBS 데이터사이언스그룹 CI 차미영 교수는 "전산학, 경제학, 지리학이 융합된 이번 연구는 범지구적 차원의 빈곤 문제를 다룬다는 점에서 중요한 의미가 있으며, 이번에 개발한 인공지능 알고리즘을 앞으로 이산화탄소 배출량, 재해재난 피해 탐지, 기후 변화로 인한 영향 등 다양한 국제사회 문제에 적용해 볼 계획이다ˮ 라고 말했다. 이 연구에는 경제학자인 우리 대학 기술경영학부 김지희 교수, 서강대 경제학과 양현주 교수, 홍콩과기대 박상윤 교수도 함께 참여하였다. 이들은 “이 모델은 저비용으로 개발도상국의 경제 상황을 상세하게 확인할 수 있어 국제개발협력(ODA) 사업에 도움을 줄 수 있을 것으로 예상된다”며 “이번 연구가 선진국과 후진국 간의 데이터 격차를 줄이고 유엔과 국제사회의 공동목표인 지속가능한 발전을 달성하는 데 기여할 수 있기를 바란다ˮ고 밝혔다. 위성영상과 인공지능을 활용한 SDGs 지표의 개발과 이의 정책적 활용은 국제적인 주목을 받고 있는 기술 분야 중 하나이며 한국이 앞으로 주도권을 가지고 이끌 수 있는 연구 분야이다. 이에 연구팀은 개발한 모델 코드를 무료로 공개하며, 측정한 지표가 여러 국가의 정책 설계 및 평가에 유용하게 사용될 수 있도록 앞으로도 기술을 개선하고 매해 새롭게 업데이트되는 인공위성 영상에 적용하여 공개할 계획이다. 한편 이번 연구 결과는 전산학부 안동현 박사과정, 싱가포르 국립대 양재석 박사과정이 공동 1저자로 국제 학술지 네이처 출판 그룹의 `네이처 커뮤니케이션즈(Nature Communications)'에 지난 10월 26일 자 게재됐다. (논문명: A human-machine collaborative approach measures economic development using satellite imagery, 인간-기계 협업과 위성영상 분석에 기반한 경제 발전 측정). 논문링크: https://www.nature.com/articles/s41467-023-42122-8
2023.11.21
조회수 4759
인공지능 결합한 홀로그래픽 현미경 기술 총망라
의생명공학 연구에 일반적으로 사용되는 현미경 기술들은 염색이나 유전자 조작을 해야만 관찰할 수 있다는 한계가 있다. 하지만 염색이 된 세포들은 치료 목적으로 활용할 수 없어 세포나 조직을 살아있는 상태 그대로 관찰할 수 있는 홀로그래픽 현미경과 이를 체계적으로 분석할 수 있는 인공지능을 결합한 의생명공학 연구의 활용 방안 및 문제점에 대한 분석이 필요하다. 우리 대학 물리학과 박용근 교수 연구팀이 국제 학술지 `네이처 메소드(Nature Methods)'에 홀로그래픽 현미경과 인공지능 융합 연구 방법론을 조망한 견해 (perspective)를 게재했다고 14일 전했다. 연구팀은 기존 현미경 기술 대비 홀로그래픽 현미경의 이미지 복원 기술이 시간을 많이 필요하고 전처리 없이 세포나 조직을 찍을 수 있다는 장점이 있지만, 대신에 그만큼 결과물 분석에 많은 시간과 노력을 들여야 한다고도 분석했다. 박용근 교수 연구팀은 이런 문제점을 홀로그래픽 현미경과 인공지능과의 통합을 통해 해결할 수 있다는 방법론을 제시했다. 지난 수년간, 홀로그래픽 현미경과 인공지능을 결합해 의생명공학 연구에 혁신을 일으킨 내용들이 잇달아 국제 학술지에 발표됐다. 인공지능을 통해 홀로그래픽 이미지를 복원하고, 세포의 종류와 상태를 구분하고, 염색 없이 측정된 결과물에 가상으로 염색 정보를 재생산 해내는 등의 연구를 통해 연구팀은 기존의 홀로그래픽 현미경 기술의 효율을 극대화했다. 홀로그래픽 현미경 기술 소개에 더불어 인공지능의 결합이 광범위한 의생명공학 연구에 활용돼 온 내용을 총망라한 이번 리뷰 논문은 제시된 방법론의 혁신성을 인정받아 생명과학 분야의 권위 학술지인 `네이처 메소드(Nature Methods)'에 지난 10월 24일 자 출판됐다. (논문명: Artificial intelligence-enabled Quantitative Phase Imaging Methods for Life Sciences) 제1 저자인 물리학과 박주연 학생은 "홀로그래픽 현미경에 인공지능을 결합하면, 의생명공학 연구의 효율을 기하급수적으로 높일 수 있다ˮ며, "이번 리뷰 논문을 통해 이 융합 기술이 더욱 활발하게 개발됨과 동시에 더욱 다양한 의생명공학 연구에 활용될 것ˮ이라고 기대했다. 한편 이번 논문은 캘리포니아대학교 로스앤젤레스(UCLA) 아이도간 오즈칸(Aydogan Ozcan) 교수팀, 토모큐브(Tomocube) 인공지능 연구팀과 공동 집필했으며, 연구재단의 리더연구사업, 과학기술정보통신부의 홀로그램핵심기술지원사업, 나노 및 소재 기술개발사업의 지원을 받아 수행됐다.
2023.11.14
조회수 5262
트랜스포머 대체할 차세대 월드모델 기술 세계 최초 개발
우리 대학 전산학부 안성진 교수 연구팀이 미국 럿거스 대학교와 협력하여 트랜스포머 및 재귀신경망 기반의 월드모델을 대체할 차세대 에이전트 월드모델 기술을 세계 최초로 개발했다. 월드모델은 인간의 뇌가 현실 세계의 경험을 바탕으로 환경 모델을 구축하는 과정과 유사하다. 이러한 월드모델을 활용하는 인공지능은 특정 행동의 결과를 미리 시뮬레이션해보고 다양한 가설을 검증할 수 있어, 범용 인공지능의 핵심 구성 요소로 여겨진다. 특히, 로봇이나 자율주행 차량과 같은 인공지능 에이전트는 학습을 위해 여러 가지 행동을 시도해 보아야하는데, 이는 위험성과 고장 가능성을 높인다는 단점을 갖는다. 이에 반해, 월드모델을 갖춘 인공지능은 실세계 상호작용 없이도 상상모델 속에서 학습을 가능케 해 큰 이점을 제공한다. 그러나 월드모델은 자연어처리 등에서 큰 발전을 가능하게 한 트랜스포머와 S4와 같은 새로운 시퀀스 모델링 아키텍처의 적용에 한계가 있었다. 이로 인해, 대부분의 월드모델이 성능과 효율성 면에서 제약이 있는 고전적인 재귀적 신경망에 의존하고 있었고 안성진 교수팀은 작년 세계최초로 트랜스포머 기반의 월드모델을 개발하였으나 추론 계산속도나 메모리능력에서 여전히 개선할 문제를 갖고 있었다. 이러한 문제를 해결하기 위해, 안성진 교수가 이끄는 KAIST와 럿거스 대학교 공동연구팀은 재귀적 신경망과 트랜스포머 기반 월드모델의 단점을 극복한 새로운 월드모델의 개발에 성공했다. 연구팀은 S4 시퀀스 모델에 기반한 S4 World Model (S4WM)을 개발하여, 재귀적 신경망의 최대 단점인 병렬처리가 가능한 시퀀스 학습이 불가능하다는 문제를 해결하였다. 또한, 재귀적 신경망의 장점인 빠른 추론시간을 유지하도록 하여 느린 추론 시간을 제공하는 트랜스포머 기반 월드모델의 단점을 극복했다. 연구를 주도한 안성진 교수는 "병렬 학습과 빠른 추론이 가능한 에이전트 월드모델을 세계 최초로 개발했다ˮ며, 이는 "모델기반 강화학습 능력을 획기적으로 개선해 지능형 로봇, 자율주행 차량, 그리고 자율형 인공지능 에이전트 기술 전반에 비용절감과 성능 향상이 예상된다ˮ고 밝혔다. 이번 연구는 12월 10일부터 16일까지 미국 뉴올리언스에서 열리는 세계 최고 수준의 인공지능 학회인 제37회 신경정보처리학회(NeurIPS)에서 발표될 예정이다. 관련논문: “Facing off World Model Backbones: RNNs, Transformers, and S4”Fei Deng, Junyeong Park, Sungjin Ahn, NeurIPS 23, https://arxiv.org/abs/2307.02064
2023.11.09
조회수 3748
변화된 데이터에서 인공지능 공정성 찾아내다
인공지능 기술이 사회 전반에 걸쳐 광범위하게 활용되며 인간의 삶에 많은 영향을 미치고 있다. 최근 인공지능의 긍정적인 효과 이면에 범죄자의 재범 예측을 위해 머신러닝 학습에 사용되는 콤파스(COMPAS) 시스템을 기반으로 학습된 모델이 인종 별로 서로 다른 재범 확률을 부여할 수 있다는 심각한 편향성이 관찰되었다. 이 밖에도 채용, 대출 시스템 등 사회의 중요 영역에서 인공지능의 다양한 편향성 문제가 밝혀지며, 공정성(fairness)을 고려한 머신러닝 학습의 필요성이 커지고 있다. 우리 대학 전기및전자공학부 황의종 교수 연구팀이 학습 상황과 달라진 새로운 분포의 테스트 데이터에 대해서도 편향되지 않은 판단을 내리도록 돕는 새로운 모델 훈련 기술을 개발했다고 30일 밝혔다. 최근 전 세계의 연구자들이 인공지능의 공정성을 높이기 위한 다양한 학습 방법론을 제안하고 있지만, 대부분의 연구는 인공지능 모델을 훈련시킬 때 사용되는 데이터와 실제 테스트 상황에서 사용될 데이터가 같은 분포를 갖는다고 가정한다. 하지만 실제 상황에서는 이러한 가정이 대체로 성립하지 않으며, 최근 다양한 어플리케이션에서 학습 데이터와 테스트 데이터 내의 편향 패턴이 크게 변화할 수 있음이 관측되고 있다. 이때, 테스트 환경에서 데이터의 정답 레이블과 특정 그룹 정보 간의 편향 패턴이 변경되면, 사전에 공정하게 학습되었던 인공지능 모델의 공정성이 직접적인 영향을 받고 다시금 악화된 편향성을 가질 수 있다. 일례로 과거에 특정 인종 위주로 채용하던 기관이 이제는 인종에 관계없이 채용한다면, 과거의 데이터를 기반으로 공정하게 학습된 인공지능 채용 모델이 현대의 데이터에는 오히려 불공정한 판단을 내릴 수 있다. 연구팀은 이러한 문제를 해결하기 위해, 먼저 `상관관계 변화(correlation shifts)' 개념을 도입해 기존의 공정성을 위한 학습 알고리즘들이 가지는 정확성과 공정성 성능에 대한 근본적인 한계를 이론적으로 분석했다. 예를 들어 특정 인종만 주로 채용한 과거 데이터의 경우 인종과 채용의 상관관계가 강해서 아무리 공정한 모델을 학습을 시켜도 현재의 약한 상관관계를 반영하는 정확하면서도 공정한 채용 예측을 하기가 근본적으로 어려운 것이다. 이러한 이론적인 분석을 바탕으로, 새로운 학습 데이터 샘플링 기법을 제안해 테스트 시에 데이터의 편향 패턴이 변화해도 모델을 공정하게 학습할 수 있도록 하는 새로운 학습 프레임워크를 제안했다. 이는 과거 데이터에서 우세하였던 특정 인종 데이터를 상대적으로 줄임으로써 채용과의 상관관계를 낮출 수 있다. 제안된 기법의 주요 이점은 데이터 전처리만 하기 때문에 기존에 제안된 알고리즘 기반 공정한 학습 기법을 그대로 활용하면서 개선할 수 있다는 것이다. 즉 이미 사용되고 있는 공정한 학습 알고리즘이 위에서 설명한 상관관계 변화에 취약하다면 제안된 기법을 함께 사용해서 해결할 수 있다. 제1 저자인 전기및전자공학부 노유지 박사과정 학생은 "이번 연구를 통해 인공지능 기술의 실제 적용 환경에서, 모델이 더욱 신뢰 가능하고 공정한 판단을 하도록 도울 것으로 기대한다ˮ고 밝혔다. 연구팀을 지도한 황의종 교수는 "기존 인공지능이 변화하는 데이터에 대해서도 공정성이 저하되지 않도록 하는 데 도움이 되기를 기대한다ˮ고 말했다. 이번 연구에는 노유지 박사과정이 제1 저자, 황의종 교수(KAIST)가 교신 저자, 서창호 교수(KAIST)와 이강욱 교수(위스콘신-매디슨 대학)가 공동 저자로 참여했다. 이번 연구는 지난 7월 미국 하와이에서 열린 머신러닝 최고권위 국제학술 대회인 `국제 머신러닝 학회 International Conference on Machine Learning (ICML)'에서 발표됐다. (논문명 : Improving Fair Training under Correlation Shifts) 한편, 이 기술은 정보통신기획평가원의 지원을 받은 `강건하고 공정하며 확장가능한 데이터 중심의 연속 학습' 과제 (2022-0-00157)와 한국연구재단 지원을 받은 `데이터 중심의 신뢰 가능한 인공지능' 과제의 성과다.
2023.10.30
조회수 3882
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
>
다음 페이지
>>
마지막 페이지 9